Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = interhemispheric interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 459 KB  
Article
Scaling Down: Proportionally Smaller Corpora Callosa in Larger Brains
by Caitlin Dale, Florian Kurth and Eileen Luders
Anatomia 2025, 4(4), 14; https://doi.org/10.3390/anatomia4040014 - 2 Oct 2025
Viewed by 242
Abstract
Background: Larger brains are believed to rely more heavily on intra-hemispheric than inter-hemispheric processing, which may lead to a proportionally reduced callosal size. Methods: To test this hypothesis, we used T1-weighted magnetic resonance images from a large population sample (n = 38,034). [...] Read more.
Background: Larger brains are believed to rely more heavily on intra-hemispheric than inter-hemispheric processing, which may lead to a proportionally reduced callosal size. Methods: To test this hypothesis, we used T1-weighted magnetic resonance images from a large population sample (n = 38,034). The sample was drawn from the UK Biobank and included 19,947 females and 18,087 males, aged between 44 and 83 years (mean ± SD: 64 ± 7.72 years). Linear modelling was used to assess the relationship between proportional callosal volume and total intracranial volume, with sex, age, and handedness included as covariates and interaction terms. Results: We observed a significant negative relationship between proportional callosal volume and total brain volume, such that larger brains had proportionally smaller corpora callosa. Conclusion: These findings support the hypothesis that increasing brain size is associated with reduced inter-hemispheric connectivity, potentially due to conduction constraints that promote greater intra-hemispheric processing in larger brains. Full article
Show Figures

Figure 1

15 pages, 2818 KB  
Article
Hemodynamic Response Asymmetry During Motor Imagery in Stroke Patients: A Novel NIRS-BCI Assessment Approach
by Mikhail Isaev, Pavel Bobrov, Olesya Mokienko, Irina Fedotova, Roman Lyukmanov, Ekaterina Ikonnikova, Anastasiia Cherkasova, Natalia Suponeva, Michael Piradov and Ksenia Ustinova
Sensors 2025, 25(16), 5040; https://doi.org/10.3390/s25165040 - 14 Aug 2025
Viewed by 726
Abstract
Understanding patterns of interhemispheric asymmetry is crucial for monitoring neuroplastic changes during post-stroke motor rehabilitation. However, conventional laterality indices often pose computational challenges when applied to functional near-infrared spectroscopy (fNIRS) data due to the bidirectional hemodynamic responses. In this study, we analyze fNIRS [...] Read more.
Understanding patterns of interhemispheric asymmetry is crucial for monitoring neuroplastic changes during post-stroke motor rehabilitation. However, conventional laterality indices often pose computational challenges when applied to functional near-infrared spectroscopy (fNIRS) data due to the bidirectional hemodynamic responses. In this study, we analyze fNIRS recordings from 15 post-stroke patients undergoing motor imagery brain–computer interface training across multiple sessions. We compare traditional laterality coefficients with a novel task response asymmetry coefficient (TRAC), which quantifies differential hemispheric involvement during motor imagery tasks. Both indices are calculated for oxygenated and deoxygenated hemoglobin responses using general linear model coefficients, and their day-to-day dynamics are assessed with linear regression. The proposed TRAC demonstrates greater sensitivity than conventional measures, revealing significantly higher oxygenated hemoglobin TRAC values (0.18 ± 0.19 vs. −0.05 ± 0.20, p < 0.05) and lower deoxygenated hemoglobin TRAC values (−0.15 ± 0.27 vs. 0.04 ± 0.23, p < 0.05) in lesioned compared to intact hemispheres. Among patients who exhibit substantial motor recovery, distinct daily TRAC dynamics were observed, with statistically significant temporal trends. Overall, the novel TRAC metric offers enhanced discrimination of interhemispheric asymmetry patterns and captures temporal neuroplastic changes not detected by conventional indices, providing a more sensitive biomarker for tracking rehabilitation progress in post-stroke brain–computer interface applications. Full article
Show Figures

Graphical abstract

14 pages, 2075 KB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 517
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

31 pages, 1009 KB  
Review
The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases
by Martina Manns, Georg Juckel and Nadja Freund
Brain Sci. 2025, 15(2), 169; https://doi.org/10.3390/brainsci15020169 - 9 Feb 2025
Viewed by 2398
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute [...] Read more.
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular. Full article
(This article belongs to the Special Issue Recent Advances in Brain Lateralization)
Show Figures

