Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = interconnected nanowire networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2712 KiB  
Article
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
by Sanju Gupta and Haiyang Zou
Chemosensors 2025, 13(2), 38; https://doi.org/10.3390/chemosensors13020038 - 26 Jan 2025
Cited by 3 | Viewed by 3034
Abstract
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly [...] Read more.
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked assembly of zinc oxide (ZnO) nanostructures, including microparticles and nanoparticles (0D), nanowires and nanorods (1D), nanodisks (2D), and hierarchical networks of tetrapods (3D). Gas sensors consisting of vertically aligned ZnO nanorods (ZnO–NR) and topologically interconnected tetrapods (T–ZnO) of varying diameter and arm thickness synthesized using aqueous phase deposition and flame transport method on interdigitated Pt electrodes are evaluated for methane detection. Smaller-diameter nanorods and tetrapod arms (nanowire-like), having higher surface-to-volume ratios with reasonable porosity, exhibit improved sensing behavior. Interestingly, when the nanorods’ diameter and interconnected tetrapod arm thickness were comparable to the width of the depletion layer, a significant increase in sensitivity (from 2 to 30) and reduction in response/recovery time (from 58 s to 5.9 s) resulted, ascribed to rapid desorption of analyte species. Additionally, nanoparticles surface-catalyzed with Pd (~50 nm) accelerated gas sensing and lowered operating temperature (from 200 °C to 50 °C) when combined with UV photoactivation. We modeled the experimental findings using a modified general formula for ZnO methane sensors derived from the catalytic chemical reaction between methane molecules and oxygen ions and considered the structural surface-to-volume ratios (S/V) and electronic depletion region width (Ld) applicable to other gas sensors (e.g., SnO2, TiO2, MoO3, and WO3). Finally, the effects of UV light excitation reducing detection temperature help to break through the bottleneck of ZnO-based materials as energy-saving chemiresistors and promote applications relevant to environmental and industrial harmful gas detection. Full article
Show Figures

Figure 1

11 pages, 8886 KiB  
Article
Study on the Performance of Aniline Electrodeposited on MnO2 Nanowire as an Anode for Sodium-Ion Batteries
by Dandan Ma, Xiangyu Yin, Xinyi Li, Xiangge Qin and Meili Qi
Polymers 2024, 16(13), 1856; https://doi.org/10.3390/polym16131856 - 28 Jun 2024
Cited by 4 | Viewed by 1218
Abstract
Manganese dioxide is an ideal anode for sodium-ion batteries due to its rich crystal shapes. However, its low conductivity, low reversible discharge capacity, slow diffusion kinetics, and poor cyclic stability limit its potential for industrial application. The design of manganese dioxide (MnO2 [...] Read more.
Manganese dioxide is an ideal anode for sodium-ion batteries due to its rich crystal shapes. However, its low conductivity, low reversible discharge capacity, slow diffusion kinetics, and poor cyclic stability limit its potential for industrial application. The design of manganese dioxide (MnO2) with various morphologies, such as nanowires, nanorods, and nanoflowers, has proven effective in enhancing its electrochemical performance. Stacking nanowire structures is of interest as they increase the open space by forming an interconnected network, thus facilitating favorable diffusion pathways for sodium ions. Concurrently, the substantial increase in the electrolyte contact area efficiently mitigates the strain induced by the volume expansion associated with the repetitive migration and insertion of sodium ions. Based on previous research, this work presents the structural design of flexible MnO2/polyaniline (MnO2/PANI) nanowires assembled on carbon cloth (CC), an innovation in MnO2 modification. Compared to conventional MnO2 nanowires, the MnO2/PANI nanowires exhibit enhanced structural stability and improved dynamic performance, thereby marking a significant advancement in their material properties. This MnO2/PANI composite exhibits a rate capacity of approximately 200 mA h g−1 after 60 cycles at a current density of 0.1 A g−1, and maintains a rate capacity of 182 mA h g−1 even after 200 cycles under the same current density. This study not only provides new insights into the underlying mechanisms governing energy storage in MnO2/PANI nanowires but also paves the way for their further development and optimization as anodes for sodium-ion batteries, thereby opening up fresh avenues for research and application. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 4300 KiB  
Article
Tunable Magnetic Properties of Interconnected Permalloy Nanowire Networks
by Alejandro Pereira, Guidobeth Sáez, Eduardo Saavedra and Juan Escrig
Nanomaterials 2023, 13(13), 1971; https://doi.org/10.3390/nano13131971 - 29 Jun 2023
Cited by 19 | Viewed by 2151
Abstract
In this study, we investigate the magnetic properties of interconnected permalloy nanowire networks using micromagnetic simulations. The effects of interconnectivity on the hysteresis curves, coercivity, and remanence of the nanowire networks are analyzed. Our results reveal intriguing characteristics of the hysteresis curves, including [...] Read more.
In this study, we investigate the magnetic properties of interconnected permalloy nanowire networks using micromagnetic simulations. The effects of interconnectivity on the hysteresis curves, coercivity, and remanence of the nanowire networks are analyzed. Our results reveal intriguing characteristics of the hysteresis curves, including nonmonotonic behaviors of coercivity as a function of the position of horizontal nanowires relative to vertical nanowires. By introducing horizontal nanowires at specific positions, the coercivity of the nanowire networks can be enhanced without altering the material composition. The normalized remanence remains relatively constant regardless of the position of the horizontal wires, although it is lower in the interconnected nanowire arrays compared to nonconnected arrays. These findings provide valuable insights into the design and optimization of nanowire networks for applications requiring tailored magnetic properties. Full article
Show Figures

