Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (658)

Search Parameters:
Keywords = interactive graphics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1255 KB  
Article
Interpretable Knowledge Tracing via Transformer-Bayesian Hybrid Networks: Learning Temporal Dependencies and Causal Structures in Educational Data
by Nhu Tam Mai, Wenyang Cao and Wenhe Liu
Appl. Sci. 2025, 15(17), 9605; https://doi.org/10.3390/app15179605 - 31 Aug 2025
Viewed by 166
Abstract
Knowledge tracing, the computational modeling of student learning progression through sequential educational interactions, represents a critical component for adaptive learning systems and personalized education platforms. However, existing approaches face a fundamental trade-off between predictive accuracy and interpretability: deep sequence models excel at capturing [...] Read more.
Knowledge tracing, the computational modeling of student learning progression through sequential educational interactions, represents a critical component for adaptive learning systems and personalized education platforms. However, existing approaches face a fundamental trade-off between predictive accuracy and interpretability: deep sequence models excel at capturing complex temporal dependencies in student interaction data but lack transparency in their decision-making processes, while probabilistic graphical models provide interpretable causal relationships but struggle with the complexity of real-world educational sequences. We propose a hybrid architecture that integrates transformer-based sequence modeling with structured Bayesian causal networks to overcome this limitation. Our dual-pathway design employs a transformer encoder to capture complex temporal patterns in student interaction sequences, while a differentiable Bayesian network explicitly models prerequisite relationships between knowledge components. These pathways are unified through a cross-attention mechanism that enables bidirectional information flow between temporal representations and causal structures. We introduce a joint training objective that simultaneously optimizes sequence prediction accuracy and causal graph consistency, ensuring learned temporal patterns align with interpretable domain knowledge. The model undergoes pre-training on 3.2 million student–problem interactions from diverse MOOCs to establish foundational representations, followed by domain-specific fine-tuning. Comprehensive experiments across mathematics, computer science, and language learning demonstrate substantial improvements: 8.7% increase in AUC over state-of-the-art knowledge tracing models (0.847 vs. 0.779), 12.3% reduction in RMSE for performance prediction, and 89.2% accuracy in discovering expert-validated prerequisite relationships. The model achieves a 0.763 F1-score for early at-risk student identification, outperforming baselines by 15.4%. This work demonstrates that sophisticated temporal modeling and interpretable causal reasoning can be effectively unified for educational applications. Full article
Show Figures

Figure 1

25 pages, 8084 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Viewed by 304
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 1457 KB  
Article
A Framework for Data Lifecycle Model Selection
by Mauro Iacono, Michele Mastroianni, Christian Riccio and Bruna Viscardi
Future Internet 2025, 17(9), 390; https://doi.org/10.3390/fi17090390 - 28 Aug 2025
Viewed by 218
Abstract
The selection of Data Lifecycle Models (DLMs) in complex data management scenarios necessitates finding a balance between quantitative and qualitative characteristics to ensure regulation, improve performance, and maintain governance requirements. In this context, an interactive web application based on AHP-Express has been developed [...] Read more.
The selection of Data Lifecycle Models (DLMs) in complex data management scenarios necessitates finding a balance between quantitative and qualitative characteristics to ensure regulation, improve performance, and maintain governance requirements. In this context, an interactive web application based on AHP-Express has been developed as a user-friendly tool to facilitate decision-making processes related to DLM. The application facilitates customized decision matrices, organizes various expert interviews with distinct weights, calculates local and global priorities, and delivers final DLM rankings by consolidating sub-criteria scores into weighted macro-category values, accompanied by graphical representations. Key functions encompass consistency checks, sensitivity analysis for macro-category weight variations, and graphical representations (bar charts, radar maps, sensitivity charts) that emphasize strengths, shortcomings, and the robustness of rankings. In a suggested application for sensor-based artifact monitoring at the Museo del Carbone, the tool swiftly selected the most appropriate DLM as the leading contender, exhibiting consistent performance across diverse weight scenarios. The results of the Museo del Carbone case validate that AHP-Express facilitates rapid, transparent, and reproducible DLM selection, reducing cognitive load while maintaining scientific rigor. The tool’s modular architecture and visualization features enable educated decision making for various data management issues. Full article
Show Figures

