Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = inter-organ interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 - 1 Aug 2025
Viewed by 204
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 - 31 Jul 2025
Viewed by 172
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

24 pages, 331 KiB  
Perspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Viewed by 735
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance [...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation. Full article
39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

18 pages, 1291 KiB  
Article
Effect of Calcium Addition on Extracellular Enzymes and Soil Organic Carbon in Maize Rhizosphere Soils
by Zhaoquan He, Xue Shang and Xiaoze Jin
Agronomy 2025, 15(7), 1680; https://doi.org/10.3390/agronomy15071680 - 11 Jul 2025
Viewed by 360
Abstract
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of [...] Read more.
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of low calcium (T1), high calcium (T2), and a calcium-free control (CK). Measurements included inter-root SOC fractions—soluble organic carbon (DOC), microbial biomass carbon (MBC), and readily oxidizable organic carbon (ROC)—and the activities of the following extracellular enzymes: β-xylanase, β-glucosidase (β-glu), phenol oxidase (Phox), peroxidase (Pero), phosphatase (Phos), acetylaminoglucosidase (NAG), and urease. The main findings indicated the following: (1) Calcium addition significantly increased SOC content (115.04% and 99.22% higher in T1 and T2, respectively, than CK during the entire reproductive period) and enhanced microbial activity (elevated DOC and MBC). However, SOC decreased by 8.44% (T1) and 16.38% (T2) relative to CK in the late reproductive stage (irrigation–ripening), potentially reflecting microbial utilization (supported by the inverse correlation between SOC and MBC/DOC), and maize carbon reallocation during grain filling. (2) Calcium activated β-glu, Phox, Phos, NAG, and urease (p < 0.05), with pronounced increases in Phox (241.13 IU·L−1) and Phos (1126.65 U·L−1), indicating enhanced organic matter mineralization and phosphorus availability. (3) Calcium-driven MBC and ROC accumulation was associated with the positive regulation of Phox (path coefficient > 0.8) and the negative regulation of Phos. SOC was co-regulated by β-glu and Phos (R2 = 0.753). (4) Calcium dynamically optimized the short-term carbon distribution through enzyme activity while promoting long-term sequestration. Our study provides new evidence supporting multi-pathway interactions through which calcium mediates enzyme networks to influence the soil carbon cycle. The findings provide a theoretical foundation for calcium fertilizer management and soil carbon sequestration strategies in agriculture, advancing academic and practical goals for sustainable development and carbon neutrality. Full article
Show Figures

Figure 1

22 pages, 580 KiB  
Article
A Comparative Study of Advanced Transformer Learning Frameworks for Water Potability Analysis Using Physicochemical Parameters
by Enes Algül, Saadin Oyucu, Onur Polat, Hüseyin Çelik, Süleyman Ekşi, Faruk Kurker and Ahmet Aksoz
Appl. Sci. 2025, 15(13), 7262; https://doi.org/10.3390/app15137262 - 27 Jun 2025
Viewed by 2906
Abstract
Keeping drinking water safe is a critical aspect of protecting public health. Traditional laboratory-based methods for evaluating water potability are often time-consuming, costly, and labour-intensive. This paper presents a comparative analysis of four transformer-based deep learning models in the development of automatic classification [...] Read more.
Keeping drinking water safe is a critical aspect of protecting public health. Traditional laboratory-based methods for evaluating water potability are often time-consuming, costly, and labour-intensive. This paper presents a comparative analysis of four transformer-based deep learning models in the development of automatic classification systems for water potability based on physicochemical attributes. The models examined include the enhanced tabular transformer (ETT), feature tokenizer transformer (FTTransformer), self-attention and inter-sample network (SAINT), and tabular autoencoder pretraining enhancement (TAPE). The study utilized an open-access water quality dataset that includes nine key attributes such as pH, hardness, total dissolved solids (TDS), chloramines, sulphate, conductivity, organic carbon, trihalomethanes, and turbidity. The models were evaluated under a unified protocol involving 70–15–15 data partitioning, five-fold cross-validation, fixed random seed, and consistent hyperparameter settings. Among the evaluated models, the enhanced tabular transformer outperforms other models with an accuracy of 95.04% and an F1 score of 0.94. ETT is an advanced model because it can efficiently model high-order feature interactions through multi-head attention and deep hierarchical encoding. Feature importance analysis consistently highlighted chloramines, conductivity, and trihalomethanes as key predictive features across all models. SAINT demonstrated robust generalization through its dual-attention mechanism, while TAPE provided competitive results with reduced computational overhead due to unsupervised pretraining. Conversely, FTTransformer showed limitations, likely due to sensitivity to class imbalance and hyperparameter tuning. The results underscore the potential of transformer-based models, especially ETT, in enabling efficient, accurate, and scalable water quality monitoring. These findings support their integration into real-time environmental health systems and suggest approaches for future research in explainability, domain adaptation, and multimodal fusion. Full article
(This article belongs to the Special Issue Water Treatment: From Membrane Processes to Renewable Energies)
Show Figures