Figure 1

15 pages, 1844 KiB  
Article
Flexible Active Peltier Coolers Based on Interconnected Magnetic Nanowire Networks
by Tristan da Câmara Santa Clara Gomes, Nicolas Marchal, Flavio Abreu Araujo and Luc Piraux
Nanomaterials 2023, 13(11), 1735; https://doi.org/10.3390/nano13111735 - 25 May 2023
Cited by 6 | Viewed by 2581
Abstract
Thermoelectric energy conversion based on flexible materials has great potential for applications in the fields of low-power heat harvesting and solid-state cooling. Here, we show that three-dimensional networks of interconnected ferromagnetic metal nanowires embedded in a polymer film are effective flexible materials as [...] Read more.
Thermoelectric energy conversion based on flexible materials has great potential for applications in the fields of low-power heat harvesting and solid-state cooling. Here, we show that three-dimensional networks of interconnected ferromagnetic metal nanowires embedded in a polymer film are effective flexible materials as active Peltier coolers. Thermocouples based on Co-Fe nanowires exhibit much higher power factors and thermal conductivities near room temperature than other existing flexible thermoelectric systems, with a power factor for Co-Fe nanowire-based thermocouples of about 4.7 mW/K2m at room temperature. The effective thermal conductance of our device can be strongly and rapidly increased by active Peltier-induced heat flow, especially for small temperature differences. Our investigation represents a significant advance in the fabrication of lightweight flexible thermoelectric devices, and it offers great potential for the dynamic thermal management of hot spots on complex surfaces. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials for Thermoelectric Applications)
Show Figures

