Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = inter-satellite radiometric calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5180 KiB  
Article
In-Flight Calibration of Geostationary Meteorological Imagers Using Alternative Methods: MTG-I1 FCI Case Study
by Ali Mousivand, Christoph Straif, Alessandro Burini, Mounir Lekouara, Vincent Debaecker, Tim Hewison, Stephan Stock and Bojan Bojkov
Remote Sens. 2025, 17(14), 2369; https://doi.org/10.3390/rs17142369 - 10 Jul 2025
Viewed by 476
Abstract
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI [...] Read more.
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI offers more spectral bands, higher spatial resolution, and faster imaging capabilities, supporting a wide range of applications in weather forecasting, climate monitoring, and environmental analysis. On 13 January 2024, the FCI onboard MTG-I1 (renamed Meteosat-12 in December 2024) experienced a critical anomaly involving the failure of its onboard Calibration and Obturation Mechanism (COM). As a result, the use of the COM was discontinued to preserve operational safety, leaving the instrument dependent on alternative calibration methods. This loss of onboard calibration presents immediate challenges, particularly for the infrared channels, including image artifacts (e.g., striping), reduced radiometric accuracy, and diminished stability. To address these issues, EUMETSAT implemented an external calibration approach leveraging algorithms from the Global Space-based Inter-Calibration System (GSICS). The inter-calibration algorithm transfers stable and accurate calibration from the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral instrument aboard Metop-B and Metop-C satellites to FCI’s infrared channels daily, ensuring continued data quality. Comparisons with Cross-track Infrared Sounder (CrIS) data from NOAA-20 and NOAA-21 satellites using a similar algorithm is then used to validate the radiometric performance of the calibration. This confirms that the external calibration method effectively compensates for the absence of onboard blackbody calibration for the infrared channels. For the visible and near-infrared channels, slower degradation rates and pre-anomaly calibration ensure continued accuracy, with vicarious calibration expected to become the primary source. This adaptive calibration strategy introduces a novel paradigm for in-flight calibration of geostationary instruments and offers valuable insights for satellite missions lacking onboard calibration devices. This paper details the COM anomaly, the external calibration process, and the broader implications for future geostationary satellite missions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 13502 KiB  
Article
Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration
by Patrick N. De La Llana, Faisal Bin Kashem and W. Linwood Jones
Remote Sens. 2025, 17(9), 1519; https://doi.org/10.3390/rs17091519 - 25 Apr 2025
Viewed by 510
Abstract
This paper describes the benefits of using a microwave radiative transfer model (RTM) to improve the inter-satellite radiometric calibration (XCAL) between two independent satellite microwave radiometers. Because this work was sponsored by the NASA Global Precipitation Mission, the emphasis of this paper is [...] Read more.
This paper describes the benefits of using a microwave radiative transfer model (RTM) to improve the inter-satellite radiometric calibration (XCAL) between two independent satellite microwave radiometers. Because this work was sponsored by the NASA Global Precipitation Mission, the emphasis of this paper is on radiometer channels that are used for atmospheric precipitation retrievals; however, this technique is applicable for microwave remote sensing in general, over a wide range of satellite remote-sensing applications. An XCAL example is presented for the NASA Global Precipitation Mission, whereby the GPM Microwave Imager is used to calibrate another microwave radiometer (TROPICS) within the GPM constellation of satellites. This approach involves intercomparing near-simultaneous measured brightness temperatures from these radiometers viewing a common homogeneous ocean scene. The double difference between observed and theoretical brightness temperature, derived using a radiative transfer model, is used to establish a radiometric calibration offset or bias. On-orbit comparisons are presented for two different approaches, namely, with and without the aid of the RTM. The results demonstrate significant improvements in the XCAL biases derived when using the RTM, and this is especially beneficial when one radiometer produces anomalous brightness temperatures. Full article
(This article belongs to the Special Issue Surface Radiative Transfer: Modeling, Inversion, and Applications)
Show Figures