Figure 1

20 pages, 10628 KB  
Article
Astrocytes of the Anterior Commissure Regulate the Axon Guidance Pathways of Newly Generated Neocortical Neurons in the Opossum Monodelphis domestica
by Katarzyna Bartkowska, Paulina Koguc-Sobolewska, Ruzanna Djavadian and Krzysztof Turlejski
Int. J. Mol. Sci. 2024, 25(3), 1476; https://doi.org/10.3390/ijms25031476 - 25 Jan 2024
Cited by 2 | Viewed by 1801
Abstract
In marsupials, upper-layer cortical neurons derived from the progenitors of the subventricular zone of the lateral ventricle (SVZ) mature morphologically and send their axons to form interhemispheric connections through the anterior commissure. In contrast, eutherians have evolved a new extra callosal pathway, the [...] Read more.
In marsupials, upper-layer cortical neurons derived from the progenitors of the subventricular zone of the lateral ventricle (SVZ) mature morphologically and send their axons to form interhemispheric connections through the anterior commissure. In contrast, eutherians have evolved a new extra callosal pathway, the corpus callosum, that interconnects both hemispheres. In this study, we aimed to examine neurogenesis during the formation of cortical upper layers, including their morphological maturation in a marsupial species, namely the opossum (Monodelphis domestica). Furthermore, we studied how the axons of upper layers neurons pass through the anterior commissure of the opossum, which connects neocortical areas. We showed that upper-layer II/III neurons were generated within at least seven days in the opossum neocortex. Surprisingly, these neurons expressed special AT-rich sequence binding protein 2 (Satb2) and neuropilin 1 interacting protein (Nrp1), which are proteins known to be essential for the formation of the corpus callosum in eutherians. This indicates that extrinsic, but not intrinsic, cues could be key players in guiding the axons of newly generated cortical neurons in the opossum. Although oligodendrocyte precursor cells were present in the neocortex and anterior commissure, newly generated upper-layer neurons sent unmyelinated axons to the anterior commissure. We also found numerous GFAP-expressing progenitor cells in both brain structures, the neocortex and the anterior commissure. However, at P12–P17 in the opossums, a small population of astrocytes was observed only in the midline area of the anterior commissure. We postulate that in the opossum, midline astrocytes allow neocortical axons to be guided to cross the midline, as this structure resembles the glial wedge required by fibers to cross the midline area of the corpus callosum in the rodent. Full article
(This article belongs to the Special Issue Advances in Research on Neurogenesis: 3rd Edition)
Show Figures

Figure 1

20 pages, 6471 KB  
Article
Neural Coupling between Interhemispheric and Frontoparietal Functional Connectivity during Semantic Processing
by Takahiro Soshi
Brain Sci. 2023, 13(11), 1601; https://doi.org/10.3390/brainsci13111601 - 17 Nov 2023
Viewed by 2087
Abstract
Interhemispheric and frontoparietal functional connectivity have been reported to increase during explicit information processing. However, it is unclear how and when interhemispheric and frontoparietal functional connectivity interact during explicit semantic processing. Here, we tested the neural coupling hypothesis that explicit semantic processing promotes [...] Read more.
Interhemispheric and frontoparietal functional connectivity have been reported to increase during explicit information processing. However, it is unclear how and when interhemispheric and frontoparietal functional connectivity interact during explicit semantic processing. Here, we tested the neural coupling hypothesis that explicit semantic processing promotes neural activity in the nondominant right hemispheric areas, owing to synchronization with enhanced frontoparietal functional connectivity at later processing stages. We analyzed electroencephalogram data obtained using a semantic priming paradigm, which comprised visual priming and target words successively presented under direct or indirect attention to semantic association. Scalp potential analysis demonstrated that the explicit processing of congruent targets reduced negative event-related potentials, as previously reported. Current source density analysis showed that explicit semantic processing activated the right temporal area during later temporal intervals. Subsequent dynamic functional connectivity and neural coupling analyses revealed that explicit semantic processing increased the correlation between right temporal source activities and frontoparietal functional connectivity in later temporal intervals. These findings indicate that explicit semantic processing increases neural coupling between the interhemispheric and frontoparietal functional connectivity during later processing stages. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

21 pages, 1989 KB  
Article
Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian
by Tomoyo Morita, Hiromasa Takemura and Eiichi Naito
Brain Sci. 2023, 13(5), 715; https://doi.org/10.3390/brainsci13050715 - 25 Apr 2023
Cited by 4 | Viewed by 2177
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. [...] Read more.
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain. Full article
(This article belongs to the Special Issue Physical Exercise-Driven Brain Plasticity)
Show Figures

