Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Cultivation Systems
2.2. Microclimate, Leaf Area Index, and Physiological Measurements
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Climate Conditions
3.2. Expression of SSD in LAI
3.3. Expression of SSD in Diurnal Leaf Gas Exchanges
4. Discussion
4.1. Expression of SSD in Yerba Mate Leaf Gas Exchanges During the Annual Rhythmic Growth Under Contrasting Cultivation Systems
4.2. Expression of SSD in Yerba Mate Leaf Gas Exchanges Under Environmental Pressures During Ontogeny
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakočević, M.; Janssens, M.; Scherer, R. Light responses and gender issues in the domestication process of yerba-mate, a sub-tropical evergreen. In Evergreens: Types, Ecology and Conservation; Bezerra, A.D., Ferreira, T.S., Eds.; Nova Science Publisher: New York, NY, USA, 2012; pp. 63–95. [Google Scholar]
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.M. Yerba mate: Cultivation systems, processing, and chemical composition. A review. Sci. Agric. 2021, 78, e20190259. [Google Scholar] [CrossRef]
- Torsoni, G.B.; de Oliveira Aparecido, L.E.; Lorençone, P.A.; Lorençone, J.A.; de Lima, R.F.; de Souza Rolim, G. Climatic zoning of yerba mate and climate change projections: A CMIP6 approach. Int. J. Biometeorol. 2024, 68, 979–990. [Google Scholar] [CrossRef]
- Zaions, I.; Picolo, A.P.; Gonçalves, I.L.; Borges, A.C.P.; Valduga, A.T. Physico-chemical characterization of Ilex paraguariensis St. Hil. during the maturation. Braz. Arch. Biol. Technol. 2014, 57, 663–667. [Google Scholar] [CrossRef]
- Valduga, A.T.; Gonçalves, I.L.; Dartora, N.; Mielniczki-Pereira, A.A.; Souza de, L.M. Phytochemical profile of morphologically selected yerba-mate progenies. Ciência Agrotecnol. 2016, 40, 114–120. [Google Scholar] [CrossRef]
- Cittadini, M.C.; Albrecht, C.; Miranda, A.R.; Mazzuduli, G.M.; Soria, E.A.; Repossi, G. Neuroprotective effect of Ilex paraguariensis intake on brain myelin of lung adenocarcinoma-bearing male BALB/c mice. Nutr. Cancer 2019, 71, 629–633. [Google Scholar] [CrossRef]
- Rakočević, M.; Maia, A.H.d.N.; de Liz, M.V.; Imoski, R.; Helm, C.V.; Cardozo Junior, E.L.; Wendling, I. Stability of leaf yerba mate (Ilex paraguariensis) metabolite concentrations over time from the prism of secondary sexual dimorphism. Plants 2023, 12, 2199. [Google Scholar] [CrossRef]
- Westphalen, D.J.; Angelo, A.C.; Rossa, U.B.; Helm, C.V.; Radetski, C.M.; Gomes, E.N. Phytochemical composition of yerba mate leaves (Ilex paraguariensis) and its relation with cultivation conditions. Braz. J. Med. Plants 2024, 22, 99–107. [Google Scholar]
- Matsunaga, F.T.; Rakočević, M.; Brancher, J.D. Modelling the 3D structure and rhythmic growth responses to environment in dioecious yerba-mate. Ecol. Model. 2014, 290, 34–44. [Google Scholar] [CrossRef]
- Rakočević, M.; Costes, E.; Assad, E.D. Structural and physiological sexual dimorphism estimated from three-dimensional virtual trees of yerba-mate (Ilex paraguariensis) is modified by cultivation environment. Ann. Appl. Biol. 2011, 159, 178–191. [Google Scholar] [CrossRef]
- Rakočević, M.; Martim, S.F. Time series in analysis of yerba-mate biennial growth modified by environment. Int. J. Biometeorol. 2011, 55, 161–171. [Google Scholar] [CrossRef]
- Marques, A.d.C.; dos Reis, M.S.; Denardin, V.F. Yerba mate landscapes: Forest use and socio-environmental conservation. Ambiente Soc. 2019, 22, e02822. [Google Scholar] [CrossRef]
- De David, P.R.; de David, F.A.; Toso, J.O.; Pasinato, C.; Müller, C.; Galon, L.; Perin, G.F. Growth and development of yerba mate seedlings associated with different winter cover species. Braz. J. Sci. 2024, 3, 34–42. [Google Scholar] [CrossRef]
- Dos Santos, E.R.; Vestena, L.R.; Serrato, F.B. Interception loss by yerba mate (Ilex paraguariensis) in production systems in Southern Brazil. Pesq. Agropecu. Trop. 2024, 54, e77226. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Responses of woody plants to human-induced environmental stresses: Issues, problems, and strategies for alleviating stress. Crit. Rev. Plant Sci. 2000, 19, 91–170. [Google Scholar] [CrossRef]