Figure 1

14 pages, 2780 KiB  
Article
Electrochemical Redox In-Situ Welding of Silver Nanowire Films with High Transparency and Conductivity
by Wang Zhang, Jiashuan Bao, Chenhui Xu, Pengfeng Zhu, Xiangliang Pan and Rui Li
Inorganics 2022, 10(7), 92; https://doi.org/10.3390/inorganics10070092 - 30 Jun 2022
Cited by 2 | Viewed by 2906
Abstract
Silver nanowire (AgNW) networks with high transparency and conductivity are crucial to developing transparent conductive films (TCFs) for flexible optoelectronic devices. However, AgNW-based TCFs still suffer from the high contact resistance of AgNW junctions with both the in-plane and out-of-plane charge transport barrier. [...] Read more.
Silver nanowire (AgNW) networks with high transparency and conductivity are crucial to developing transparent conductive films (TCFs) for flexible optoelectronic devices. However, AgNW-based TCFs still suffer from the high contact resistance of AgNW junctions with both the in-plane and out-of-plane charge transport barrier. Herein, we report a rapid and green electrochemical redox strategy to in-situ weld AgNW networks for the enhanced conductivity and mechanical durability of TCFs with constant transparency. The welded TCFs show a marked decrease of the sheet resistance (reduced to 45.5% of initial values on average) with high transmittance of 97.02% at 550 nm (deducting the background of substrates). The electrochemical welding treatment enables the removal of the residual polyvinylpyrrolidone layer and the in-situ formation of Ag solder in the oxidation and reduction processes, respectively. Furthermore, local conductivity studies confirm the improvement of both the in-plane and the out-of-plane charge transport by conductive atomic force microscopy. This proposed electrochemical redox method provides new insights on the welding of AgNW-based TCFs with high transparency and low resistance for the development of next-generation flexible optoelectronic devices. Furthermore, such conductive films based on the interconnected AgNW networks can be acted as an ideal supporter to construct heterogeneous structures with other functional materials for wide applications in photocatalysis and electrocatalysis. Full article
(This article belongs to the Special Issue Metal Nanomaterials as Efficient Electrocatalysts)
Show Figures

Figure 1

11 pages, 2560 KiB  
Article
Stretchable and Transparent Metal Nanowire Microelectrodes for Simultaneous Electrophysiology and Optogenetics Applications
by Jinbi Tian, Zexu Lin, Zhiyuan Chen, Sofian N. Obaid, Igor R. Efimov and Luyao Lu
Photonics 2021, 8(6), 220; https://doi.org/10.3390/photonics8060220 - 15 Jun 2021
Cited by 13 | Viewed by 4710
Abstract
Recently developed optically transparent microelectrode technology provides a promising approach for simultaneous high-resolution electrical and optical biointerfacing with tissues in vivo and in vitro. A critically unmet need is designing high-performance stretchable platforms for conformal biointerfacing with mechanically active organs. Here, we report [...] Read more.
Recently developed optically transparent microelectrode technology provides a promising approach for simultaneous high-resolution electrical and optical biointerfacing with tissues in vivo and in vitro. A critically unmet need is designing high-performance stretchable platforms for conformal biointerfacing with mechanically active organs. Here, we report silver nanowire (Ag NW) stretchable transparent microelectrodes and interconnects that exhibit excellent electrical and electrochemical performance, high optical transparency, superior mechanical robustness and durability by a simple selective-patterning process. The fabrication method allows the direct integration of Ag NW networks on elastomeric substrates. The resulting Ag NW interface exhibits a low sheet resistance (Rsh) of 1.52–4.35 Ω sq−1, an advantageous normalized electrochemical impedance of 3.78–6.04 Ω cm2, a high optical transparency of 61.3–80.5% at 550 nm and a stretchability of 40%. The microelectrode arrays (MEAs) fabricated with this approach exhibit uniform electrochemical performance across all channels. Studies on mice demonstrate that both pristine and stretched Ag NW microelectrodes can achieve high-fidelity electrophysiological monitoring of cardiac activity with/without co-localized optogenetic pacing. Together, these results pave the way for developing stretchable and transparent metal nanowire networks for high-resolution opto-electric biointerfacing with mechanically active organs, such as the heart. Full article
(This article belongs to the Special Issue Bio-Integrated Photonic Materials and Devices)
Show Figures

