Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = intercalation concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7233 KiB  
Article
Dimer Fatty Acid-Based Polyamide/Organoclays: Structural, Thermal Properties, and Statistical Analysis of Factors Affecting Polymer Chain Intercalation in Bentonite Layers
by Afonso D. Macheca, Diocrecio N. Microsse, Theophile M. Mujuri, Robert Kimutai Tewo, António Benjamim Mapossa and Shepherd M. Tichapondwa
Processes 2025, 13(7), 2168; https://doi.org/10.3390/pr13072168 - 7 Jul 2025
Viewed by 343
Abstract
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty [...] Read more.
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty acid-based polyamide chains using a solution casting method. X-ray diffraction (XRD) analysis confirmed polymer intercalation, with the basal spacing (d001) increasing from approximately 1.5 nm to 1.7 nm as the polymer concentration varied between 2.5 and 7.5 wt.%. However, the extent of intercalation was limited at this stage, suggesting that polymer concentration alone had a minimal effect, likely due to the formation of agglomerates. In a subsequent optimization phase, the influence of temperature (30–90 °C), stirring speed (1000–2000 rpm), and contact time (30–90 min) was evaluated while maintaining a constant polymer concentration. These parameters significantly enhanced intercalation, achieving d001 values up to 4 nm. Statistical Design of Experiments and Response Surface Methodology revealed that temperature and stirring speed exerted a stronger influence on d001 expansion than contact time. Optimal intercalation occurred at 90 °C, 1500 rpm, and 60 min. The predictive models demonstrated high accuracy, with R2 values of 0.9861 for white bentonite (WB) and 0.9823 for yellow bentonite (YB). From statistical modeling, several key observations emerged. Higher stirring speeds promoted intercalation by enhancing mass transfer and dispersion; increased agitation disrupted stagnant layers surrounding the clay particles, facilitating deeper penetration of the polymer chains into the interlayer galleries and preventing particle settling. Furthermore, the ANOVA results showed that all individual and interaction effects of the factors investigated had a significant influence on the d001 spacing for both WB and YB clays. Each factor exhibited a positive effect on the degree of intercalation. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

14 pages, 4572 KiB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 867
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

17 pages, 6782 KiB  
Article
Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces
by Jing Du, Yanyan Zhao, Tao Huang, Hui Li and Jia He
Materials 2025, 18(11), 2665; https://doi.org/10.3390/ma18112665 - 5 Jun 2025
Viewed by 472
Abstract
Excessive intake of fluorine (F) over time can lead to acute or chronic fluorosis. In this study, a novel FeIII–CeIV-based layered hydroxide composite (DD-LHC) was synthesized and applied in both batch and column modes to develop new adsorbent materials [...] Read more.
Excessive intake of fluorine (F) over time can lead to acute or chronic fluorosis. In this study, a novel FeIII–CeIV-based layered hydroxide composite (DD-LHC) was synthesized and applied in both batch and column modes to develop new adsorbent materials and to obtain efficient removal of fluorine (F) anions from wastewater. DD-LHC achieved better adsorption results and material stability compared to green rusts (GR, FeII–FeIII hydroxide). The maximum adsorption capacity of DD-LHC for F was 44.68 mmol·g−1, obtained at an initial pH of 5 and initial concentration of 80 mM. The substitution of CeIV for FeII in the intercalated layered structure of GR potentially changed the reaction pathways for F removal, which are typically dominant in the layered double hydroxides (LDHs) of FeII–FeIII. The molecular structure of layered hydroxides combined with the three-dimensional (3D) metal frame of Fe-O-Ce was integrated into DD-LHC, resulting in nanoscale particle morphologies distinct from those of GR. The pseudo-first-order kinetic model effectively described the whole adsorption process of DD-LHC for F. DD-LHC exhibited notable selectivity for F across a wide pH range. The removal process of F by DD-LHC was dominated by Ce–F coordination bonds, with additional influences from auxiliary pathways to different extents. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3428 KiB  
Article
Mechanochemical Defect Engineering of Nb2O5: Influence of LiBH4 and NaBH4 Reduction on Structure and Photocatalysis
by Anna Michaely, Elias C. J. Gießelmann and Guido Kickelbick
Solids 2025, 6(2), 26; https://doi.org/10.3390/solids6020026 - 26 May 2025
Viewed by 700
Abstract
Partial reduction of transition metal oxides via defect engineering is a promising strategy to enhance their electronic and photocatalytic properties. In this study, we systematically explored the mechanochemical reduction of Nb2O5 using LiBH4 and NaBH4 as reducing agents. [...] Read more.
Partial reduction of transition metal oxides via defect engineering is a promising strategy to enhance their electronic and photocatalytic properties. In this study, we systematically explored the mechanochemical reduction of Nb2O5 using LiBH4 and NaBH4 as reducing agents. Electron paramagnetic resonance (EPR) spectroscopy confirmed a successful partial reduction of the oxide, as seen by the presence of unpaired electrons. Interestingly, larger hydride concentrations did not necessarily enable a higher degree of reduction as large amounts of boron hydrides acted as a buffer material and thus hindered the effective transfer of mechanical energy. Powder X-ray diffraction (PXRD) and 7Li solid-state NMR spectroscopy indicated the intercalation of Li+ into the Nb2O5 lattice. Raman spectroscopy further revealed the increased structural disorder, while optical measurements showed a decreased band gap compared with pristine Nb2O5. The partially reduced samples showed significantly enhanced photocatalytic performance for methylene blue degradation relative to the unmodified oxides. Full article
Show Figures