- Wrege, M.S.; Soares, M.T.S.; Fritzsons, E.; de Sousa, V.A.; de Aguiar, A.V.; Bognola, I.A.; de Sousa, L.P. Natural distribution of yerba mate in brazil in the current and future climatic scenarios. Agrometeoros 2020, 28, e026795. [Google Scholar] [CrossRef]
- Caron, B.O.; Schmidt, D.; Balbinot, R.; Behling, A.; Eloy, E.; Elli, E.F. Efficiency of the use of yerba mate solar radiation in intercropping or monocropping for the accumulation of carbon. Rev. Árvore 2016, 40, 983–990. [Google Scholar] [CrossRef]
- Hallé, F.; Oldemann, R.A.A.; Tomlinson, P.B. Tropical Trees and Forests; Springer: Berlin, Germany, 1978. [Google Scholar]
- Hallé, F.; Martin, R. Étude de la croissance rythmique de l’hévéa (Hevea brasiliensis Müll Arg. Euphorbiacées Crotonoïdées). Adansonia 1968, 2–8, 475–503. [Google Scholar] [CrossRef]
- Guédon, Y.; Costes, E.; Rakočević, M. Modulation of the yerba-mate metamer production phenology by the cultivation system and the climatic factors. Ecol. Model. 2018, 384, 188–197. [Google Scholar] [CrossRef]
- Galfrascoli, G.M.; Calviño, A. Secondary sexual dimorphism in a dioecious tree: A matter of inter-plant variability? Flora 2020, 266, 151595. [Google Scholar] [CrossRef]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Rocheleau, A.-F.; Houle, G. Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae). Am. J. Bot. 2001, 88, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.; Dorken, M.E. Sexual dimorphism in leaf nitrogen content but not photosynthetic rates in Sagittaria latifolia (Alismataceae). Botany 2017, 92, 109–112. [Google Scholar] [CrossRef]
- Delph, L.F.; Gehring, J.L.; Arntz, A.M.; Levri, M.; Frey, F.M. Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. Am Nat. 2005, 166 (Suppl. S4), S31–S41. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Y.; Wei, X.; Wei, Q. Responses of early distribution and developmental traits of male and female trees to stand density in Fraxinus mandshurica Rupr. plantation. Forests 2022, 13, 472. [Google Scholar] [CrossRef]
- Cepeda-Cornejo, V.; Dirzo, R. Sex-related differences in reproductive allocation, growth, defense, and herbivory in three dioecious neotropical palms. PLoS ONE 2010, 5, e9824. [Google Scholar] [CrossRef]
- Geber, M.A.; Dawson, T.E.; Delph, L.F. Gender and Sexual Dimorphism in Flowering Plants; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Dawson, T.E.; Ward, J.K.; Ehleringer, J.R. Temporal scaling of physiological responses from gas exchange to tree rings: A gender-specific study of Acer negundo (Boxelder) growing under different conditions. Funct. Ecol. 2004, 18, 212–222. [Google Scholar] [CrossRef]
- Hadad, M.A.; Roig, F.A.; Molina, J.G.A.; Hacket-Pain, A. Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecol. Indic. 2021, 122, 107245. [Google Scholar] [CrossRef]
- Rakočević, M.; Maia, A.H.N.; Duarte, M.M.; Wendling, I. Secondary sexual dimorphism in biomass production of ilex paraguariensis progenies associated to their provenances and morphotypes. Exp. Agric. 2023, 59, e3. [Google Scholar] [CrossRef]
- Marcheafave, G.G.; Pauli, E.D.; Wendling, I.; Rakočević, M.; Scarminio, I.S.; Bruns, R.E. A Comparative Study Using UV-Vis, NIR, and FTIR spectral fingerprinting in yerba mate leaves through mixture design extractions and ASCA models. J. Braz. Chem. Soc. 2025, 36, e-20240073. [Google Scholar] [CrossRef]
- Diggle, P.K.; Di Stilio, V.S.; Gschwend, A.R.; Golenberg, E.M.; Moore, R.C.; Russel, J.R.; Sinclair, J.P. Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet. 2011, 27, 368–376. [Google Scholar] [CrossRef]
- Leite, M.A.P.; Kersten, B.; Fladung, M.; Müller, N.A. Diversity and dynamics of sex determination in dioecious plants. Front. Plant Sci. 2021, 11, 580488. [Google Scholar]