Figure 1

31 pages, 8626 KiB  
Article
Calibration and Validation of NOAA-21 Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper Sensor Data Record Data
by Banghua Yan, Trevor Beck, Junye Chen, Steven Buckner, Xin Jin, Ding Liang, Sirish Uprety, Jingfeng Huang, Lawrence E. Flynn, Likun Wang, Quanhua Liu and Warren D. Porter
Remote Sens. 2024, 16(23), 4488; https://doi.org/10.3390/rs16234488 - 29 Nov 2024
Viewed by 1029
Abstract
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to [...] Read more.
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to 380 nm for operational retrievals of the nadir total column ozone. This study presents calibration and validation analysis results for the NOAA-21 OMPS NM SDR data to meet the JPSS scientific requirements. The NOAA-21 OMPS SDR calibration derives updates of several previous OMPS algorithms, including the dark current correction algorithm, one-time wavelength registration from ground to on-orbit, daily intra-orbit wavelength shift correction, and stray light correction. Additionally, this study derives an empirical scale factor to remove 2.2% of systematic biases in solar flux data, which were caused by pre-launch solar calibration errors of the OMPS nadir instruments. The validation of the NOAA-21 OMPS SDR data is conducted using various methods. For example, the 32-day average method and radiative transfer model are employed to estimate inter-sensor radiometric calibration differences from either the SNPP or NOAA-20 data. The quality of the NOAA-21 OMPS NM SDR data is largely consistent with that of the SNPP and NOAA-20 OMPS data, with differences generally within ±2%. This meets the scientific requirements, except for some deviations mainly in the dichroic range between 300 nm and 303 nm. The deep convective cloud target approach is used to monitor the stability of NOAA-21 OMPS reflectance above 330 nm, showing a variation of 0.5% over the observed period. Data from the NOAA-21 VIIRS M1 band are used to estimate OMPS NM data geolocation errors, revealing that along-track errors can reach up to 3 km, while cross-track errors are generally within ±1 km. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

14 pages, 6074 KiB  
Article
Extending the HIRS Data Record with IASI Measurements
by Anand K. Inamdar, Lei Shi, Hai-Tien Lee, Darren L. Jackson and Jessica L. Matthews
Remote Sens. 2023, 15(3), 717; https://doi.org/10.3390/rs15030717 - 26 Jan 2023
Cited by 1 | Viewed by 2738
Abstract
The High-Resolution Infrared Radiation Sounder (HIRS) on the NOAA and the MetOp satellite series have provided global sounding measurements since the late 1970s, spanning over 40 years. These measurements have been useful in climate change detection, numerical weather prediction, and development of long-term [...] Read more.
The High-Resolution Infrared Radiation Sounder (HIRS) on the NOAA and the MetOp satellite series have provided global sounding measurements since the late 1970s, spanning over 40 years. These measurements have been useful in climate change detection, numerical weather prediction, and development of long-term climate data records of profiles of atmospheric temperature and humidity, cloud climatology, upper tropospheric water vapor, outgoing longwave radiation, etc. However, the HIRS instrument is being replaced by the new generation of sounders such as the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) on recently launched satellites. In order to continue and extend the HIRS record, we use IASI measurements to simulate and derive HIRS-like data for the 12 HIRS longwave channels. The MetOp satellite operated by EUMETSAT carries both the HIRS and the hyper-spectral IASI instrument with accurate spectral and radiometric calibration, providing a great opportunity to consistently calibrate the measurements. The IASI radiances are convolved with the HIRS spectral response functions to produce IASI-simulated HIRS (IHIRS) for the longwave channels. In the present work, IHIRS data are collocated and compared with HIRS observed radiances on the same satellite to develop a calibration table for each of the ascending/descending orbits and cloudy and clear categories. The resulting inter-instrument calibrated IHIRS data was found to agree with HIRS brightness temperatures within 0.05 K for all longwave channels. Full article
Show Figures