Graphical abstract

10 pages, 3197 KiB  
Article
Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes
by Bo Zhu, Tiany Ji, Qiong Liu and Lixin Li
Batteries 2025, 11(5), 203; https://doi.org/10.3390/batteries11050203 - 21 May 2025
Viewed by 581
Abstract
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a [...] Read more.
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a few-layer graphene (FLG)-coated hard carbon fiber composite is constructed. A uniform graphene encapsulation is confirmed by synchrotron small-angle X-ray scattering and transmission electron microscopy technologies. Post-cycling observation reveals FLG participation in forming a hybrid solid electrolyte interphase (SEI). At a proper concentration, the FLG with a small specific surface area and pore size characteristics is well matched in the SEI. The FLG-integrated SEI not only mitigates volume expansion but also enhances ion conductivity through its oxygen-rich functional groups. As a result, the composite structure maintains 98.2% capacity retention after 100 cycles and reaches 164 mAh g−1 at 1000 mA g−1, compared to 97 mAh g−1 for the pristine hard carbon. This work demonstrates that FLG coating simultaneously stabilizes the interfacial chemistry and improves the ion transport, offering a practical pathway to advance hard carbon anodes for high-performance sodium-ion batteries. Full article
Show Figures

Figure 1

16 pages, 3812 KiB  
Article
Formation of Electrode Materials in the Process of Carbothermic Flux Smelting of Ilmenite Concentrate and Hydrothermal Refining of Titanium Slag
by Kuralai Akhmetova, Sergey Gladyshev, Nessipbay Tussupbayev, Bagdaulet Kenzhaliev and Leila Imangaliyeva
Processes 2025, 13(5), 1554; https://doi.org/10.3390/pr13051554 - 17 May 2025
Viewed by 463
Abstract
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of [...] Read more.
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of the slag includes Na2Ti3O7 (48.2%), Na0.23TiO2 (22.0%), Na2TiSiO5 (11%), and Na0.67Al0.1Mn0.9O2 (8.5%), which, upon hydrolysis, transform into a monophase titanium dioxide with intercalated sodium—Na0.23TiO2. Thermodynamic analysis of the heat effects of chemical reactions among raw materials and resulting products substantiates the role of silicon and sodium oxides, carbon, oxygen, and water in the formation of various electrode materials during carbothermic flux conversion and aqueous refining. Insights into the mechanisms of thermochemical formation and hydrothermal phase transformations offer a scientific basis for the development of intercalation systems from abundant and low-cost natural raw materials, bypassing the need for expensive precursor synthesis. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 1200 KiB  
Article
Using UV–Vis Titration to Elucidate Novel Epigallocatechin Gallate (EGCG)-Induced Binding of the c-MYC G-Quadruplex
by Justin Tang
Pharmaceuticals 2025, 18(5), 719; https://doi.org/10.3390/ph18050719 - 14 May 2025
Cited by 1 | Viewed by 611
Abstract
Background/Objectives: Aberrant expression of c-MYC drives aggressive cancers. A guanine-rich promoter sequence (Pu27) folds into a transcriptionally repressive G-quadruplex (G4). Epigallocatechin gallate (EGCG), the main green tea polyphenol, displays anticancer activity, but clear, easily replicated evidence for direct binding to the c-MYC G4 [...] Read more.