Figure 1

27 pages, 2653 KiB  
Article
Temporal and Machine Learning-Based Principal Component and Clustering Analysis of VOCs and Their Role in Urban Air Pollution and Ozone Formation
by Balendra V. S. Chauhan, Maureen J. Berg, Ajit Sharma, Kirsty L. Smallbone and Kevin P. Wyche
Atmosphere 2025, 16(6), 724; https://doi.org/10.3390/atmos16060724 - 15 Jun 2025
Viewed by 615
Abstract
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside [...] Read more.
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside ozone (O3) and meteorological data, were analysed using correlation matrices, regression, cross-correlation, diurnal/seasonal analysis, wind-sector analysis, PCA (Principal Component Analysis), and clustering. Strong inter-VOC correlations (e.g., benzene–ethylbenzene: r = 0.86, R2 = 0.75; ethene–propene: r = 0.68, R2 = 0.53) highlighted dominant vehicular sources. Diurnal peaks of benzene, toluene, and ethylbenzene aligned with rush hours, while O3 minima occurred in early mornings due to NO titration. VOCs peaked in winter under low mixing heights, whereas O3 was highest in summer. Wind-sector analysis revealed dominant VOC emissions from SSW (south-southwest)–WSW (west-southwest) directions; ethyne peaked from the E (east)/ENE (east-northeast). O3 concentrations were highest under SE (southeast)–SSE (south-southeast) flows. PCA showed 39.8% of variance linked to traffic-related VOCs (PC1) and 14.8% to biogenic/temperature-driven sources (PC2). K-means clustering (k = 3) identified three regimes: high VOCs/low O3 in stagnant, cool air; mixed conditions; and low VOCs/high O3 in warmer, aged air masses. Findings highlight complex VOC–O3 interactions and stress the need for source-specific mitigation strategies in urban air quality management. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

36 pages, 1531 KiB  
Review
Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation
by Ao Liu, Mengting Huang, Yuwen Xi, Xiaoling Deng and Keshu Xu
Biomedicines 2025, 13(6), 1422; https://doi.org/10.3390/biomedicines13061422 - 10 Jun 2025
Viewed by 1093
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular interpreters of systemic crosstalk in MAFLD. We delineate how TF networks integrate metabolic, immune, and gut microbial signals to manage hepatic steatosis, inflammation, and fibrosis. For instance, metabolic TFs such as peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor (FXR) are responsible for regulating lipid oxidation and bile acid homeostasis, while immune-related TFs like signal transducer and activator of transcription 3 (STAT3) modulate inflammatory cascades involving immune cells. Emerging evidence highlights microbiota-responsive TFs, like hypoxia-inducible factor 2α (HIF2α) and aryl hydrocarbon receptor (AHR), linking microbial metabolite signaling to hepatic metabolic reprogramming. Critically, TF-centric therapeutic strategies, including selective TF-agonists, small molecules targeted to degrade TF, and microbiota modulation, hold considerable promise for treating MAFLD. By synthesizing these insights, this review underscores the necessity to dissect TF-mediated interorgan communication and proposes a roadmap for translating mechanism discoveries into precision therapies. Future research should prioritize the use of multi-omics approaches to map TF interactions and validate their clinical relevance to MAFLD. Full article
(This article belongs to the Special Issue New Insights Into Non-Alcoholic Fatty Liver Diseases)
Show Figures