Graphical abstract

17 pages, 1515 KB  
Article
Electrophysiological Evidence Reveals the Asymmetric Transfer from the Right to Left Hemisphere as Key to Reading Proficiency
by Sangyub Kim, Joonwoo Kim and Kichun Nam
Brain Sci. 2023, 13(4), 621; https://doi.org/10.3390/brainsci13040621 - 6 Apr 2023
Cited by 7 | Viewed by 2198
Abstract
The present investigation aimed to explore the interhemispheric interactions that contribute to changes in reading proficiency by examining the processing of visual word recognition in relation to word familiarity. A lexical decision task was administered to 25 participants, and their electrophysiological activity was [...] Read more.
The present investigation aimed to explore the interhemispheric interactions that contribute to changes in reading proficiency by examining the processing of visual word recognition in relation to word familiarity. A lexical decision task was administered to 25 participants, and their electrophysiological activity was recorded. A behavioral analysis showed the faster and more accurate processing of highly familiar words compared to less familiar ones. An event-related potential analysis uncovered an asymmetric familiarity effect over the N100 and N400 components across the two hemispheres, indicating an asymmetrical word familiarity processing. Granger causality analyses demonstrated a stronger transfer of information from the right hemisphere (RH) to the left hemisphere (LH) during the N100 processing and a weaker transfer from the LH to the RH during the N400 processing for highly familiar word recognition. These findings suggest that the asymmetric coordination between the RH and LH occurs early in visual word recognition and highlight the importance of interhemispheric interactions in efficient visual word recognition and proficient reading. Full article
(This article belongs to the Section Neurolinguistics)
Show Figures

Graphical abstract

21 pages, 1181 KB  
Article
Revisiting Multifactor Models of Dyslexia: Do They Fit Empirical Data and What Are Their Implications for Intervention?
by Maria Luisa Lorusso and Alessio Toraldo
Brain Sci. 2023, 13(2), 328; https://doi.org/10.3390/brainsci13020328 - 14 Feb 2023
Cited by 13 | Viewed by 4042
Abstract
Developmental dyslexia can be viewed as the result of the effects of single deficits or multiple deficits. This study presents a test of the applicability of a multifactor-interactive model (MFi-M) with a preliminary set of five variables corresponding to different neuropsychological functions involved [...] Read more.
Developmental dyslexia can be viewed as the result of the effects of single deficits or multiple deficits. This study presents a test of the applicability of a multifactor-interactive model (MFi-M) with a preliminary set of five variables corresponding to different neuropsychological functions involved in the reading process. The model has been tested on a sample of 55 school-age children with developmental dyslexia. The results show that the data fit a model in which each variable contributes to the reading ability in a non-additive but rather interactive way. These findings constitute a preliminary validation of the plausibility of the MFi-M, and encourage further research to add relevant factors and specify their relative weights. It is further discussed how subtype-based intervention approaches can be a suitable and advantageous framework for clinical intervention in a MFi-M perspective. Full article
(This article belongs to the Special Issue Developmental Dyslexia: Theories and Experimental Approaches)
Show Figures