Background/Objectives: Aberrant expression of c-MYC drives aggressive cancers. A guanine-rich promoter sequence (Pu27) folds into a transcriptionally repressive G-quadruplex (G4). Epigallocatechin gallate (EGCG), the main green tea polyphenol, displays anticancer activity, but clear, easily replicated evidence for direct binding to the c-MYC G4 is lacking. We therefore obtained the first biophysical confirmation of an EGCG–c-MYC G4 interaction using routine UV–visible spectroscopy. Methods: A pre-annealed Pu27 G4 (5 µM) in potassium-rich buffer was titrated with freshly prepared EGCG (0–20 µM) at 25 °C. Full-range UV–Vis spectra (220–400 nm) were recorded after each addition, and absorbance variations at the DNA (260 nm) and ligand (275 nm) maxima were quantified across three independent replicates. Results: EGCG induced pronounced, concentration-dependent hyperchromicity at 260 nm, reaching ~8–10% above baseline at a 4:1 ligand/DNA ratio and exhibiting saturable binding behaviour. Concurrently, the 275 nm band displayed relative hypochromicity coupled with a subtle bathochromic shift. These reciprocal perturbations—absent in buffer-only controls—constitute definitive evidence of a specific EGCG•G4 complex most consistent with external π-stacking or groove engagement rather than intercalation. Conclusions: This study delivers the first rigorous, quantitative UV–Vis confirmation that a readily consumed dietary polyphenol directly targets the c-MYC promoter G4. By marrying conceptual elegance with methodological accessibility, it provides a compelling molecular rationale for EGCG’s anti-oncogenic repertoire, inaugurates an expedient platform for screening G4-reactive nutraceuticals, and paves the way for structural and cellular investigations en route to next-generation c-MYC-directed therapies. Full article
Show Figures

Figure 1

34 pages, 18742 KiB  
Article
New Insights into Graphite Deposits in Chisone and Germanasca Valleys (Dora-Maira Massif, Western Italian Alps): Scientific Advances and Applied Perspectives
by Licia Santoro, Viviane Bertone, Simona Ferrando and Chiara Groppo
Minerals 2025, 15(5), 455; https://doi.org/10.3390/min15050455 - 27 Apr 2025
Cited by 1 | Viewed by 565
Abstract
Graphite is a critical raw material due to its pivotal role in the green transition; hence, there is a renewed interest in its exploration across Europe. The Chisone and Germanasca Valleys (Piemonte, IT) were home to significant graphite exploitation until the 20th century, [...] Read more.
Graphite is a critical raw material due to its pivotal role in the green transition; hence, there is a renewed interest in its exploration across Europe. The Chisone and Germanasca Valleys (Piemonte, IT) were home to significant graphite exploitation until the 20th century, owing to the widespread presence of graphite ore bodies hosted in the metasedimentary succession of the Pinerolo Unit in the Dora-Maira Massif (Western Alps). This contribution presents a renewed study on the geology, mineralogy, petrography, and geochemistry of graphite ores and their host rocks, employing OM, SEM-EDS, and BSE, μRaman, and ICP-OES/MS and INAA analyses. Mineralization occurs in two metasedimentary successions: (i) the Bourcet-type succession (meta-conglomerates and meta-sandstones intercalated with meta-siltstones/metapelites) and (ii) the Pons-type succession (meta-siltstones/metapelites intercalated with minor meta-arenites). Graphite occurs as (i) high-purity, fine-grained crystals dispersed within or concentrated in layers along the regional schistosity, or (ii) low-purity, coarse-grained crystals within shear zones. Based on crystallinity, three types of graphite were distinguished: high (Type I), intermediate (Type II), and poor (Type III) crystalline graphite, likely formed under different genetic conditions. The comparison of these findings has implications for future exploration and provides new insights into the metallogeny and geological evolution of the area. Full article
Show Figures