Figure 1

35 pages, 1399 KiB  
Review
Nutritional Deficiencies and Management in Tuberculosis: Pharmacotherapeutic and Clinical Implications
by Anca Ionela Fâcă, Denisa Ioana Udeanu, Andreea Letiția Arsene, Beatrice Mahler, Doina Drăgănescu and Miruna-Maria Apetroaei
Nutrients 2025, 17(11), 1878; https://doi.org/10.3390/nu17111878 - 30 May 2025
Viewed by 1536
Abstract
Tuberculosis is an infectious condition caused by Mycobacterium tuberculosis, primarily targeting the pulmonary system, with the potential to disseminate to various other organs via the haematogenous pathway, ranking among the top ten causes of global mortality. Tuberculosis remains a serious public health [...] Read more.
Tuberculosis is an infectious condition caused by Mycobacterium tuberculosis, primarily targeting the pulmonary system, with the potential to disseminate to various other organs via the haematogenous pathway, ranking among the top ten causes of global mortality. Tuberculosis remains a serious public health problem worldwide. This narrative review aims to emphasise the clinical importance of the inter-relationships between nutrition, pharmacotherapy, and the most common drug–nutrient interactions in the context of tuberculosis and multi-drug-resistant tuberculosis management. Nowadays, pharmacologic approaches utilise polytherapeutic regimens that, although showing increased efficacy, prominently affect the nutritional status of patients and modify multiple metabolic pathways, thus influencing both the effectiveness of therapy and the patient outcomes. There is much evidence that antituberculosis drugs are associated with deficiencies in essential vitamins and various micronutrients, leading to serious adverse consequences. Moreover, poor nutrition exacerbates TB outcomes, and TB further exacerbates nutritional status, a vicious cycle that is particularly prevalent in low-resource environments. Nutritional support is necessary, and clinicians ought to evaluate it on a patient-by-patient basis, as empirical evidence has shown that it can improve immune recovery, decrease tuberculosis-associated morbidity, and increase adherence to therapy. However, drug–food interactions are increasingly prevalent, and patients with tuberculosis require personalised dietary and pharmacological regimens. In this context, antituberculosis treatment requires a holistic approach, based on the collaboration of the prescribing physician, pharmacist, and nutritionist, to assess the patient’s needs from a nutritional and pharmacological perspective, with the ultimate goal of decreasing mortality and improving the prognosis of patients through personalised therapies. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

16 pages, 2449 KiB  
Article
Carbon Input and Crop Residue Placement Determine the Carbon Sequestration Efficiency of Soil Management Techniques
by Mauro Sarno, Ettore Barone and Luciano Gristina
Agronomy 2025, 15(6), 1293; https://doi.org/10.3390/agronomy15061293 - 25 May 2025
Viewed by 539
Abstract
This paper aimed to study soil organic carbon (SOC) sequestration under no-tillage (NT) and full inversion tillage (FIT) soil management systems as influenced by crop residue placement. A five-year piece of research was carried out in western Sicily, Italy, on an Opuntia ficus-indica [...] Read more.
This paper aimed to study soil organic carbon (SOC) sequestration under no-tillage (NT) and full inversion tillage (FIT) soil management systems as influenced by crop residue placement. A five-year piece of research was carried out in western Sicily, Italy, on an Opuntia ficus-indica orchard (C-CAM soil) located in a semi-arid Mediterranean climate. Barley was sown annually in the orchard inter-rows at 180 kg ha−1. FIT and NT were compared in interaction with two barley residue managements: (i) removed (rem) and (ii) retained in the field (ret), laid in a split-plot design, with soil management as the main plot and residue management as the sub-plot. The main plot was arranged on two inter-rows, 108 m long and 5 m wide each, replicated three times. SOC (%) and carbon natural abundance (δ13C‰) were determined by using an EA-IRMS. The highest biomass turnover was achieved by FITret (0.85%) vs. NTret (0.46%). The distribution of SOC showed higher values for NT in the top 10 cm soil layer (6.3 g kg−1 in NTret vs. 5.0 g kg−1 in FITret) but lower carbon content in deeper layers. At a depth of 30 cm, FITret maintained 4.4 g kg−1 of SOC, while NTret reached only 3.7 g kg−1, confirming that tillage facilitates the transport and stabilization of carbon in deeper layers. Our results also suggested that when crop residues are left on the soil surface instead of being incorporated into the soil, this may limit the effectiveness of carbon sequestration. Under the experimental tested conditions, which include low susceptibility to erosion processes, the FIT system proved to be an optimal strategy to enhance SOC sequestration and improve the sustainability of agricultural systems in a semi-arid Mediterranean environment. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 3077 KiB  
Review
Inter-Tissue Communication Mechanisms via Exosomes and Their Implications in Metabolic Diseases: Opportunities for Pharmacological Regulation
by Brenda Chimal-Vega, Jesus Emanuel Maldonado-Arvizu, Alex Daniel Hernández Avalos, José Fernando Díaz-Villanueva, Luis Pablo Avila-Barrientos and Victor G. García González
Future Pharmacol. 2025, 5(1), 11; https://doi.org/10.3390/futurepharmacol5010011 - 6 Mar 2025
Cited by 3 | Viewed by 1824
Abstract
Exosomes can transport regulatory biomolecules and are mediators of cellular signaling among metabolic tissues through endocrine mechanisms. Understanding the pathways and processes underlying exosome-mediated inter-tissue communication is critical for elucidating the molecular pathophysiology of metabolic diseases such as obesity, type 2 diabetes mellitus [...] Read more.
Exosomes can transport regulatory biomolecules and are mediators of cellular signaling among metabolic tissues through endocrine mechanisms. Understanding the pathways and processes underlying exosome-mediated inter-tissue communication is critical for elucidating the molecular pathophysiology of metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and cardiovascular disorders. Consequently, these mechanisms represent novel and promising targets for pharmacological regulation. We examined the current knowledge regarding exosome physiology, the mechanisms of interaction with target tissues, and its role in metabolic tissue communication. We also analyzed the secretory profiles of exosomes in metabolic tissues, emphasizing their regulatory roles in adipose tissue, liver, pancreas, skeletal muscle, and the small intestine, while discussing their association with metabolic diseases. In this sense, we propose the exosomal pentad as a novel framework highlighting exosome-mediated inter-organ communication, where exosomes may regulate a metabolic axis involving these tissues. This model aligns with the ominous octet in type 2 diabetes but emphasizes exosomes as key regulators of metabolic homeostasis and potential therapeutic targets. The role of exosomes for the treatment of metabolic diseases emerges as a critical area of pharmacologic exploration. For instance, therapeutic strategies that prevent target tissue binding or expression of cargo molecules such as miRNAs could be designed, using antagomiRs or nanoparticles. Additionally, integrins like αvβ5 on the exosomal membrane can be blocked with monoclonal antibodies or engineered for targeted delivery of therapeutic molecules. Exosomes, critical mediators of inter-organ communication and metabolic regulation, hold potential to design precise molecular-level therapies while minimizing systemic side effects. Full article
Show Figures