Figure 1

33 pages, 13651 KiB  
Article
A New 32-Day Average-Difference Method for Calculating Inter-Sensor Calibration Radiometric Biases between SNPP and NOAA-20 Instruments within ICVS Framework
by Banghua Yan, Mitch Goldberg, Xin Jin, Ding Liang, Jingfeng Huang, Warren Porter, Ninghai Sun, Lihang Zhou, Chunhui Pan, Flavio Iturbide-Sanchez, Quanhua Liu and Kun Zhang
Remote Sens. 2021, 13(16), 3079; https://doi.org/10.3390/rs13163079 - 5 Aug 2021
Cited by 4 | Viewed by 2799
Abstract
Two existing double-difference (DD) methods, using either a 3rdSensor or Radiative Transfer Modeling (RTM) as a transfer, are applicable primarily for limited regions and channels, and, thus critical in capturing inter-sensor calibration radiometric bias features. A supplementary method is also desirable [...] Read more.
Two existing double-difference (DD) methods, using either a 3rdSensor or Radiative Transfer Modeling (RTM) as a transfer, are applicable primarily for limited regions and channels, and, thus critical in capturing inter-sensor calibration radiometric bias features. A supplementary method is also desirable for estimating inter-sensor calibration biases at the window and lower sounding channels where the DD methods have non-negligible errors. In this study, using the Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite System (JPSS)-1 (alias NOAA-20) as an example, we present a new inter-sensor bias statistical method by calculating 32-day averaged differences (32D-AD) of radiometric measurements between the same instrument onboard two satellites. In the new method, a quality control (QC) scheme using one-sigma (for radiance difference), or two-sigma (for radiance) thresholds are established to remove outliers that are significantly affected by diurnal biases within the 32-day temporal coverage. The performance of the method is assessed by applying it to estimate inter-sensor calibration radiometric biases for four instruments onboard SNPP and NOAA-20, i.e., Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Nadir Profiler (NP) within the Ozone Mapping and Profiler Suite (OMPS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Our analyses indicate that the globally-averaged inter-sensor differences using the 32D-AD method agree with those using the existing DD methods for available channels, with margins partially due to remaining diurnal errors. In addition, the new method shows its capability in assessing zonal mean features of inter-sensor calibration biases at upper sounding channels. It also detects the solar intrusion anomaly occurring on NOAA-20 OMPS NP at wavelengths below 300 nm over the Northern Hemisphere. Currently, the new method is being operationally adopted to monitor the long-term trends of (globally-averaged) inter-sensor calibration radiometric biases at all channels for the above sensors in the Integrated Calibration/Validation System (ICVS). It is valuable in demonstrating the quality consistencies of the SDR data at the four instruments between SNPP and NOAA-20 in long-term statistics. The methodology is also applicable for other POES cross-sensor calibration bias assessments with minor changes. Full article
Show Figures

Graphical abstract

25 pages, 7729 KiB  
Review
Introduction of the Advanced Meteorological Imager of Geo-Kompsat-2a: In-Orbit Tests and Performance Validation
by Dohyeong Kim, Minju Gu, Tae-Hyeong Oh, Eun-Kyu Kim and Hye-Ji Yang
Remote Sens. 2021, 13(7), 1303; https://doi.org/10.3390/rs13071303 - 29 Mar 2021
Cited by 58 | Viewed by 5929
Abstract
Geo-Kompsat-2A (Geostationary-Korean Multi-Purpose SATtellite-2A, GK2A), a new generation of Korean geostationary meteorological satellite, carry state-of-the-art optical sensors with significantly higher radiometric, spectral, and spatial resolution than the Communication, Ocean, and Meteorological Satellite (COMS) previously available in the geostationary orbit. The new Advanced Meteorological [...] Read more.
Geo-Kompsat-2A (Geostationary-Korean Multi-Purpose SATtellite-2A, GK2A), a new generation of Korean geostationary meteorological satellite, carry state-of-the-art optical sensors with significantly higher radiometric, spectral, and spatial resolution than the Communication, Ocean, and Meteorological Satellite (COMS) previously available in the geostationary orbit. The new Advanced Meteorological Imager (AMI) on GK2A has 16 observation channels, and its spatial resolution is 0.5 or 1 km for visible channels and 2 km for near-infrared and infrared channels. These advantages, when combined with shortened revisit times (around 10 min for full disk and 2 min for sectored regions), provide new levels of capacity for the identification and tracking of rapidly changing weather phenomena and for the derivation of quantitative products. These improvements will bring about unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. Imagery from the satellites is distributed and disseminated to users via multiple paths, including internet services and satellite broadcasting services. In post-launch performance validation, infrared channel calibration is accurate to within 0.2 K with no significant diurnal variation using an approach developed under the Global Space-based Inter-Calibration System framework. Visible and near infrared channels showed unexpected seasonal variations of approximately 5 to 10% using the ray matching method and lunar calibration. Image navigation was accurate to within requirements, 42 µrad (1.5 km), and channel-to-channel registration was also validated. This paper describes the features of the GK2A AMI, GK2A ground segment, and data distribution. Early performance results of AMI during the commissioning period are presented to demonstrate the capabilities and applications of the sensor. Full article
Show Figures