Figure 1

17 pages, 4174 KiB  
Article
Synergistic Titanium Intercalation in WO3 Architectures to Enhance Electrochromic Performance for Smart Windows
by Rutuja U. Amate, Pritam J. Morankar, Namita A. Ahir and Chan-Wook Jeon
Coatings 2025, 15(4), 422; https://doi.org/10.3390/coatings15040422 - 2 Apr 2025
Viewed by 573
Abstract
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature [...] Read more.
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature of all films, a key factor in enhancing ion diffusion for superior electrochromic (EC) performance. Field-emission scanning electron microscopy (FESEM) revealed that an optimized nanoparticle network facilitates rapid charge transport and ion intercalation, while uncontrolled nucleation and grain growth hinder EC efficiency. By precisely tuning the Ti concentration, the optimized 3 at% WTi-3 film achieved outstanding EC properties, including an impressive optical modulation of 85% at 600 nm, exceptional reversibility of 95.61%, and a high coloration efficiency of 51.55 cm2/C. This study underscores the pivotal role of amorphous engineering and dopant concentrations in advancing high-performance EC materials, paving the way for next-generation smart windows and energy-efficient displays. Our findings highlight a transformative strategy for low-cost, high-efficiency EC devices, demonstrating unprecedented performance through precision-engineered material design. Full article
Show Figures

Figure 1

25 pages, 13483 KiB  
Article
Targeting TDP-43 Proteinopathy in hiPSC-Derived Mutated hNPCs with Mitoxantrone Drugs and miRNAs
by Uzair A. Ansari, Ankita Srivastava, Ankur K. Srivastava, Abhishek Pandeya, Pankhi Vatsa, Renu Negi, Akash Singh and Aditya B. Pant
Pharmaceutics 2025, 17(4), 410; https://doi.org/10.3390/pharmaceutics17040410 - 25 Mar 2025
Viewed by 1265
Abstract
Background/Objectives: TDP-43 mutation-driven Amyotrophic Lateral Sclerosis (ALS) motor neuron disease is one of the most prominent forms (approximately 97%) in cases of sporadic ALS. Dysfunctional autophagy and lysosomal function are the prime mechanisms behind ALS. Mitoxantrone (Mito), a synthetic doxorubicin analog, is an [...] Read more.
Background/Objectives: TDP-43 mutation-driven Amyotrophic Lateral Sclerosis (ALS) motor neuron disease is one of the most prominent forms (approximately 97%) in cases of sporadic ALS. Dysfunctional autophagy and lysosomal function are the prime mechanisms behind ALS. Mitoxantrone (Mito), a synthetic doxorubicin analog, is an inhibitor of DNA and RNA synthesis/repair via intercalating with nitrogenous bases and inhibiting topoisomerase II. The therapeutic potential of miRNAs associated with disease conditions has also been reported. This study explores the therapeutic potential of Mito along with miRNAs against mutated TDP-43 protein-induced proteinopathy in human-induced pluripotent stem cell (hiPSC)-derived human neural progenitor cells (hNPCs). Methods: HiPSCs mutated for TDP-43 were differentiated into hNPCs and used to explore the therapeutic potential of Mito at a concentration of 1 μM for 24 h (the identified non-cytotoxic dose). The therapeutic effects of Mito on miRNA expression and various cellular parameters such as mitochondrial dynamics, autophagy, and stress granules were assessed using the high-throughput Open Array technique, immunocytochemistry, flow cytometry, immunoblotting, and mitochondrial bioenergetic assay. Results: Mutated TDP-43 protein accumulation causes stress granule formation (G3BP1), mitochondrial bioenergetic dysfunction, SOD1 accumulation, hyperactivated autophagy, and ER stress in hNPCs. The mutated hNPCs also show dysregulation in six miRNAs (miR-543, miR-34a, miR-200c, miR-22, miR-29b, and miR-29c) in mutated hNPCs. A significant restoration of TDP-43 mutation-induced alterations could be witnessed upon the exposure of mutated hNPCs to Mito. Conclusions: Our study indicates that miR-543, miR-29b, miR-22, miR-200c, and miR-34a have antisense therapeutic potential alone and in combination with Mitoxantrone. Full article
(This article belongs to the Special Issue New Strategies in Gene and Cell Therapy for Neurological Disorders)
Show Figures