Graphical abstract

22 pages, 1534 KiB  
Review
Shape Matters: The Utility and Analysis of Altered Yeast Mitochondrial Morphology in Health, Disease, and Biotechnology
by Therese Kichuk and José L. Avalos
Int. J. Mol. Sci. 2025, 26(5), 2152; https://doi.org/10.3390/ijms26052152 - 27 Feb 2025
Cited by 1 | Viewed by 1497
Abstract
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors [...] Read more.
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors both inside and outside the cell inform the balance of mitochondrial fission and fusion and the recycling of mitochondrial components known as mitophagy. The study of mitochondrial morphology and its implications in human disease and microbial engineering have gained significant attention over the past decade. The yeast Saccharomyces cerevisiae offers a valuable model system for studying mitochondria due to its ability to survive without respiring, its genetic tractability, and the high degree of mitochondrial similarity across eukaryotic species. Here, we review how the interplay between mitochondrial fission, fusion, biogenesis, and mitophagy regulates the dynamic nature of mitochondrial networks in both yeast and mammalian systems with an emphasis on yeast as a model organism. Additionally, we examine the crucial role of inter-organelle interactions, particularly between mitochondria and the endoplasmic reticulum, in regulating mitochondrial dynamics. The dysregulation of any of these processes gives rise to abnormal mitochondrial morphologies, which serve as the distinguishing features of numerous diseases, including Parkinson’s disease, Alzheimer’s disease, and cancer. Notably, yeast models have contributed to revealing the underlying mechanisms driving these human disease states. In addition to furthering our understanding of pathologic processes, aberrant yeast mitochondrial morphologies are of increasing interest to the seemingly distant field of metabolic engineering, following the discovery that compartmentalization of certain biosynthetic pathways within mitochondria can significantly improve chemical production. In this review, we examine the utility of yeast as a model organism to study mitochondrial morphology in both healthy and pathologic states, explore the nascent field of mitochondrial morphology engineering, and discuss the methods available for the quantification and classification of these key mitochondrial morphologies. Full article
(This article belongs to the Special Issue Yeast as a Model System to Study Human Diseases)
Show Figures