Figure 1

25 pages, 19135 KB  
Article
Development of a Multi-Platform AI-Based Software Interface for the Accompaniment of Children
by Isaac León, Camila Reyes, Iesus Davila, Bryan Puruncajas, Dennys Paillacho, Nayeth Solorzano, Marcelo Fajardo-Pruna, Hyungpil Moon and Francisco Yumbla
Multimodal Technol. Interact. 2025, 9(9), 88; https://doi.org/10.3390/mti9090088 - 26 Aug 2025
Viewed by 530
Abstract
The absence of parental presence has a direct impact on the emotional stability and social routines of children, especially during extended periods of separation from their family environment, as in the case of daycare centers, hospitals, or when they remain alone at home. [...] Read more.
The absence of parental presence has a direct impact on the emotional stability and social routines of children, especially during extended periods of separation from their family environment, as in the case of daycare centers, hospitals, or when they remain alone at home. At the same time, the technology currently available to provide emotional support in these contexts remains limited. In response to the growing need for emotional support and companionship in child care, this project proposes the development of a multi-platform software architecture based on artificial intelligence (AI), designed to be integrated into humanoid robots that assist children between the ages of 6 and 14. The system enables daily verbal and non-verbal interactions intended to foster a sense of presence and personalized connection through conversations, games, and empathetic gestures. Built on the Robot Operating System (ROS), the software incorporates modular components for voice command processing, real-time facial expression generation, and joint movement control. These modules allow the robot to hold natural conversations, display dynamic facial expressions on its LCD (Liquid Crystal Display) screen, and synchronize gestures with spoken responses. Additionally, a graphical interface enhances the coherence between dialogue and movement, thereby improving the quality of human–robot interaction. Initial evaluations conducted in controlled environments assessed the system’s fluency, responsiveness, and expressive behavior. Subsequently, it was implemented in a pediatric hospital in Guayaquil, Ecuador, where it accompanied children during their recovery. It was observed that this type of artificial intelligence-based software, can significantly enhance the experience of children, opening promising opportunities for its application in clinical, educational, recreational, and other child-centered settings. Full article
Show Figures

Graphical abstract

30 pages, 723 KB  
Review
Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications
by Tsireledzo Goodwill Makwarela, Nimmi Seoraj-Pillai and Tshifhiwa Constance Nangammbi
Biology 2025, 14(8), 1086; https://doi.org/10.3390/biology14081086 - 20 Aug 2025
Viewed by 545
Abstract
Mollusks are among the most ecologically and economically significant invertebrates; yet, their associated microbiomes remain understudied relative to those of other metazoans. This scoping review synthesizes the current literature on the diversity, composition, functional roles, and ecological implications of molluscan microbiomes, with an [...] Read more.
Mollusks are among the most ecologically and economically significant invertebrates; yet, their associated microbiomes remain understudied relative to those of other metazoans. This scoping review synthesizes the current literature on the diversity, composition, functional roles, and ecological implications of molluscan microbiomes, with an emphasis on three major groups: gastropods, bivalves, and cephalopods. Drawing on studies from terrestrial, freshwater, and marine systems, we identified the dominant bacterial phyla, including Proteobacteria, Bacteroidetes, and Firmicutes, and explored how microbiota vary across different habitats, diets, tissue types, and host taxonomies. We examined the contribution of molluscan microbiomes to host functions, including digestion, immune modulation, stress responses, and nutrient cycling. Particular attention was given to the role of microbiota in shell formation, pollutant degradation, and adaptation to environmental stressors. The review also evaluated microbial interactions at different developmental stages and under aquaculture conditions. Factors influencing microbiome assembly, such as the host’s genetics, life history traits, and environmental exposure, were mapped using conceptual and graphical tools. Applications of molluscan microbiome research in aquaculture, conservation biology, and environmental biomonitoring are highlighted. However, inconsistencies in the sampling methods, taxonomic focus, and functional annotations limit the generalizability across taxa. We identify key knowledge gaps and propose future directions, including the use of meta-omics, standardized protocols, and experimental validation to deepen insights. By synthesizing emerging findings, this review contributes to a growing framework for understanding mollusk–microbiome interactions and their relevance to host fitness and ecosystem health. It further establishes the importance of mollusks as model systems for advancing microbiome science. Full article
Show Figures