Figure 1

35 pages, 10227 KiB  
Article
Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies
by Changyong Cao, Bin Zhang, Xi Shao, Wenhui Wang, Sirish Uprety, Taeyoung Choi, Slawomir Blonski, Yalong Gu, Yan Bai, Lin Lin and Satya Kalluri
Remote Sens. 2021, 13(6), 1075; https://doi.org/10.3390/rs13061075 - 12 Mar 2021
Cited by 31 | Viewed by 7960
Abstract
Suomi NPP has been successfully operating since its launch on 28 October 2011. As one of the major payloads, along with microwave and infrared sounders (Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS)), and ozone mapping/profiling (OMPS) instruments, the Visible Infrared Imaging [...] Read more.
Suomi NPP has been successfully operating since its launch on 28 October 2011. As one of the major payloads, along with microwave and infrared sounders (Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS)), and ozone mapping/profiling (OMPS) instruments, the Visible Infrared Imaging Radiometer Suite (VIIRS) has performed for well beyond its mission design life. Its data have been used for a variety of applications for nearly 30 environmental data products, including global imagery twice daily with 375 and 750 m resolutions, clouds, aerosol, cryosphere, ocean color and sea-surface temperature, a number of land products (vegetation, land-cover, fire and others), and geophysical and social economic studies with nightlights. During the early days of VIIRS operational calibration and data production, there were inconsistencies in both algorithms and calibration inputs, for several reasons. While these inconsistencies have less impact on nowcasting and near real-time applications, they introduce challenges for time series analysis due to calibration artifacts. To address this issue, we developed a comprehensive algorithm, and recalibrated and reprocessed the Suomi NPP VIIRS radiometric data that have been produced since the launch. In the recalibration, we resolved inconsistencies in the processing algorithms, terrain correction, straylight correction, and anomalies in the thermal bands. To improve the stability of the reflective solar bands, we developed a Kalman filtering model to incorporate onboard solar, lunar, desert site, inter-satellite calibration, and a deep convective cloud calibration methodology. We further developed and implemented the Solar Diffuser Surface Roughness Rayleigh Scattering model to account for the sensor responsivity degradation in the near infrared bands. The recalibrated dataset was validated using vicarious sites and alternative methods, and compared with independent processing from other organizations. The recalibrated radiometric dataset (namely, the level 1b or sensor data records) also incorporates a bias correction for the reflective solar bands, which not only addresses known calibration biases, but also allows alternative calibrations to be applied if so desired. The recalibrated data have been proven to be of high quality, with much improved stability (better than 0.3%) and accuracy (by up to 2%). The recalibrated radiance data are now available from 2012 to 2020 for users and will eventually be archived on the NOAA CLASS database. Full article
Show Figures

Graphical abstract

17 pages, 4417 KiB  
Article
The Moon as a Climate-Quality Radiometric Calibration Reference
by Thomas C. Stone, Hugh Kieffer, Constantine Lukashin and Kevin Turpie
Remote Sens. 2020, 12(11), 1837; https://doi.org/10.3390/rs12111837 - 5 Jun 2020
Cited by 33 | Viewed by 4634
Abstract
On-orbit calibration requirements for a space-based climate observing system include long-term sensor response stability and reliable inter-calibration of multiple sensors, both contemporaneous and in succession. The difficulties with achieving these for reflected solar wavelength instruments are well known. The Moon can be considered [...] Read more.
On-orbit calibration requirements for a space-based climate observing system include long-term sensor response stability and reliable inter-calibration of multiple sensors, both contemporaneous and in succession. The difficulties with achieving these for reflected solar wavelength instruments are well known. The Moon can be considered a diffuse reflector of sunlight, and its exceptional photometric stability has enabled development of a lunar radiometric reference, manifest as a model that is queried for the specific conditions of Moon observations. The lunar irradiance model developed by the Robotic Lunar Observatory (ROLO) project has adequate precision for sensor response temporal trending, but a climate-quality lunar reference will require at least an order of magnitude improvement in absolute accuracy. To redevelop the lunar calibration reference with sub-percent uncertainty and SI traceability requires collecting new, high-accuracy Moon characterization measurements. This paper describes specifications for such measurements, along with a conceptual framework for reconstructing the lunar reference using them. Three currently active NASA-sponsored projects have objectives to acquire measurements that can support a climate-quality lunar reference: air-LUSI, dedicated lunar spectral irradiance measurements from the NASA ER-2 high altitude aircraft; ARCSTONE, dedicated lunar spectral reflectance measurements from a small satellite; and Moon viewing opportunities by CLARREO Pathfinder from the International Space Station. Full article
Show Figures