Graphical abstract

18 pages, 5509 KiB  
Article
Enhancing Mechanical and Impact Properties of Flax/Glass and Jute/Glass Hybrid Composites Through KOH Alkaline Treatment
by Sultan Ullah, Arvydas Palevicius, Giedrius Janusas and Zeeshan Ul-Hasan
Polymers 2025, 17(6), 804; https://doi.org/10.3390/polym17060804 - 18 Mar 2025
Viewed by 542
Abstract
This research investigates the influence of potassium hydroxide (KOH) treatment on the mechanical, flexural, and impact properties of flax/glass and jute/glass hybrid composites. Hybrid composite materials have been developed, incorporating natural fibers that are both treated and untreated by KOH, with glass fiber [...] Read more.
This research investigates the influence of potassium hydroxide (KOH) treatment on the mechanical, flexural, and impact properties of flax/glass and jute/glass hybrid composites. Hybrid composite materials have been developed, incorporating natural fibers that are both treated and untreated by KOH, with glass fiber within an epoxy matrix. Natural fibers, such as flax and jute, were chemically treated using different KOH concentrations and immersion times specific to each fiber type. Following the treatment, both fibers were rinsed with distilled water and subsequently dried. The natural fiber’s chemical interaction was analysed using FTIR. Hybrid composites were fabricated via the integration of intercalated layers of natural fibers and glass fiber using hand layup followed by compression molding. Mechanical properties, including impact resistance, flexural strength, elastic modulus, and tensile strength, were evaluated in accordance with ASTM guidelines. KOH-treated flax/glass composites (T-F2G2) demonstrated enhanced fiber–matrix bonding, indicated by elevated tensile strength (118.16 MPa) and flexural strength (168.94 MPa) relative to untreated samples. The impact strength of T-F2G2 composites increased to 39.33 KJ/m2 due to the removal of impurities and exposure of hydroxyl groups, which interact with K+ ions in KOH, thereby improving their mechanical properties. SEM analysis of cracked surfaces confirmed enhanced bonding and reduced fiber pull-out, indicating improved interfacial compatibility. The findings demonstrate that KOH treatment effectively preserves cellulose integrity and enhances fiber–matrix interactions, positioning it as a viable alternative to NaOH for hybrid composites suitable for lightweight and environmentally sustainable industrial applications. Full article
(This article belongs to the Special Issue Damping Mechanisms in Polymers and Polymer Composites)
Show Figures

Figure 1

68 pages, 6774 KiB  
Review
Geobiological and Biochemical Cycling in the Early Cambrian: Insights from Phosphoritic Materials of South Spain
by Ting Huang and David C. Fernández-Remolar
Minerals 2025, 15(3), 203; https://doi.org/10.3390/min15030203 - 20 Feb 2025
Cited by 1 | Viewed by 837
Abstract
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was [...] Read more.
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was recorded as sequences of nodular phosphoritic limestones intercalated with chlorite-rich silts, containing ferrous phyllosilicates such as chamosite and chlorite. The abundant and diverse fossil record within these deposits corroborates that the ion supply facilitated robust biogeochemical and nutrient cycling, promoting elevated biological productivity and biodiversity. This paper investigates the early Cambrian nutrient fluxes from the Gondwanan continental region, focusing on the formation of phosphoritic and ferrous facies and the diversity of the fossil record. We estimate and model the biogeochemical cycling within a unique early Cambrian ecosystem located in South Spain, characterized by calcimicrobial reefs interspersed with archaeocyathids that settled atop a tectonically elevated volcano-sedimentary platform. The configuration enclosed a shallow marine lagoon nourished by riverine contributions including ferric and phosphatic complexes. Geochemical analyses revealed varying concentrations of iron (0.14–3.23 wt%), phosphate (0.1–20.0 wt%), and silica (0.27–69.0 wt%) across different facies, with distinct patterns between reef core and lagoonal deposits. Using the Geochemist’s Workbench software and field observations, we estimated that continental andesite weathering rates were approximately 23 times higher than the rates predicted through modeling, delivering, at least, annual fluxes of 0.286 g·cm⁻²·yr⁻¹ for Fe and 0.0146 g·cm⁻²·yr⁻¹ for PO₄³⁻ into the lagoon. The abundant and diverse fossil assemblage, comprising over 20 distinct taxonomic groups dominated by mollusks and small shelly fossils, indicates that this nutrient influx facilitated robust biogeochemical cycling and elevated biological productivity. A carbon budget analysis revealed that while the system produced an estimated 1.49·10¹⁵ g of C over its million-year existence, only about 0.01% was preserved in the rock record. Sulfate-reducing and iron-reducing chemoheterotrophic bacteria played essential roles in organic carbon recycling, with sulfate reduction serving as the dominant degradation pathway, processing approximately 1.55·10¹¹ g of C compared to the 5.94·10⁸ g of C through iron reduction. A stoichiometric analysis based on Redfield ratios suggested significant deviations in the C:P ratios between the different facies and metabolic pathways, ranging from 0.12 to 161.83, reflecting the complex patterns of organic matter preservation and degradation. The formation of phosphorites and ferrous phyllosilicates was primarily controlled by suboxic conditions in the lagoon, where microbial iron reduction destabilized Fe(III)-bearing oxyhydroxide complexes, releasing scavenged phosphate. This analysis of nutrient cycling in the Las Ermitas reef–lagoon system demonstrates how intensified continental weathering and enhanced nutrient fluxes during the early Cambrian created favorable conditions for the development of complex marine ecosystems. The quantified nutrient concentrations, weathering rates, and metabolic patterns established here provide a baseline data for future research addressing the biogeochemical conditions that facilitated the Cambrian explosion and offering new insights into the co-evolution of Earth’s geochemical cycles and early animal communities. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