Figure 1

19 pages, 4574 KB  
Article
A WebGL-Based Interactive Visualization Framework for Large-Scale Urban Seismic Simulations with a Dual Multi-LOD Strategy
by Jinping Wang, Zekun Xu and Yang Li
Buildings 2025, 15(16), 2916; https://doi.org/10.3390/buildings15162916 - 18 Aug 2025
Viewed by 446
Abstract
The effective visualization of urban-scale earthquake simulations is pivotal for disaster assessment but presents significant challenges in terms of computational performance and accessibility. This paper introduces a lightweight, browser-based visualization framework that leverages Web Graphics Library (WebGL) to provide real-time, interactive 3D rendering [...] Read more.
The effective visualization of urban-scale earthquake simulations is pivotal for disaster assessment but presents significant challenges in terms of computational performance and accessibility. This paper introduces a lightweight, browser-based visualization framework that leverages Web Graphics Library (WebGL) to provide real-time, interactive 3D rendering without requiring specialized software. The proposed framework implements a novel dual multi-level-of-detail (LOD) strategy that optimizes both data representation and rendering performance. At the data level, urban buildings are classified into simplified or detailed geometric and computational models based on structural importance. At the rendering level, a dynamic graphics LOD approach adjusts visual complexity based on camera proximity. To realistically reproduce dynamic behaviors of complex structures, skeletal animation is introduced, while a quad tree-based spatial index ensures efficient object culling. The framework’s scalability and efficacy were validated by successfully visualizing the seismic response of approximately 100,000 buildings in New York City. Experimental results demonstrate that the proposed strategy maintains interactive frame rates (>24 frames per second) for views containing up to 4000 detailed buildings undergoing simultaneous and dynamic seismic behaviors. This approach significantly reduces rendering latency and proves extensible to other urban regions. The source code supporting this study is available from the corresponding author upon reasonable request. Full article
Show Figures