Figure 1

28 pages, 8443 KiB  
Article
OLCI A/B Tandem Phase Analysis, Part 1: Level 1 Homogenisation and Harmonisation
by Nicolas Lamquin, Sébastien Clerc, Ludovic Bourg and Craig Donlon
Remote Sens. 2020, 12(11), 1804; https://doi.org/10.3390/rs12111804 - 3 Jun 2020
Cited by 33 | Viewed by 4520
Abstract
Copernicus is a European system for monitoring the Earth in support of European policy. It includes the Sentinel-3 satellite mission which provides reliable and up-to-date measurements of the ocean, atmosphere, cryosphere, and land. To fulfil mission requirements, two Sentinel-3 satellites are required on-orbit [...] Read more.
Copernicus is a European system for monitoring the Earth in support of European policy. It includes the Sentinel-3 satellite mission which provides reliable and up-to-date measurements of the ocean, atmosphere, cryosphere, and land. To fulfil mission requirements, two Sentinel-3 satellites are required on-orbit at the same time to meet revisit and coverage requirements in support of Copernicus Services. The inter-unit consistency is critical for the mission as more S3 platforms are planned in the future. A few weeks after its launch in April 2018, the Sentinel-3B satellite was manoeuvred into a tandem configuration with its operational twin Sentinel-3A already in orbit. Both satellites were flown only thirty seconds apart on the same orbit ground track to optimise cross-comparisons. This tandem phase lasted from early June to mid October 2018 and was followed by a short drift phase during which the Sentinel-3B satellite was progressively moved to a specific orbit phasing of 140° separation from the sentinel-3A satellite. In this paper, an output of the European Space Agency (ESA) Sentinel-3 Tandem for Climate study (S3TC), we provide a full methodology for the homogenisation and harmonisation of the two Ocean and Land Colour Instruments (OLCI) based on the tandem phase. Homogenisation adjusts for unavoidable slight spatial and spectral differences between the two sensors and provide a basis for the comparison of the radiometry. Persistent radiometric biases of 1–2% across the OLCI spectrum are found with very high confidence. Harmonisation then consists of adjusting one instrument on the other based on these findings. Validation of the approach shows that such harmonisation then procures an excellent radiometric alignment. Performed on L1 calibrated radiances, the benefits of harmonisation are fully appreciated on Level 2 products as reported in a companion paper. Whereas our methodology aligns one sensor to behave radiometrically as the other, discussions consider the choice of the reference to be used within the operational framework. Further exploitation of the measurements indeed provides evidence of the need to perform flat-fielding on both payloads, prior to any harmonisation. Such flat-fielding notably removes inter-camera differences in the harmonisation coefficients. We conclude on the extreme usefulness of performing a tandem phase for the OLCI mission continuity as well as for any optical mission to which the methodology presented in this paper applies (e.g., Sentinel-2). To maintain the climate record, it is highly recommended that the future Sentinel-3C and Sentinel-3D satellites perform tandem flights when injected into the Sentinel-3 time series. Full article
Show Figures