17 pages, 11757 KiB  
Article
Mechanical Performance Enhancement in Natural Fibre-Reinforced Thermoplastic Composites Through Surface Treatment and Matrix Functionalisation
by Ângela Pinto, Dina Esteves, Luís Nobre, João Bessa, Fernando Cunha and Raúl Fangueiro
Polymers 2025, 17(4), 532; https://doi.org/10.3390/polym17040532 - 18 Feb 2025
Cited by 2 | Viewed by 1018
Abstract
This study aims to investigate the behaviour of thermoplastic composites reinforced with natural fibres. Composite materials were developed using reactive methyl methacrylate (MMA) resin, commercially known as Elium® (Arkema, Colombes, France), with the incorporation of cellulose nanocrystals (CNCs), dispersed in the matrix [...] Read more.
This study aims to investigate the behaviour of thermoplastic composites reinforced with natural fibres. Composite materials were developed using reactive methyl methacrylate (MMA) resin, commercially known as Elium® (Arkema, Colombes, France), with the incorporation of cellulose nanocrystals (CNCs), dispersed in the matrix at different concentrations. Natural fibres, such as flax, were chemically treated by immersion in an aqueous solution based on NaHCO3, during different periods of exposure. After this treatment, flax fibres were washed with distilled water and dried. The degree of fibre surface tension was measured in terms of the contact angle. Then, cellulose nanocrystals were incorporated and mixed in the thermoplastic resin, and the samples were developed via the incorporation of intercalated layers of treated flax fibres. The composites were produced using compression moulding. After that, the samples were evaluated, regarding their mechanical performance and morphology. The research results show that flax fibres treated with 9 wt. % NaHCO3 for 48 h had improved flexural strength as a result of removing impurities and exposing hydroxyl groups that react with Na+ ions present in NaHCO3, which enhances its mechanical properties. The incorporation of 1% CNCs into thermoplastic resin significantly enhanced the fibre/matrix interface, resulting in a remarkable 38% increase in flexural strength. These findings demonstrate the effectiveness of using treated natural fibres and CNCs to improve composites’ performance. Full article
Show Figures