Figure 1

13 pages, 312 KB  
Opinion
Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation
by Jessica P. McCabe, Svetlana Pundik and Janis J. Daly
Brain Sci. 2022, 12(8), 1055; https://doi.org/10.3390/brainsci12081055 - 9 Aug 2022
Cited by 10 | Viewed by 4672
Abstract
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the [...] Read more.
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions. Full article
(This article belongs to the Special Issue Underlying Mechanisms and Neurorehabilitation of Gait after Stroke)
13 pages, 4252 KB  
Article
Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System
by Inmaculada Banegas, Isabel Prieto, Ana Belén Segarra, Francisco Vives, Magdalena Martínez-Cañamero, Raquel Durán, Juan de Dios Luna, Marc de Gasparo, Germán Domínguez-Vías and Manuel Ramírez-Sánchez
Biomedicines 2022, 10(2), 326; https://doi.org/10.3390/biomedicines10020326 - 29 Jan 2022
Cited by 1 | Viewed by 2739
Abstract
In emotional processing, dopamine (DA) plays an essential role, and its deterioration involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry and coexists with various neuropeptides that can coordinate the processing of brain functions. Brain asymmetry can extend into a broader concept [...] Read more.
In emotional processing, dopamine (DA) plays an essential role, and its deterioration involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry and coexists with various neuropeptides that can coordinate the processing of brain functions. Brain asymmetry can extend into a broader concept of asymmetric neurovisceral integration, including behavior. The study of the activity of neuropeptide regulatory enzymes (neuropeptidases, NPs) is illustrative. We have observed that the left and right brain areas interact intra- and inter-hemispherically, as well as with peripheral tissues or with physiological parameters such as blood pressure or with behaviors such as turning preference. To obtain data that reflect this integrative behavior, we simultaneously analyzed the impact of left or right brain DA depletion on the activity of various NPs in corticolimbic regions of the left and right hemispheres, such as the medial prefrontal cortex, amygdala and hippocampus, as well as on the plasma activity of the same aminopeptidase activities (APs) and on systolic blood pressure (SBP). Intra- and inter-hemispheric interactions as well as the interactions of NPs from the left or right hemispheres were analyzed with the same plasma APs and the SBP obtained from sham and from left or right lesioned rats. The results demonstrate a complex profile depending on the hemisphere considered. They definitively confirm an asymmetric neurovisceral integration and reveal a higher level of inter-hemispheric corticolimbic interactions including with SBP after left dopamine depletion. Full article
(This article belongs to the Special Issue Neuropeptides in Biomedicines)
Show Figures

Figure 1

10 pages, 950 KB  
Review
Brain Asymmetry: Towards an Asymmetrical Neurovisceral Integration
by Manuel Ramírez-Sánchez, Isabel Prieto, Ana Belén Segarra, Inmaculada Banegas, Magdalena Martínez-Cañamero, Germán Domínguez-Vías and Marc de Gasparo
Symmetry 2021, 13(12), 2409; https://doi.org/10.3390/sym13122409 - 13 Dec 2021
Cited by 8 | Viewed by 4081
Abstract
Despite the ancestral evidence of an asymmetry in motor predominance, going through the inspiring discoveries of Broca and Wernicke on the localization of language processing, continuing with the subsequent noise coinciding with the study of brain function in commissurotomized patients—and the subsequent avalanche [...] Read more.
Despite the ancestral evidence of an asymmetry in motor predominance, going through the inspiring discoveries of Broca and Wernicke on the localization of language processing, continuing with the subsequent noise coinciding with the study of brain function in commissurotomized patients—and the subsequent avalanche of data on the asymmetric distribution of multiple types of neurotransmitters in physiological and pathological conditions—even today, the functional significance of brain asymmetry is still unknown. Currently, multiple evidence suggests that functional asymmetries must have a neurochemical substrate and that brain asymmetry is not a static concept but rather a dynamic one, with intra- and inter-hemispheric interactions between its various processes, and that it is modifiable depending on changing endogenous and environmental conditions. Furthermore, based on the concept of neurovisceral integration in the overall functioning of an organism, some evidence has emerged suggesting that this integration could be organized asymmetrically, using the autonomic nervous system as a bidirectional communication pathway, whose performance would also be asymmetric. However, the functional significance of this distribution, as well as the evolutionary advantage of an asymmetric nervous organization, is still unknown. Full article
(This article belongs to the Special Issue Biology and Symmetry/Asymmetry:Feature Papers 2022)
Show Figures

Graphical abstract

9 pages, 1443 KB  
Article
Disconnection between Rat’s Left and Right Hemisphere Impairs Short-Term Memory but Not Long-Term Memory
by Yukitoshi Sakaguchi and Yoshio Sakurai
Symmetry 2021, 13(10), 1872; https://doi.org/10.3390/sym13101872 - 4 Oct 2021
Cited by 4 | Viewed by 2887
Abstract
Split-brain experiments, which have been actively conducted since the twentieth century, have provided a great deal of insight into functional asymmetry and inter-hemispheric interactions. However, how communication between the left and right hemispheres directly contributes to memory formation is still poorly understood. To [...] Read more.
Split-brain experiments, which have been actively conducted since the twentieth century, have provided a great deal of insight into functional asymmetry and inter-hemispheric interactions. However, how communication between the left and right hemispheres directly contributes to memory formation is still poorly understood. To address this issue, we cut the rat commissural fibers prior to performing behavioral tests, which consisted of two short-term and two long-term memory tasks. The result showed that cutting the commissural fibers impairs short-term memory but not long-term memory. This suggests that the left-right hemispheric interaction through the commissural fibers contributes to the appropriate formation of short-term memory, but not that of long-term memory. Our findings would help to elucidate dynamic memory formation between the two hemispheres and contribute to the development of therapeutics for some neurological diseases which cause a reduction in the inter-hemispheric interaction. Full article
(This article belongs to the Special Issue Brain Asymmetry in Evolution)
Show Figures