Graphical abstract

31 pages, 11972 KiB  
Article
Uncertainty Analysis for RadCalNet Instrumented Test Sites Using the Baotou Sites BTCN and BSCN as Examples
by Lingling Ma, Yongguang Zhao, Emma R. Woolliams, Caihong Dai, Ning Wang, Yaokai Liu, Ling Li, Xinhong Wang, Caixia Gao, Chuanrong Li and Lingli Tang
Remote Sens. 2020, 12(11), 1696; https://doi.org/10.3390/rs12111696 - 26 May 2020
Cited by 44 | Viewed by 5291
Abstract
Vicarious calibration and validation techniques are important tools to ensure the long-term stability and inter-sensor consistency of satellite sensors making observations in the solar-reflective spectral domain. Automated test sites, which have continuous in situ monitoring of both ground reflectance and atmospheric conditions, can [...] Read more.
Vicarious calibration and validation techniques are important tools to ensure the long-term stability and inter-sensor consistency of satellite sensors making observations in the solar-reflective spectral domain. Automated test sites, which have continuous in situ monitoring of both ground reflectance and atmospheric conditions, can greatly increase the match-up possibilities for a wide range of space agency and commercial sensors. The Baotou calibration and validation test site in China provides operational high-accuracy and high-stability vicarious calibration and validation for high spatial resolution solar-reflective remote-sensing sensors. Two sites, given the abbreviations BTCN (an artificial site) and BSCN (a natural sandy site), have been selected as reference sites for the Committee on Earth Observation Satellites radiometric calibration network (RadCalNet). RadCalNet requires sites to provide data in a consistent format but does not specify the required operational conditions for a RadCalNet site. The two Baotou sites are the only sites to date that make spectral measurements for their continuous operation. One of the core principles of RadCalNet is that each site should have a metrologically rigorous uncertainty budget which also describes the site’s traceability to the international system of units, the SI. This paper shows a formalized metrological approach to determining and documenting the uncertainty budget and traceability of a RadCalNet site. This approach follows the Guide to the Expression of Uncertainty in Measurement. The paper describes the uncertainty analysis for bottom-of-atmosphere and top-of-atmosphere reflectance in the spectral region from 400 to 1000 nm for the Baotou sites and gives preliminary results for the uncertainty propagating this to top-of-atmosphere reflectance. Full article
Show Figures

Graphical abstract

19 pages, 3399 KiB  
Article
Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views
by Carmine Serio, Guido Masiello, Pietro Mastro and David C. Tobin
Sensors 2020, 20(5), 1492; https://doi.org/10.3390/s20051492 - 9 Mar 2020
Cited by 10 | Viewed by 3681
Abstract
The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently [...] Read more.
The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently performed with blackbody targets of known temperature and is, therefore, an output of the calibration unit of the instrument system. We developed a methodology that can estimate the observational covariance matrix directly from calibrated Earth-scene observations. The technique can complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful back up to check the overall quality of the calibration unit. The methodology was exemplified by application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric Sounder). It was shown that these three instruments are working as expected based on the pre-flight and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions. Full article
(This article belongs to the Special Issue Advanced Hyper-Spectral Imaging, Sounding and Applications from Space)
Show Figures

Graphical abstract

17 pages, 7430 KiB  
Review
Radiometric Model and Inter-Comparison Results of the SGLI-VNR On-Board Calibration
by Tomoyuki Urabe, Xiaoxiong Xiong, Taichiro Hashiguchi, Shigemasa Ando, Yoshihiko Okamura and Kazuhiro Tanaka
Remote Sens. 2020, 12(1), 69; https://doi.org/10.3390/rs12010069 - 23 Dec 2019
Cited by 8 | Viewed by 3507
Abstract
The Second Generation Global Imager (SGLI) on Global Change Observation Mission–Climate (GCOM-C) satellite empowers surface and atmospheric measurements related to the carbon cycle and radiation budget, with two radiometers of Visible and Near Infrared Radiometer (SGLI-VNR) and Infrared Scanning Radiometer (SGLI-IRS) that perform [...] Read more.
The Second Generation Global Imager (SGLI) on Global Change Observation Mission–Climate (GCOM-C) satellite empowers surface and atmospheric measurements related to the carbon cycle and radiation budget, with two radiometers of Visible and Near Infrared Radiometer (SGLI-VNR) and Infrared Scanning Radiometer (SGLI-IRS) that perform a wide-band (380 nm–12 µm) optical observation not only with as wide as a 1150–1400 km field of view (FOV), but also with as high as 0.25–0.5 km resolution. Additionally, polarization and along-track slant view observations are quite characteristic of SGLI. It is important to calibrate radiometers to provide the sensor data records for more than 28 standard products and 23 research products including clouds, aerosols, ocean color, vegetation, snow and ice, and other applications. In this paper, the radiometric model and the first results of on-board calibrations on the SGLI-VNR, which include weekly solar and light-emitting diode (LED) calibration and monthly lunar calibration, will be described. Each calibration data was obtained with corrections, where beta angle correction and avoidance of reflection from multilayer insulation (MLI) were applied for solar calibration; LED temperature correction was performed for LED calibration; and the GIRO (GSICS (Global Space-based Inter-Calibration System) Implementation of the ROLO (RObotic Lunar Observatory) model) model was used for lunar calibration. Results show that the inter-comparison of the relative degradation amount between these three calibrations agreed to within 1% or less. Full article
Show Figures