Figure 1

11 pages, 2799 KiB  
Article
Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected NixFe1−x/Cu Multilayered Nanowire Networks
by Nicolas Marchal, Tristan da Câmara Santa Clara Gomes, Flavio Abreu Araujo and Luc Piraux
Nanomaterials 2021, 11(5), 1133; https://doi.org/10.3390/nano11051133 - 27 Apr 2021
Cited by 11 | Viewed by 2600
Abstract
The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant [...] Read more.
The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant magnetoresistance effect in the current-perpendicular-to-plane configuration that can be reliably measured along the macroscopic in-plane direction of the films. Moreover, the system also enables reliable measurements of the analogous magneto-thermoelectric properties of the multilayered nanowire networks. Here, three-dimensional interconnected NixFe1x/Cu multilayered nanowire networks (with 0.60x0.97) are fabricated and characterized, leading to large magnetoresistance and magneto-thermopower ratios up to 17% and −25% in Ni80Fe20/Cu, respectively. A strong contrast is observed between the amplitudes of magnetoresistance and magneto-thermoelectric effects depending on the Ni content of the NiFe alloys. In particular, for the highest Ni concentrations, a strong increase in the magneto-thermoelectric effect is observed, more than a factor of 7 larger than the magnetoresistive effect for Ni97Fe3/Cu multilayers. This sharp increase is mainly due to an increase in the spin-dependent Seebeck coefficient from −7 µV/K for the Ni60Fe40/Cu and Ni70Fe30/Cu nanowire arrays to −21 µV/K for the Ni97Fe3/Cu nanowire array. The enhancement of the magneto-thermoelectric effect for multilayered nanowire networks based on dilute Ni alloys is promising for obtaining a flexible magnetic switch for thermoelectric generation for potential applications in heat management or logic devices using thermal energy. Full article
(This article belongs to the Special Issue Advances in Nanowire)
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes
by Tristan da Câmara Santa Clara Gomes, Nicolas Marchal, Flavio Abreu Araujo, Yenni Velázquez Galván, Joaquín de la Torre Medina and Luc Piraux
Nanomaterials 2021, 11(1), 221; https://doi.org/10.3390/nano11010221 - 16 Jan 2021
Cited by 18 | Viewed by 3476
Abstract
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes [...] Read more.
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes are also planar and lightweight. This fabrication technique allows for the control of the geometric characteristics and material composition of interconnected magnetic nanowire or nanotube networks, which can be used to fine-tune their magnetic and magneto-transport properties. The magnetostatic contribution to the magnetic anisotropy of crossed nanowire networks can be easily controlled using the diameter, packing density, or angle distribution characteristics. Furthermore, the fabrication of Co and Co-rich NiCo alloy crossed nanowires with textured hcp phases leads to an additional significant magnetocrystalline contribution to the magnetic anisotropy that can either compete or add to the magnetostatic contribution. The fabrication of an interconnected nanotube network has also been demonstrated, where the hollow core and the control over the tube wall thickness add another degree of freedom to control the magnetic properties and magnetization reversal mechanisms. Finally, three-dimensional networks made of interconnected multilayered nanowire with a succession of ferromagnetic and non-magnetic layers have been successfully fabricated, leading to giant magnetoresistance responses measured in the current-perpendicular-to-plane configuration. These interconnected nanowire networks have high potential as integrated, reliable, and stable magnetic field sensors; magnetic devices for memory and logic operations; or neuromorphic computing. Full article
(This article belongs to the Special Issue Multifunctional Magnetic Nanowires and Nanotubes)
Show Figures