Figure 1

16 pages, 1437 KB  
Article
Typical and Aberrant Functional Brain Flexibility: Lifespan Development and Aberrant Organization in Traumatic Brain Injury and Dyslexia
by Stavros I. Dimitriadis, Panagiotis G. Simos, Jack Μ. Fletcher and Andrew C. Papanicolaou
Brain Sci. 2019, 9(12), 380; https://doi.org/10.3390/brainsci9120380 - 16 Dec 2019
Cited by 7 | Viewed by 4198
Abstract
Intrinsic functional connectivity networks derived from different neuroimaging methods and connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive maturation. The present study employed a dynamic functional connectivity approach to determine dominant intrinsic coupling modes in resting-state neuromagnetic data from [...] Read more.
Intrinsic functional connectivity networks derived from different neuroimaging methods and connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive maturation. The present study employed a dynamic functional connectivity approach to determine dominant intrinsic coupling modes in resting-state neuromagnetic data from 178 healthy participants aged 8–60 years. Results revealed significant developmental trends in three types of dominant intra- and inter-hemispheric neuronal population interactions (amplitude envelope, phase coupling, and phase-amplitude synchronization) involving frontal, temporal, and parieto-occipital regions. Multi-class support vector machines achieved 89% correct classification of participants according to their chronological age using dynamic functional connectivity indices. Moreover, systematic temporal variability in functional connectivity profiles, which was used to empirically derive a composite flexibility index, displayed an inverse U-shaped curve among healthy participants. Lower flexibility values were found among age-matched children with reading disability and adults who had suffered mild traumatic brain injury. The importance of these results for normal and abnormal brain development are discussed in light of the recently proposed role of cross-frequency interactions in the fine-grained coordination of neuronal population activity. Full article
(This article belongs to the Special Issue Human Brain Dynamics: Latest Advances and Prospects)
Show Figures

Graphical abstract

22 pages, 2283 KB  
Article
Functional Brain Network Topology Discriminates between Patients with Minimally Conscious State and Unresponsive Wakefulness Syndrome
by Alberto Cacciola, Antonino Naro, Demetrio Milardi, Alessia Bramanti, Leonardo Malatacca, Maurizio Spitaleri, Antonino Leo, Alessandro Muscoloni, Carlo Vittorio Cannistraci, Placido Bramanti, Rocco Salvatore Calabrò and Giuseppe Pio Anastasi
J. Clin. Med. 2019, 8(3), 306; https://doi.org/10.3390/jcm8030306 - 5 Mar 2019
Cited by 42 | Viewed by 6156
Abstract
Consciousness arises from the functional interaction of multiple brain structures and their ability to integrate different complex patterns of internal communication. Although several studies demonstrated that the fronto-parietal and functional default mode networks play a key role in conscious processes, it is still [...] Read more.
Consciousness arises from the functional interaction of multiple brain structures and their ability to integrate different complex patterns of internal communication. Although several studies demonstrated that the fronto-parietal and functional default mode networks play a key role in conscious processes, it is still not clear which topological network measures (that quantifies different features of whole-brain functional network organization) are altered in patients with disorders of consciousness. Herein, we investigate the functional connectivity of unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) patients from a topological network perspective, by using resting-state EEG recording. Network-based statistical analysis reveals a subnetwork of decreased functional connectivity in UWS compared to in the MCS patients, mainly involving the interhemispheric fronto-parietal connectivity patterns. Network topological analysis reveals increased values of local-community-paradigm correlation, as well as higher clustering coefficient and local efficiency in UWS patients compared to in MCS patients. At the nodal level, the UWS patients showed altered functional topology in several limbic and temporo-parieto-occipital regions. Taken together, our results highlight (i) the involvement of the interhemispheric fronto-parietal functional connectivity in the pathophysiology of consciousness disorders and (ii) an aberrant connectome organization both at the network topology level and at the nodal level in UWS patients compared to in the MCS patients. Full article
(This article belongs to the Special Issue Brain Networks in Disorders of Consciousness)
Show Figures

Figure 1

Back to TopTop