Graphical abstract

17 pages, 5381 KiB  
Article
Radiometric Top-of-Atmosphere Reflectance Consistency Assessment for Landsat 8/OLI, Sentinel-2/MSI, PROBA-V, and DEIMOS-1 over Libya-4 and RadCalNet Calibration Sites
by Sindy Sterckx and Erwin Wolters
Remote Sens. 2019, 11(19), 2253; https://doi.org/10.3390/rs11192253 - 27 Sep 2019
Cited by 27 | Viewed by 4231
Abstract
There is a clear trend toward the use of higher spatial resolution satellite sensors. Due to the low revisit time of these sensors and frequent cloud coverage, many applications require data from different sensors to be combined in order to have more frequent [...] Read more.
There is a clear trend toward the use of higher spatial resolution satellite sensors. Due to the low revisit time of these sensors and frequent cloud coverage, many applications require data from different sensors to be combined in order to have more frequent observations. This raises concerns regarding data interoperability and consistency. The initial pre-requisite is that there are no radiometric differences in top-of-atmosphere (TOA) observations. This paper aims to quantitatively assess differences in the TOA signal provided by PROBA-V, Sentinel-2A and Sentinel-2B, Landsat-8, and Deimos-1 by using observations over both the Libya-4 desert calibration site and the RadCalNet sites. The results obtained over the Libya-4 site indicate that for all sensors investigated, the inter-sensor deviations are negligible, i.e., within ±2% for comparable spectral bands, with the exception of the Deimos-1 Green band. Clear BRDF (bi-directional reflectance distribution function) effects were observed over the RadCalNet sites, thereby preventing consistent conclusions on inter-sensor deviations from being made. In order to fully explore the potential of the RadCalNet sites, it is recommended that BRDF characterizations be additionally incorporated into the RadCalNet simulations and made publicly available through the distribution portal. Full article
Show Figures

Graphical abstract

32 pages, 3807 KiB  
Article
Ushering in the New Era of Radiometric Intercomparison of Multispectral Sensors with Precision SNO Analysis
by Mike Chu and Jennifer Dodd
Climate 2019, 7(6), 81; https://doi.org/10.3390/cli7060081 - 10 Jun 2019
Cited by 3 | Viewed by 3142
Abstract
A “nadir-only” framework of the radiometric intercomparison of multispectral sensors using simultaneous nadir overpasses (SNOs) is examined at the 1-km regimes and below using four polar-orbiting multispectral sensors: the twin MODerate-resolution Imaging Spectroradiometer (MODIS) in the Terra and Aqua satellites, the Visible Imaging [...] Read more.
A “nadir-only” framework of the radiometric intercomparison of multispectral sensors using simultaneous nadir overpasses (SNOs) is examined at the 1-km regimes and below using four polar-orbiting multispectral sensors: the twin MODerate-resolution Imaging Spectroradiometer (MODIS) in the Terra and Aqua satellites, the Visible Imaging Infrared Radiometer Suite (VIIRS) in the Suomi National Polar-orbiting Partnership (SNPP) satellite, and the Ocean and Land Colour Instrument (OLCI) in the Sentinel-3A satellite. The study is carried out in the context of isolating the on-orbit calibration of the reflective solar bands (RSBs) under the “nadir-only” restriction. With a homogeneity-ranked, sample size constrained procedure designed to minimize scene-based variability and noise, the overall approach successfully stabilizes the radiometric ratio and tightens the precision of each SNO-generated comparison event. Improvements to the multiyear comparison time series are demonstrated for different conditions of area size, sample size, and other refinements. The time series demonstrate the capability at 1% precision or better under general conditions but can attain as low as 0.2% in best cases. Solar zenith angle is examined not to be important in the “nadir-only” framework, but the spectral mismatch between two bands can give rise to significant yearly modulation in the comparison time series. A broad-scaled scene-based variability of ~2%, the “scaling phenomenon”, is shown to have pervasive presence in both northern and the southern polar regions to impact inter-RSB comparison. Finally, this paper highlights the multi-instrument cross-comparisons that are certain to take on a more important role in the coming era of high-performing multispectral instruments. Full article
(This article belongs to the Special Issue Climate Variability and Change in the 21th Century)
Show Figures