Figure 1

17 pages, 3037 KiB  
Article
Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) Nanowire Fabrics
by Michael Rudolf Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi and Yassine Slimani
Crystals 2020, 10(11), 986; https://doi.org/10.3390/cryst10110986 - 30 Oct 2020
Cited by 27 | Viewed by 3834
Abstract
Resistance measurements were performed on Bi2Sr2CaCu2O8+δ (Bi-2212) fabric-like nanowire networks or nanofiber mats in the temperature interval 3 K T 300 K. The nanowire fabrics were prepared by means of electrospinning, and [...] Read more.
Resistance measurements were performed on Bi2Sr2CaCu2O8+δ (Bi-2212) fabric-like nanowire networks or nanofiber mats in the temperature interval 3 K T 300 K. The nanowire fabrics were prepared by means of electrospinning, and consist of long (up to 100 μm) individual nanowires with a mean diameter of 250 nm. The microstructure of the nanowire network fiber mats and of the individual nanowires was thoroughly characterized by electron microscopy showing that the nanowires can be as thin as a single Bi-2212 grain. The polycrystalline nanowires are found to have a texture in the direction of the original polymer nanowire. The overall structure of the nanofiber mats is characterized by numerous interconnects among the nanowires, which enable current flow across the whole sample. The fluctuation-induced conductivity (excess conductivity) above the superconducting transition temperature, Tc, was analyzed using the Aslamzov-Larkin model. Four distinct fluctuation regimes (short-wave, two-dimensional, three-dimensional and critical fluctuation regimes) could be identified in the Bi-2212 nanowire fabric samples. These regimes in such nanowire network samples are discussed in detail for the first time. Based on this analysis, we determine several superconducting parameters from the resistance data. Full article
Show Figures

Graphical abstract

20 pages, 3929 KiB  
Article
Spin Caloritronics in 3D Interconnected Nanowire Networks
by Tristan da Câmara Santa Clara Gomes, Nicolas Marchal, Flavio Abreu Araujo and Luc Piraux
Nanomaterials 2020, 10(11), 2092; https://doi.org/10.3390/nano10112092 - 22 Oct 2020
Cited by 19 | Viewed by 3360
Abstract
Recently, interconnected nanowire networks have been found suitable as flexible macroscopic spin caloritronic devices. The 3D nanowire networks are fabricated by direct electrodeposition in track-etched polymer templates with crossed nano-channels. This technique allows the fabrication of crossed nanowires consisting of both homogeneous ferromagnetic [...] Read more.
Recently, interconnected nanowire networks have been found suitable as flexible macroscopic spin caloritronic devices. The 3D nanowire networks are fabricated by direct electrodeposition in track-etched polymer templates with crossed nano-channels. This technique allows the fabrication of crossed nanowires consisting of both homogeneous ferromagnetic metals and multilayer stack with successive layers of ferromagnetic and non-magnetic metals, with controlled morphology and material composition. The networks exhibit extremely high, magnetically modulated thermoelectric power factors. Moreover, large spin-dependent Seebeck coefficients were directly extracted from experimental measurements on multilayer nanowire networks. This work provides a simple and cost-effective way to fabricate large-scale flexible and shapeable thermoelectric devices exploiting the spin degree of freedom. Full article
(This article belongs to the Special Issue Novel Magnetic Properties in Curved Geometries)
Show Figures