- Rakočević, M.; Batista, E.R.; Matsunaga, F.T.; Wendling, I.; Marcheafave, G.G.; Bruns, R.E.; Scarminio, I.S.; Ribeiro, R.V. Canopy architecture and diurnal CO2 uptake in male and female clones of yerba-mate cultivated in monoculture and agroforestry. Ann. Appl. Biol. 2024, 184, 210–225. [Google Scholar] [CrossRef]
- Rakočević, M.; Medrado, M.J.S.; Lavoranti, O.J.; Valduga, A.T. Quality of yerba-mate leaves originating from male and female plants. Pesq. Florest. Bras. 2007, 54, 71–83. [Google Scholar]
- Letts, M.G.; Phelan, C.A.; Johnson, D.R.E.; Rood, S.B. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol. 2008, 28, 1037–1048. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Serrano-Romero, E.A.; Cousins, A.B. Cold acclimation of mesophyll conductance, bundle-sheath conductance and leakiness in Miscanthus × giganteus. New Phytol. 2020, 226, 1594–1606. [Google Scholar] [CrossRef]
- Correia, O.; Barradas, M.C.D. Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol. 2000, 149, 131–142. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Penteado Junior, J.F.; Goulart, I.C.G.R. Erva 20: Sistema de Produção de Erva-Mate; Embrapa: Brasília, Brazil, 2019. [Google Scholar]
- Kok, B. A Critical consideration of the quantum yield of chlorella-photosynthesis. Separatum Enzymol. 1948, 13, 1–56. [Google Scholar]
- Da Silva, J.R.; Patterson, A.E.; Rodrigues, W.P.; Campostrini, E.; Griffin, K.L. Photosynthetic acclimation to elevated CO2 combined with partial root zone drying results in improved water use efficiency, drought tolerance, and leaf carbon balance of grapevines (Vitis labrusca). Environ. Exp. Bot. 2017, 134, 82–95. [Google Scholar] [CrossRef]
- R Core Team. Available online: https://www.r-project.org// (accessed on 24 September 2024).
- Lobo, F.A.; de Barros, M.P.; Dalmagro, H.J.; Dalmolin, A.C.; Pereira, W.E.; de Souza, E.C.; Vourlitis, G.L.; Rodríguez Ortíz, C.E. Fitting net photosynthetic light-response curves with Microsoft Excel—A critical look at the models. Photosynthetica 2013, 51, 445–456. [Google Scholar] [CrossRef]
- Retuerto, R.; Lema, B.F.; Roiloa, S.R.; Obeso, J.R. Gender, light and water effects in carbon isotope discrimination, and growth rates in the dioecious tree Ilex aquifolium. Funct. Ecol. 2000, 14, 529–537. [Google Scholar] [CrossRef]
- Hultine, K.R.; Grady, K.C.; Wood, T.E.; Shuster, S.M.; Stella, J.C.; Whitham, T.G. Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate. Nat. Plants 2016, 2, 16109. [Google Scholar] [CrossRef]
- Van Blerk, J.J.; West, A.G.; Skelton, R.P.; Midgley, J.J. Phenological asynchrony between sexes of Restionaceae can explain culm δ13C differences. Austral Ecol. 2022, 47, 1200–1207. [Google Scholar] [CrossRef]
- Petriţan, A.M.; von Lüpke, B.; Petriţan, I.C. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ssh (Fraxinus excelsior L.) saplings. Eur. J. For. Res. 2009, 128, 61–74. [Google Scholar] [CrossRef]
- Gehring, J.L.; Monson, R.K. Sexual differences in gas exchange and response to environmental stress in dioecious Silene latifolia (Caryophyllaceae). Am. J. Bot. 1994, 81, 166–174. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; FitzSimons, T.; Roberts, T.L.; Oosterhuis, D.M.; Govindjee, G. Evaluation of secondary sexual dimorphism of the dioecious Amaranthus palmeri under abiotic stress. Sci. Rep. 2023, 13, 13156. [Google Scholar] [CrossRef]
- Rocha, S.P.; Borrero, P.A.P.; Niella, F.; Morales, A.V.; Danner, M.A. Sexual differentiation in yerba mate plants: The role of stomatal density. Braz. Arch. Biol. Technol. 2024, 67, e24230896. [Google Scholar] [CrossRef]
- Tomazelli, D.; Costa, M.D.; Primieri, S.; Rech, T.D.; Santos, J.C.P.; Klauberg-Filho, O. Inoculation of arbuscular mycorrhizal fungi improves growth and photosynthesis of Ilex paraguariensis (St. Hil) seedlings. Braz. Arch. Biol. Technol. 2022, 65, e22210333. [Google Scholar] [CrossRef]