Figure 1

15 pages, 10623 KiB  
Article
Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks
by Haonan Bai, Xinwen Gai, Yi Zou and Jingang Wang
C 2025, 11(1), 17; https://doi.org/10.3390/c11010017 - 25 Feb 2025
Viewed by 714
Abstract
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth [...] Read more.
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth studies of their electron transport behavior. The successful fabrication of long-range ordered two-dimensional fullerene arrays has opened up new opportunities for exploring the structure–activity relationship in spatial charge transport. In this study, theoretical calculations were performed to analyze the effects of different periodic arrangements in two-dimensional fullerene arrays on electronic excitation and optical behavior. The results show that HLOPC60 exhibits a strong absorption peak at 1050 nm, while TLOPC60 displays prominent absorption features at 700 nm and 1300 nm, indicating that their electronic excitation characteristics are significantly influenced by the periodic structure. Additionally, analyses of orbital distribution and the spatial electron density reveal a close relationship between carrier transport and the structural topology. Quantitative studies further indicate that the interlayer interaction energies of the HLOPC60 and TLOPC60 arrangements are −105.65 kJ/mol and −135.25 kJ/mol, respectively. TLOPC60 also exhibits stronger dispersion interactions, leading to enhanced interlayer binding. These findings provide new insights into the structural regulation of fullerene materials and offer theoretical guidance for the design and synthesis of novel organic optoelectronic materials. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Graphical abstract

30 pages, 4871 KiB  
Article
Structure-Based Modeling of the Gut Bacteria–Host Interactome Through Statistical Analysis of Domain–Domain Associations Using Machine Learning
by Despoina P. Kiouri, Georgios C. Batsis, Thomas Mavromoustakos, Alessandro Giuliani and Christos T. Chasapis
BioTech 2025, 14(1), 13; https://doi.org/10.3390/biotech14010013 - 25 Feb 2025
Viewed by 1033
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome’s influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and [...] Read more.
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome’s influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein–protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial–human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study’s findings contribute to the understanding of the intricate gut microbiome–host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

16 pages, 3651 KiB  
Article
Distribution Patterns and Influencing Factors Controlling Soil Carbon in the Heihe River Source Basin, Northeast Qinghai–Tibet Plateau
by Meiliang Zhao, Guangchao Cao, Qinglin Zhao, Yonggui Ma, Fuling Zhang, Hongda Li, Qixin He and Xunxun Qiu
Land 2025, 14(2), 409; https://doi.org/10.3390/land14020409 - 16 Feb 2025
Cited by 2 | Viewed by 582
Abstract
Soil organic carbon (SOC) and soil inorganic carbon (SIC) are key components of soil carbon pools in arid ecosystems, playing a crucial role in regional carbon cycling and climate change mitigation. However, the interactions between these two forms of carbon in arid alpine [...] Read more.
Soil organic carbon (SOC) and soil inorganic carbon (SIC) are key components of soil carbon pools in arid ecosystems, playing a crucial role in regional carbon cycling and climate change mitigation. However, the interactions between these two forms of carbon in arid alpine ecosystems remain underexplored. This study was conducted in the Heihe River Basin (HRB) in the northeastern Qinghai–Tibet Plateau, focusing on the distribution and dynamics of SOC and SIC in deep soil layers. Using data from 329 samples collected from 49 soil profiles extending to the bedrock, combined with path analysis, we explored the inter-relationships between SOC and SIC and quantified the influence of environmental factors. The results showed that (1) SOC exhibited a unimodal distribution with elevation, peaking at 3300–3600 m, while SIC continuously decreased with elevation, with reduction rates ranging from −0.39% to −31.18%; (2) SOC and SIC were significantly positively correlated (r = 0.55, p < 0.01), with SOC decreasing with depth and SIC showing an inflection point at 50 cm depth; (3) SOC was primarily driven by nutrient factors, such as total nitrogen (TN), with a path coefficient of 0.988, while SIC was influenced by abiotic factors, including potential evapotranspiration (PET), with a coefficient of −1.987; (4) SOC density accounted for 81.62% of the total soil carbon pool, playing a dominant role in carbon storage, whereas SIC density exhibited dynamic changes, particularly at depths of 110–150 cm. These findings advance our understanding of deep soil carbon dynamics in arid alpine ecosystems and provide critical data for improving carbon management strategies in similar regions. Full article
Show Figures

Figure 1

Back to TopTop