Figure 1

21 pages, 3056 KiB  
Article
Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry
by Miroslava Rakočević, Eunice Reis Batista, Rafael Leonardo de Almeida, Ivar Wendling and Rafael Vasconcelos Ribeiro
Forests 2025, 16(1), 161; https://doi.org/10.3390/f16010161 - 16 Jan 2025
Viewed by 847
Abstract
Dioecious species show a division of labor expressed through the differentiated manifestation of resource acquisition. We hypothesized that the expression of secondary sexual dimorphism (SSD) in the leaf gas exchange of yerba mate would be more intensive in females than in males to [...] Read more.
Dioecious species show a division of labor expressed through the differentiated manifestation of resource acquisition. We hypothesized that the expression of secondary sexual dimorphism (SSD) in the leaf gas exchange of yerba mate would be more intensive in females than in males to permit females the carbon investments necessary to finish the reproductive cycle. This species can present two growth units annually (GU1-fall and GU2-spring) intercalated with two rest periods (R1-summer and R2-winter). The leaf area index (LAI) and the diurnal courses of leaf photosynthesis (Anet), stomatal conductance (gs), leaf transpiration (E), intercellular CO2 concentration (Ci), water use efficiency (WUE), and instantaneous carboxylation efficiency (Anet/Ci) were estimated in female and male plants of yerba mate during four periods of annual rhythmic growth in monoculture (MO) and agroforestry (AFS). Leaf gas exchanges varied over the annual rhythmic growth and were more intensive under MO than under AFS. Anet, Anet/Ci ratios, and WUE were higher in females than in males during the summer (R1) and spring (GU2). Also, gs and E were more intensive in females than males during the summer. Oppositely, higher WUE in males than in females was observed during the fall (GU1) and winter (R2), with males also showing a higher Anet/Ci ratio during the winter and higher E during the spring (GU2). Despite the strong effect of the cultivation system on LAI and leaf gas exchange traits over the diurnal course, SSD expression was rarely modified by the cultivation system, being expressed only in MO for E during the spring (GU2) and WUE during the winter (R2). High WUE in males during the winter would benefit plants during cold and dry periods, improving the balance between carbon acquisition and water loss through transpiration. On the other hand, high Anet during the summer and spring could be considered as a general fitness strategy of female plants to improve photoassimilate supply and support their additional reproduction costs. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

25 pages, 10105 KiB  
Article
Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics
by Kristine Walraevens, George Bennett, Nawal Alfarrah, Tesfamichael Gebreyohannes, Gebremedhin Berhane, Miruts Hagos, Abdelwassie Hussien, Fenta Nigate, Ashebir Sewale Belay, Adugnaw Birhanu and Alemu Yenehun
Water 2025, 17(1), 109; https://doi.org/10.3390/w17010109 - 3 Jan 2025
Viewed by 2527
Abstract
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in [...] Read more.
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in northern Ethiopia and Jifarah Plain in Libya (consisting of sedimentary aquifers). The evaluation of recharge, transmissivity, and water quality formed the basis of qualitative and quantitative assessment. Multiple methods, including water table fluctuation (WTF), chloride mass balance (CMB), physical hydrological modeling (WetSpass), baseflow separation (BFS), and remote sensing techniques like GRACE satellite data, were employed to estimate groundwater recharge across diverse hydrogeological settings. Topographic contrast, fractured orientation, lineament density, hydro-stratigraphic connections, hydraulic gradient, and distribution of high-flux springs were used to assess IGF from Lake Tana to Beles Basin. The monitoring, sampling, and pumping test sites took into account the high hydromorphological and geological variabilities. Recharge rates varied significantly, with mean values of 315 mm/year in Lake Tana Basin, 193 mm/year in Mount Meru, and as low as 4.3 mm/year in Jifarah Plain. Transmissivity ranged from 0.4 to 6904 m2/day in Lake Tana Basin, up to 790 m2/day in Mount Meru’s fractured lava aquifers, and reached 859 m2/day in the sedimentary aquifers of the Mekelle area. Water quality issues included high TDS levels (up to 3287 mg/L in Mekelle and 11,141 mg/L in Jifarah), elevated fluoride concentrations (>1.5 mg/L) in 90% of Mount Meru samples, and nitrate pollution in shallow aquifers linked to agricultural practice. This study also highlights the phenomenon of inter-basin deep groundwater flow, emphasizing its role in groundwater potential assessment and challenging conventional water balance assumptions. The findings reveal that hard rock aquifers, particularly weathered/fractured basalt aquifers in volcanic regions, exhibit high potential, while pyroclastic aquifers generally demonstrate lower potential. Concerns regarding high fluoride levels are identified in Mount Meru aquifers. Among sedimentary aquifers in the Mekelle area and Jifarah Plain, limestone intercalated with marl or dolomite rock emerges as having high potential. However, high TDS and high sulfate concentrations are quality issues in some of the areas, quite above the WHO’s and each country’s drinking water standards. The inter-basin groundwater flow, investigated in this study of Beles Basin, challenges the conventional water balance assumption that the inflow into a hydrological basin is equivalent to the outflow out of the basin, by emphasizing the importance of considering groundwater influx from neighboring basins. These insights contribute novel perspectives to groundwater balance and potential assessment studies, challenging assumptions about groundwater divides. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop