Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration
Abstract
:1. Introduction
1.1. Satellite XCAL History
1.2. GPM Mission
1.3. NASA XCAL Working Group
- The calibration requirements for GPM oceanic rainfall retrievals are quite challenging; so, it is important that all the constellation radiometers should have a consistent brightness temperature calibration.
- It is recommended that there be inter-comparisons among the various instrument observations as a basis to transform the brightness temperatures to a common virtual calibration standard that is based on a consensus of the available instruments.
- Further, it is recognized that radiometric calibration between pairs of satellites is difficult because there are differences in the channel frequencies and viewing parameters between these instruments. The aim is to develop algorithms that convert one satellite’s brightness temperatures to be equivalent to the other or to the virtual instrument representing the consensus calibration.
- To develop these transforms, the XCAL working group should conduct algorithm inter-comparisons using common sensors for a common data set. Each team should generate transforms that make each of the other radiometers consistent with the GMI calibration standard. Further, intercomparison results should be evaluated using agreed-upon metrics.
- Finally, the XCAL teams should use a common radiative transfer model so that the procedures used to generate the transforms can be compared on an unambiguous basis. Moreover, the objective is to produce transforms that are independent of the RTM used.
2. Materials and Methods
2.1. Double Difference Inter-Satellite Radiometric Calibration
2.2. XCAL Radiative Transfer Model
2.3. RTM Physics
2.4. TPX XCAL Results
2.4.1. GPM Core Satellite
2.4.2. TROPICS Satellite
2.4.3. Validation of the MonoRTM
2.5. TPX/GMI Match-Up Dataset
3. Results
3.1. Single Difference
3.2. Double Difference
4. Discussion
4.1. Comparison of Single Difference and Double Difference XCAL
4.2. Anomalous Regions-Radiometer Tb Anomaly Determination
5. Conclusions
5.1. Observed Single Difference Method
5.2. Double Difference Method
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, S.K.; Farrar, S.; Gopalan, K.; Santos-Garcia, A.; Jones, W.L.; Bilanow, S. Intercalibration of Microwave Radiometer Brightness Temperatures for the Global Precipitation Measurement Mission. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1465–1477. [Google Scholar] [CrossRef]
- Hollinger, J.P. Special Sensor Microwave/Imager Calibration and Validation; Final Report; Defense Technical Information Center: Fort Belvoir, VA, USA, 1989; Volume 1, 196p. [Google Scholar]
- Hollinger, J.P.; Peirce, J.L.; Poe, G.A. SSM/I Instrument Evaluation. IEEE Trans. Geosci. Remote Sens. 1990, 28, 781–790. [Google Scholar] [CrossRef]
- Hollinger, J.P. (Ed.) DMSP Special Sensor Microwave Imager Calibration/Validation; Final Report; Naval Research Laboratory: Washington, DC, USA, 1991; Volume 2. [Google Scholar]
- Colton, M.C.; Poe, G.A. Intersensor Calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997. IEEE Trans. Geosci. Remote Sens. 1999, 37, 418–439. [Google Scholar] [CrossRef]
- Hong, L.; Jones, W.L.; Wilheit, T.T.; Kasparis, T. Two Approaches for Inter-Satellite Radiometer Calibrations Between TMI and WindSat. J. Meteorol. Soc. Jpn. 2009, 87A, 223–235. [Google Scholar] [CrossRef]
- Chen, R.; Jones, W.L. Creating a Consistent Multi-Decadal Oceanic TRMM-GPM Brightness Temperature Record with Estimated Calibration Uncertainty. Climate 2020, 8, 31. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–702. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Grecu, M.; Olson, W.S.; Munchak, S.J.; Ringerud, S.; Liao, L.; Haddad, Z.; Kelley, B.L.; McLaughlin, S.F. The GPM Combined Algorithm. J. Atmos. Ocean. Technol. 2016, 33, 2225–2245. [Google Scholar] [CrossRef]
- Berg, W.; Bilanow, S.; Chen, R.; Datta, S.; Draper, D.; Ebrahimi, H.; Farrar, S.; Jones, W.L.; Kroodsma, R.; McKague, D.; et al. Intercalibration of the GPM Microwave Radiometer Constellation. J. Atmos. Ocean. Technol. 2016, 33, 2639–2654. [Google Scholar] [CrossRef]
- Ruf, C.S. Detection of Calibration Drifts in Spaceborne Microwave Radiometers Using a Vicarious Cold Reference. IEEE Trans. Geosci. Remote Sens. 2000, 38, 44–52. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. The Emissivity of the Ocean Surface Between 6 and 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Rosenkranz, P. Absorption of Microwaves by Atmospheric Gases; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Liebe, H.J.; Rosenkranz, P.W.; Hufford, G.A. Atmospheric 60-GHz Oxygen Spectrum: New Laboratory Measurements and Line Parameters. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 629–643. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models. Radio Sci. 1998, 33, 919–928. [Google Scholar] [CrossRef]
- Moncet, J.L.; Clough, S.A. Accelerated Monochromatic Radiative Transfer for Scattering Atmospheres: Application of a New Model to Spectral Radiance Observations. J. Geophys. Res. Atmos. 1997, 102, 21853–21866. [Google Scholar] [CrossRef]
- Turner, D.D.; Tobin, D.C.; Clough, S.A.; Brown, P.D.; Ellingson, R.G.; Mlawer, E.J.; Knuteson, R.O.; Revercomb, H.E.; Shippert, T.R.; Smith, W.L.; et al. The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance. J. Atmos. Sci. Nov. 2004, 61, 2657–2675. [Google Scholar] [CrossRef]
- Draper, D.W.; Newell, D.A.; McKague, D.S.; Piepmeier, J.R. Assessing Calibration Stability Using the Global Precipitation Measurement (GPM) Microwave Imager (GMI) Noise Diodes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4239–4247. [Google Scholar] [CrossRef]
- Wentz, F.J.; Meissner, T.; Scott, J.; Hilburn, K.A. 2015, Remote Sensing Systems GPM GMI [Yearly] Environmental Suite on 0.25 Deg grid, Version 8.2. Remote Sensing Systems, Santa Rosa, CA. Available online: www.remss.com/missions/gmi (accessed on 16 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Llana, P.N.; Kashem, F.B.; Jones, W.L. Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration. Remote Sens. 2025, 17, 1519. https://doi.org/10.3390/rs17091519
De La Llana PN, Kashem FB, Jones WL. Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration. Remote Sensing. 2025; 17(9):1519. https://doi.org/10.3390/rs17091519
Chicago/Turabian StyleDe La Llana, Patrick N., Faisal Bin Kashem, and W. Linwood Jones. 2025. "Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration" Remote Sensing 17, no. 9: 1519. https://doi.org/10.3390/rs17091519
APA StyleDe La Llana, P. N., Kashem, F. B., & Jones, W. L. (2025). Use of Radiative Transfer Model for Inter-Satellite Microwave Radiometer Calibration. Remote Sensing, 17(9), 1519. https://doi.org/10.3390/rs17091519