Figure 1

8 pages, 2124 KiB  
Article
Flexible Free-Standing CuxO/Ag2O (x = 1, 2) Nanowires Integrated with Nanoporous Cu-Ag Network Composite for Glucose Sensing
by Qian Zhang, Man Li, Chunling Qin, Zhifeng Wang, Weimin Zhao and Yongyan Li
Nanomaterials 2020, 10(2), 357; https://doi.org/10.3390/nano10020357 - 19 Feb 2020
Cited by 6 | Viewed by 3256
Abstract
To improve glucose electrocatalytic performance, one efficient manner is to develop a novel Cu-Ag bimetallic composite with fertile porosity and unique architecture. Herein, the self-supported electrode with CuxO/Ag2O (x = 1, 2) nanowires grown in-situ on a nanoporous [...] Read more.
To improve glucose electrocatalytic performance, one efficient manner is to develop a novel Cu-Ag bimetallic composite with fertile porosity and unique architecture. Herein, the self-supported electrode with CuxO/Ag2O (x = 1, 2) nanowires grown in-situ on a nanoporous Cu-Ag network (CuxO/Ag2O@NP-CuAg) has been successfully designed by a facile two-step approach. The integrated hierarchical porous structure, the tip-converged CuxO/Ag2O nanowires combined with the interconnected porous conductive substrate, are favorable to provide more reactive sites and improve ions or electrons transportation. Compared with monometallic Cu2O nanowires integrated with nanoporous Cu matrix (Cu2O@NP-Cu), the bimetallic CuxO/Ag2O@NP-CuAg composites exhibit the enhanced electrocatalytic performance for glucose. Moreover, the higher sensitivity of ~1.49 mA mM−1 cm−2 in conjunction with a wider linear range of 17 mM for the CuxO/Ag2O@NP-CuAg electrode anodized for 10 min are attributed to the synergistic effect of porous structure and bimetallic CuxO/Ag2O nanowires. Particularly, the integrated CuxO/Ag2O@NP-CuAg composites possess good flexibility, which has been reported for the first time. Accordingly, the CuxO/Ag2O@NP-CuAg with excellent glucose electrocatalytic performance and good flexibility is promising to further develop as a candidate electrode material of glucose sensors. Full article
Show Figures

Graphical abstract

1 pages, 125 KiB  
Abstract
Materials-Related Challenges for Autonomous Sensor Nodes
by Marco Deluca and Anton Köck
Proceedings 2020, 42(1), 39; https://doi.org/10.3390/ecsa-6-06635 - 14 Nov 2019
Viewed by 1099
Abstract
The current technological trends associated with Industry 4.0 and the Internet of Things (IoT) require an interconnected network of sensor nodes providing distributed information on the environment in order to enable intelligent action to be taken by control systems. Typical examples are the [...] Read more.
The current technological trends associated with Industry 4.0 and the Internet of Things (IoT) require an interconnected network of sensor nodes providing distributed information on the environment in order to enable intelligent action to be taken by control systems. Typical examples are the condition monitoring of machines or industrial equipment, or the detection of hazardous environmental conditions (e.g., in chemical plants). Such sensors need to be distributed in areas that are difficult to reach for wiring or to exchange batteries, and thus need to be self-powered and energy-independent. In this work, we provide an overview of possible strategies to realise a positive energy balance in autonomous sensor nodes without the use of batteries, focussing on gas sensors for air-quality monitoring as a use case. We will first present ways to reduce the power budget of sensing elements using self-heating nanowires made of CMOS-compatible metal oxides. We will then concentrate on energy harvesting and storage, showing state-of-the-art possibilities in both cases: broadband piezoelectric harvesters, perovskite-based photovoltaic elements, and high-energy density ceramic capacitors. Finally, we will discuss the possibility of integrating all sensor node elements in a single device using advanced interconnect technologies. Full article
24 pages, 10699 KiB  
Review
Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts
by Falk Muench
Catalysts 2018, 8(12), 597; https://doi.org/10.3390/catal8120597 - 1 Dec 2018
Cited by 26 | Viewed by 7009
Abstract
Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient [...] Read more.
Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

11 pages, 3975 KiB  
Article
Three-Dimensional Bi2Te3 Networks of Interconnected Nanowires: Synthesis and Optimization
by Alejandra Ruiz-Clavijo, Olga Caballero-Calero and Marisol Martín-González
Nanomaterials 2018, 8(5), 345; https://doi.org/10.3390/nano8050345 - 18 May 2018
Cited by 24 | Viewed by 4804
Abstract
Self-standing Bi2Te3 networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D–AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi2Te3 interconnected nanowires [...] Read more.
Self-standing Bi2Te3 networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D–AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi2Te3 interconnected nanowires with stoichiometric composition inside those 3D–AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi–Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi2Te3 networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Nanowires)
Show Figures

Figure 1

Back to TopTop