Figure 1

32 pages, 6885 KiB  
Article
Recalibration of over 35 Years of Infrared and Water Vapor Channel Radiances of the JMA Geostationary Satellites
by Tasuku Tabata, Viju O. John, Rob A. Roebeling, Tim Hewison and Jörg Schulz
Remote Sens. 2019, 11(10), 1189; https://doi.org/10.3390/rs11101189 - 18 May 2019
Cited by 10 | Viewed by 4413 | Correction
Abstract
Infrared sounding measurements of the Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), and High-resolution Infrared Radiation Sounder/2 (HIRS/2) instruments are used to recalibrate infrared (IR; ~11 µm) channels and water vapor (WV; ~6 µm) channels of the Visible and Infrared Spin [...] Read more.
Infrared sounding measurements of the Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), and High-resolution Infrared Radiation Sounder/2 (HIRS/2) instruments are used to recalibrate infrared (IR; ~11 µm) channels and water vapor (WV; ~6 µm) channels of the Visible and Infrared Spin Scan Radiometer (VISSR), Japanese Advanced Meteorological Imager (JAMI), and IMAGER instruments onboard the historical geostationary satellites of the Japan Meteorological Agency (JMA). The recalibration was performed using a common recalibration method developed by European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), which can be applied to the historical geostationary satellites to produce Fundamental Climate Data Records (FCDR). Pseudo geostationary imager radiances were computed from the infrared sounding measurements and regressed against the radiances from the geostationary satellites. Recalibration factors were computed from these pseudo imager radiance pairs. This paper presents and evaluates the result of recalibration of longtime-series of IR (1978–2016) and WV (1995–2016) measurements from JMA’s historical geostationary satellites. For the IR data of the earlier satellites (Geostationary Metrological Satellite (GMS) to GMS-4) significant seasonal variations in radiometric biases were observed. This suggests that the sensors on GMS to GMS-4 were strongly affected by seasonal variations in solar illumination. The amplitudes of these seasonal variations range from 3 K for the earlier satellites to <0.4 K for the recent satellites (GMS-5, Geostationary Operational Environmental Satellite-9 (GOES-9), Multi-functional Transport Satellite-1R (MTSAT-1R) and MTSAT-2). For the WV data of GOES-9, MTSAT-1R and MTSAT-2, no seasonal variations in radiometric biases were observed. However, for GMS-5, the amplitude of seasonal variation in bias was about 0.5 K. Overall, the magnitude of the biases for GMS-5, MTSAT-1R and MTSAT-2 were smaller than 0.3 K. Finally, our analysis confirms the existence of errors due to atmospheric absorption contamination in the operational Spectral Response Function (SRF) of the WV channel of GMS-5. The method used in this study is based on the principles developed within Global Space-based Inter-calibration System (GSICS). Moreover, presented results contribute to the Inter-calibration of imager observations from time-series of geostationary satellites (IOGEO) project under the umbrella of the World Meteorological Organization (WMO) initiative Sustained and Coordinated Processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM). Full article
(This article belongs to the Special Issue Assessment of Quality and Usability of Climate Data Records)
Show Figures

Graphical abstract

Back to TopTop