- Zanotto, G.S.; Montes, A.L.; Touguinha, L.B.A.; Silvestre, W.P.; dos Santos Branco, C.; Schwambach, J. Cultivation conditions and their impact on yerba mate ecophysiology and antioxidant potential. Pesqui. Agropec. Gaúch. 2024, 30, 68–79. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; FitzSimons, T.; Roberts, T.L.; Oosterhuis, D.M. Differential response of Palmer amaranth (Amaranthus palmeri) gender to abiotic stress. Weed Sci. 2017, 65, 213–227. [Google Scholar] [CrossRef]
- Li, J.-Y.; Zhang, X.-C.; Li, D.; Sun, M.-Y.; Shi, L. Energy response patterns to light spectrum at sex differentiation stages of Drynaria roosii gametophytes. Environ. Exp. Bot. 2020, 172, 103996. [Google Scholar] [CrossRef]
- Robakowski, P.; Pers-Kamczyc, E.; Ratajczak, E.; Thomas, P.A.; Ye, Z.-P.; Rabska, M.; Iszkuło, G. Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Front. Plant Sci. 2018, 9, 742. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, L.; Zhang, X.; Korpelainen, H.; Li, C. sexual differences in photosynthetic activity, ultrastructure and phytoremediation potential of Populus cathayana exposed to lead and drought. Tree Physiol. 2013, 33, 1043–1060. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Meng, Q.; Fang, S.; Kang, J.; Guo, Q. Differences in carbon and nitrogen metabolism between male and female Populus cathayana in response to deficient nitrogen. Tree Physiol. 2021, 41, 119–133. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Wang, H.; Zhang, X. Foliar water uptake and its relationship with photosynthetic capacity and anatomical structure between female and male Populus euphratica at different growth stages. Forests 2023, 14, 1444. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Xu, X.; Fowler, J.C.; Miller, T.E.X.; Dong, T. Effect of summer warming on growth, photosynthesis, and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 2020, 40, 1178–1191. [Google Scholar] [CrossRef]
- Xia, Z.; He, Y.; Korpelainen, H.; Niinemets, Ü.; Li, C. Allelochemicals and soil microorganisms jointly mediate sex-specific belowground interactions in dioecious Populus cathayana. New Phytol. 2023, 240, 1519–1533. [Google Scholar] [CrossRef]
- Melnikova, N.V.; Borkhert, E.V.; Snezhkina, A.V.; Kudryavtseva, A.V.; Dmitriev, A.A. Sex-specific response to stress in Populus. Front. Plant Sci. 2017, 8, 1827. [Google Scholar] [CrossRef]
- Vilas, J.S.; Hernández-Alonso, H.; Rozas, V.; Retuerto, R. Differential growth rate, water-use efficiency and climate sensitivity between males and females of Ilex aquifolium in North-Western Spain. Ann. Bot. 2024, 20, mcae126. [Google Scholar] [CrossRef]
- Dudley, L.S. Ecological correlates of secondary sexual dimorphism in Salix glauca (Salicaceae). Am. J. Bot. 2006, 93, 1775–1783. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Yu, L.; Korpelainen, H.; Niinemets, Ü.; Li, C. Elevated temperature and CO2 interactively modulate sexual competition and ecophysiological responses of dioecious Populus cathayana. For. Ecol. Manag. 2021, 481, 118747. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakočević, M.; Batista, E.R.; de Almeida, R.L.; Wendling, I.; Ribeiro, R.V. Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry. Forests 2025, 16, 161. https://doi.org/10.3390/f16010161
Rakočević M, Batista ER, de Almeida RL, Wendling I, Ribeiro RV. Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry. Forests. 2025; 16(1):161. https://doi.org/10.3390/f16010161
Chicago/Turabian StyleRakočević, Miroslava, Eunice Reis Batista, Rafael Leonardo de Almeida, Ivar Wendling, and Rafael Vasconcelos Ribeiro. 2025. "Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry" Forests 16, no. 1: 161. https://doi.org/10.3390/f16010161
APA StyleRakočević, M., Batista, E. R., de Almeida, R. L., Wendling, I., & Ribeiro, R. V. (2025). Expression of Secondary Sexual Dimorphism in the Diurnal Course of Leaf Gas Exchanges Is Modified by the Rhythmic Growth of Ilex paraguariensis Under Monoculture and Agroforestry. Forests, 16(1), 161. https://doi.org/10.3390/f16010161