Figure 1

21 pages, 21564 KB  
Article
Remote Visualization and Optimization of Fluid Dynamics Using Mixed Reality
by Sakshi Sandeep More, Brandon Antron, David Paeres and Guillermo Araya
Appl. Sci. 2025, 15(16), 9017; https://doi.org/10.3390/app15169017 - 15 Aug 2025
Viewed by 431
Abstract
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling [...] Read more.
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling massive databases generated using Direct Numerical Simulation (DNS) while maintaining visual fidelity and ensuring efficient rendering for user interaction. Fully immersive visualization of supersonic (Mach number 2.86) spatially developing turbulent boundary layers (SDTBLs) over strong concave and convex curvatures was achieved. The comprehensive DNS data provides insights on the transport phenomena inside turbulent boundary layers under strong deceleration or an Adverse Pressure Gradient (APG) caused by concave walls as well as strong acceleration or a Favorable Pressure Gradient (FPG) caused by convex walls under different wall thermal conditions (i.e., Cold, Adiabatic, and Hot walls). The process begins with a .vts file input from a DNS, which is visualized using ParaView software. These visualizations, representing different fluid behaviors based on a DNS with a high spatial/temporal resolution and employing millions of “numerical sensors”, are treated as individual time frames and exported in GL Transmission Format (GLTF), which is a widely used open-source file format designed for efficient transmission and loading of 3D scenes. To support the workflow, optimized Extract–Transform–Load (ETL) techniques were implemented for high-throughput data handling. Conversion of exported Graphics Library Transmission Format (GLTF) files into Graphics Library Transmission Format Binary files (typically referred to as GLB) reduced the storage by 25% and improved the load latency by 60%. This research uses Unity’s Profile Analyzer and Memory Profiler to identify performance limitations during contour rendering, focusing on the GPU and CPU efficiency. Further, immersive VR/AR analytics are achieved by connecting the processed outputs to Unity engine software and Microsoft HoloLens Gen 2 via Azure Remote Rendering cloud services, enabling real-time exploration of fluid behavior in mixed-reality environments. This pipeline constitutes a significant advancement in the scientific visualization of fluid dynamics, particularly when applied to datasets comprising hundreds of high-resolution frames. Moreover, the methodologies and insights gleaned from this approach are highly transferable, offering potential applications across various other scientific and engineering disciplines. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 1445 KB  
Article
Inclined MHD Flow of Carreau Hybrid Nanofluid over a Stretching Sheet with Nonlinear Radiation and Arrhenius Activation Energy Under a Symmetry-Inspired Modeling Perspective
by Praveen Kumari, Hemant Poonia, Pardeep Kumar and Md Aquib
Symmetry 2025, 17(8), 1330; https://doi.org/10.3390/sym17081330 - 15 Aug 2025
Viewed by 415
Abstract
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation [...] Read more.
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation of the boundary conditions and governing equations is inherently influenced by symmetric considerations in the physical geometry and flow assumptions. Such symmetry-inspired modeling facilitates dimensional reduction and numerical tractability. The analysis employs realistic boundary conditions, including convective heat transfer and control of nanoparticle concentration, which are solved numerically using MATLAB’s bvp5c solver. Findings indicate that an increase in activation energy results in a steeper concentration boundary layer under active control, while it flattens in passive scenarios. An increase in the Biot number (Bi) and relaxation parameter (Γ) enhances heat transfer and thermal response, leading to a rise in temperature distribution in both cases. Additionally, the 3D surface plot illustrates elevation variations from the surface at low inclination angles, narrowing as the angle increases. The Nusselt number demonstrates a contrasting trend, with thermal boundary layer thickness increasing with higher radiation parameters. A graphical illustration of the average values of skin friction, Nusselt number, and Sherwood number for both active and passive scenarios highlights the impact of each case. Under active control, the Brownian motion’s effect diminishes, whereas it intensifies in passive control. Passive techniques, such as zero-flux conditions, offer effective and low-maintenance solutions for systems without external regulation, while active controls, like wall heating and setting a nanoparticle concentration, maximize heat and mass transfer in shear-thinning Carreau fluids. Full article
(This article belongs to the Special Issue Symmetrical Mathematical Computation in Fluid Dynamics)
Show Figures

Figure 1

30 pages, 11977 KB  
Article
The Specifics and Forms of Art in Contemporary Healthcare Facilities—European Trends
by Rafał Strojny and Natalia Przesmycka
Arts 2025, 14(4), 93; https://doi.org/10.3390/arts14040093 - 11 Aug 2025
Viewed by 584
Abstract
The development of scientific research related to the impact of the built environment on people in recent decades has changed the way healthcare facilities are designed in the 21st century. The ideal approach is characterized by research-based design and the creation of a [...] Read more.
The development of scientific research related to the impact of the built environment on people in recent decades has changed the way healthcare facilities are designed in the 21st century. The ideal approach is characterized by research-based design and the creation of a therapeutic environment. An integral component of the hospital environment is art, the positive impact of which on hospital users has been proven by many scientific studies. The purpose of this research was to determine the specifics and forms of art in contemporary hospitals. The qualitative study included 91 hospitals in 18 European countries. Based on scientific literature, acquired data on the surveyed facilities, and study visits to 20 hospitals, 12 forms of art were identified. In addition to traditional art forms, art reflecting the achievements of 21st-century science and technology can often be seen in contemporary hospitals. The best example is interactive graphics using digital techniques and tools. This is art whose base is created by the artist, but at the same time, it is a form that responds to the environment and movement, engaging the viewer to interact. Full article
Show Figures

Figure 1

49 pages, 15124 KB  
Article
Flexible Constraint-Based Controller Framework for Ros_Control
by Miguel Prada, Asier Fernandez, Anthony Remazeilles and Joseph McIntyre
Robotics 2025, 14(8), 109; https://doi.org/10.3390/robotics14080109 - 11 Aug 2025
Viewed by 384
Abstract
Generating robot behaviors in dynamic real-world situations generally requires the programming of multiple, often redundant degrees of freedom to meet multiple goals governing the desired motions. In this work, we propose a constraint-based controller specification methodology. A novel declarative language is used to [...] Read more.
Generating robot behaviors in dynamic real-world situations generally requires the programming of multiple, often redundant degrees of freedom to meet multiple goals governing the desired motions. In this work, we propose a constraint-based controller specification methodology. A novel declarative language is used to combine semantically specialized building blocks into composite controllers. This description is automatically transformed at runtime into an executable form, which can automatically leverage multiple threads to parallelize computations whenever possible. Enabling runtime definition of controller topologies out of declarative descriptions not only reduces the work required to develop such controllers, but it also allows one to dynamically synthesize new controllers based on higher-level task planners or by user interaction through Graphical User Interfaces (GUIs). Our solution adds new functionality to the Robot Operating System (ROS)/ros_control ecosystem, where robot behaviors are typically achieved by deploying single-objective, off-the-shelf controllers for tasks like following joint trajectories, executing interpolated point-to-point motions in Cartesian space, or for basic compliant behaviors. Our proposed constraint-based framework enhances ros_control by providing the means to easily construct composite controllers from existing primary elements using our design language. Building on top of the ros_control infrastructure facilitates the usage of our controller with a wide range of supported robots and enables quick integration with the existing ROS ecosystem. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

20 pages, 2745 KB  
Article
Uses of Metaverse Recordings in Multimedia Information Retrieval
by Patrick Steinert, Stefan Wagenpfeil, Ingo Frommholz and Matthias L. Hemmje
Multimedia 2025, 1(1), 2; https://doi.org/10.3390/multimedia1010002 - 10 Aug 2025
Viewed by 270
Abstract
Metaverse Recordings (MVRs), screen recordings of user experiences in virtual environments, represent a mostly underexplored field. This article addresses the integration of MVR and Multimedia Information Retrieval (MMIR). Unlike conventional media, MVRs can include additional streams of structured data, such as Scene Raw [...] Read more.
Metaverse Recordings (MVRs), screen recordings of user experiences in virtual environments, represent a mostly underexplored field. This article addresses the integration of MVR and Multimedia Information Retrieval (MMIR). Unlike conventional media, MVRs can include additional streams of structured data, such as Scene Raw Data (SRD) and Peripheral Data (PD), which capture graphical rendering states and user interactions. We explore the technical facets of recordings in the Metaverse, detailing diverse methodologies and their implications for MVR-specific Multimedia Information Retrieval. Our discussion not only highlights the unique opportunities of MVR content analysis, but also examines the challenges they pose to conventional MMIR paradigms. It addresses the key challenges around the semantic gap in existing content analysis tools when applied to MVRs and the high computational cost and limited recall of video-based feature extraction. We present a model for MVR structure, a prototype recording system, and an evaluation framework to assess retrieval performance. We collected a set of 111 MVRs to study and evaluate the intricacies. Our findings show that SRD and PD provide significant, low-cost contributions to retrieval accuracy and scalability, and support the case for integrating structured interaction data into future MMIR architectures. Full article
Show Figures

Figure 1

21 pages, 8315 KB  
Article
The Influence of the Geometric Configuration of the Drive System on the Motion Dynamics of Jaw Crushers
by Emilian Mosnegutu, Claudia Tomozei, Oana Irimia, Vlad Ciubotariu, Diana Mirila, Mirela Panainte-Lehadus, Marcin Jasiński, Nicoleta Sporea and Ivona Camelia Petre
Processes 2025, 13(8), 2498; https://doi.org/10.3390/pr13082498 - 7 Aug 2025
Viewed by 302
Abstract
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying [...] Read more.
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying the optimal configuration from both kinematic and functional perspectives. Jaw crushers play a critical role in the extractive industry, and their performance is strongly influenced by the geometry and positioning of the drive mechanism. A theoretical approach based on mathematical modeling and numerical simulation was applied to a real constructive model (SMD-117), assessing variations in the linear velocity of the moving links as a function of mechanism placement. The study employed Mathcad 15, Roberts Animator, and GIM (Graphical Interactive Mechanisms) 2025.4 software to perform calculations and simulate motion. Results revealed a sinusoidal velocity pattern with significant differences between the two systems: the tension-based drive achieves peak velocities at the beginning of the angular variation interval, while the compression-based system reaches its maximum toward the end. Link C consistently exhibits higher velocities than link E, indicating increased mechanical stress. Polar graphic analysis identified critical velocity angles, and simulations confirmed the model’s validity with a maximum error of just 1.79%. The findings emphasize the importance of selecting an appropriate drive system to enhance performance, durability, and energy efficiency, offering concrete recommendations for equipment design and operation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 4589 KB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 513
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

15 pages, 1515 KB  
Article
Ontology-Based Data Pipeline for Semantic Reaction Classification and Research Data Management
by Hendrik Borgelt, Frederick Gabriel Kitel and Norbert Kockmann
Computers 2025, 14(8), 311; https://doi.org/10.3390/computers14080311 - 1 Aug 2025
Viewed by 395
Abstract
Catalysis research is complex and interdisciplinary, involving diverse physical effects and challenging data practices. Research data often captures only selected aspects, such as specific reactants and products, limiting its utility for machine learning and the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) workflows. [...] Read more.
Catalysis research is complex and interdisciplinary, involving diverse physical effects and challenging data practices. Research data often captures only selected aspects, such as specific reactants and products, limiting its utility for machine learning and the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) workflows. To improve this, semantic structuring through ontologies is essential. This work extends the established ontologies by refining logical relations and integrating semantic tools such as the Web Ontology Language or the Shape Constraint Language. It incorporates application programming interfaces from chemical databases, such as the Kyoto Encyclopedia of Genes and Genomes and the National Institute of Health’s PubChem database, and builds upon established ontologies. A key innovation lies in automatically decomposing chemical substances through database entries and chemical identifier representations to identify functional groups, enabling more generalized reaction classification. Using new semantic functionality, functional groups are flexibly addressed, improving the classification of reactions such as saponification and ester cleavage with simultaneous oxidation. A graphical interface (GUI) supports user interaction with the knowledge graph, enabling ontological reasoning and querying. This approach demonstrates improved specificity of the newly established ontology over its predecessors and offers a more user-friendly interface for engaging with structured chemical knowledge. Future work will focus on expanding ontology coverage to support a wider range of reactions in catalysis research. Full article
Show Figures

Figure 1

18 pages, 8744 KB  
Article
A User-Centered Teleoperation GUI for Automated Vehicles: Identifying and Evaluating Information Requirements for Remote Driving and Assistance
by Maria-Magdalena Wolf, Henrik Schmidt, Michael Christl, Jana Fank and Frank Diermeyer
Multimodal Technol. Interact. 2025, 9(8), 78; https://doi.org/10.3390/mti9080078 - 31 Jul 2025
Cited by 2 | Viewed by 694
Abstract
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is [...] Read more.
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is critical. In addition to video feed, supplemental informational elements are crucial—not only for the predominantly studied remote driving, but also for emerging desk-based remote assistance concepts. This work develops a GUI for different teleoperation concepts by identifying key informational elements during the teleoperation process through expert interviews (N = 9). Following this, a static and dynamic GUI prototype was developed and evaluated in a click dummy study (N = 36). Thereby, the dynamic GUI adapts the number of displayed elements according to the teleoperation phase. Results show that both GUIs achieve good system usability scale (SUS) ratings, with the dynamic GUI significantly outperforming the static version in both usability and task completion time. However, the results might be attributable to a learning effect due to the lack of randomization. The user experience questionnaire (UEQ) score shows potential for improvement. To enhance the user experience, the GUI should be evaluated in a follow-up study that includes interaction with a real vehicle. Full article
Show Figures

Figure 1

Back to TopTop