Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,547)

Search Parameters:
Keywords = intensive system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1886 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 (registering DOI) - 1 Aug 2025
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
21 pages, 4517 KiB  
Article
A Method Integrating the Matching Field Algorithm for the Three-Dimensional Positioning and Search of Underwater Wrecked Targets
by Huapeng Cao, Tingting Yang and Ka-Fai Cedric Yiu
Sensors 2025, 25(15), 4762; https://doi.org/10.3390/s25154762 (registering DOI) - 1 Aug 2025
Abstract
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching [...] Read more.
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching field quadratic joint Algorithm was proposed. Secondly, an MVDR beamforming method based on pre-Kalman filtering is designed to refine the real-time DOA estimation of the desired signal and the interference source, and the sound source azimuth is determined for prepositioning. The antenna array weights are dynamically adjusted according to the filtered DOA information. Finally, the Adaptive Matching Field Algorithm (AMFP) used the DOA information to calculate the range and depth of the lost target, and obtained the range and depth estimates. Thus, the 3D position of the lost underwater target is jointly estimated. This method alleviates the angle ambiguity problem and does not require a computationally intensive 2D spectral search. The simulation results show that the proposed method can better realise underwater three-dimensional positioning under certain signal-to-noise ratio conditions. When there is no error in the sensor coordinates, the positioning error is smaller than that of the baseline method as the SNR increases. When the SNR is 0 dB, with the increase in the sensor coordinate error, the target location error increases but is smaller than the error amplitude of the benchmark Algorithm. The experimental results verify the robustness of the proposed framework in the hierarchical ocean environment, which provides a practical basis for the deployment of rapid response underwater positioning systems in maritime search and rescue scenarios. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
12 pages, 1167 KiB  
Article
Experimental Studies on Partial Energy Harvesting by Novel Solar Cages, Microworlds, to Explore Sustainability
by Mohammad A. Khan, Brian Maricle, Zachary D. Franzel, Gabe Gransden and Matthew Vannette
Solar 2025, 5(3), 36; https://doi.org/10.3390/solar5030036 (registering DOI) - 1 Aug 2025
Abstract
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, [...] Read more.
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, can impact the ecosystem. This experimental study explores the energy available inside and outside of novel miniature energy harvesting cages by measuring light intensity and power generated. Varying light intensity outside the cage has been utilized to study the remaining energy inside the cage of a flexible design, where the heights of the harvesting panels are parameters. Cages are built from custom photovoltaic panels arranged in a staircase manner to provide access to growing plants. The balance between power generation and biological development is investigated. Two different structures are presented to explore the variation of illumination intensity inside the cages. The experimental results show a substantial reduction in energy inside the cages. The experimental results showed up to 24% reduction in illumination inside the cages in winter. The reduction is even larger in summer, up to 57%. The results from the models provide a framework to study the possible impact on a biological system residing inside the cages, paving the way for practical farming with sustainable energy harvesting. Full article
Show Figures

Figure 1

19 pages, 1259 KiB  
Article
Influence of Monosodium Glutamate on Astroglia of Rat Habenula
by Aleksandra Krawczyk, Karol Rycerz, Jadwiga Jaworska-Adamu and Marcin B. Arciszewski
Biomolecules 2025, 15(8), 1111; https://doi.org/10.3390/biom15081111 (registering DOI) - 1 Aug 2025
Abstract
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous [...] Read more.
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous system structures. The aim of the study was to assess the influence of monosodium glutamate (MSG) administrated subcutaneously to rats in doses of 2 g/kg b.w. (I) and 4 g/kg b.w. (II), on astroglia in the MHb and LHb. Based on immunohistochemical reactions, the morphology, number of astrocytes immunoreactive for glial fibrillary acidic protein (GFAP-IR) and S100β protein (S100β-IR), and their surface area, perimeter, number and length of processes, and cytoplasmic-nuclear immunostaining intensity for the studied proteins were assessed. In the MHb of animals receiving MSG, especially at a high dose, hypertrophy and an increase in the number of GFAP-IR and S100β-IR cells were demonstrated. In the LHb, only hypertrophy of processes in S100β-positive glia was observed. The immunostaining intensity increased in GFAP-IR glia and decreased in S100β-IR cells only in animals from group I. The results revealed that astroglia respond to MSG depending on its dose and the Hb part. This different behavior of glia may indicate their different sensitivity and resistance to damaging factors. Full article
28 pages, 2465 KiB  
Article
Latency-Aware and Energy-Efficient Task Offloading in IoT and Cloud Systems with DQN Learning
by Amina Benaboura, Rachid Bechar, Walid Kadri, Tu Dac Ho, Zhenni Pan and Shaaban Sahmoud
Electronics 2025, 14(15), 3090; https://doi.org/10.3390/electronics14153090 (registering DOI) - 1 Aug 2025
Abstract
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy [...] Read more.
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy consumption. Task offloading has emerged as a viable solution; however, many existing strategies fail to adequately optimize both latency and energy usage. This paper proposes a novel task-offloading approach based on deep Q-network (DQN) learning, designed to intelligently and dynamically balance these critical metrics. The proposed framework continuously refines real-time task offloading decisions by leveraging the adaptive learning capabilities of DQN, thereby substantially reducing latency and energy consumption. To further enhance system performance, the framework incorporates optical networks into the IoT–fog–cloud architecture, capitalizing on their high-bandwidth and low-latency characteristics. This integration facilitates more efficient distribution and processing of tasks, particularly in data-intensive IoT applications. Additionally, we present a comparative analysis between the proposed DQN algorithm and the optimal strategy. Through extensive simulations, we demonstrate the superior effectiveness of the proposed DQN framework across various IoT and O-IoT scenarios compared to the BAT and DJA approaches, achieving improvements in energy consumption and latency of 35%, 50%, 30%, and 40%, respectively. These findings underscore the significance of selecting an appropriate offloading strategy tailored to the specific requirements of IoT and O-IoT applications, particularly with regard to environmental stability and performance demands. Full article
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

33 pages, 949 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
18 pages, 1491 KiB  
Review
Monocyte Distribution Width for Sepsis Diagnosis in the Emergency Department and Intensive Care Unit: A Systematic Review and Meta-Analysis
by Jessica Elisabetta Esposito, Milena D’Amato, Giustino Parruti and Ennio Polilli
Int. J. Mol. Sci. 2025, 26(15), 7444; https://doi.org/10.3390/ijms26157444 (registering DOI) - 1 Aug 2025
Abstract
We planned a systemic review and meta-analysis to evaluate the diagnostic accuracy of Monocyte Distribution Width (MDW) in aiding the diagnosis of sepsis in the Emergency Department (ED) and Intensive Care Unit (ICU). A systematic literature search was performed in PubMed, Scopus, and [...] Read more.
We planned a systemic review and meta-analysis to evaluate the diagnostic accuracy of Monocyte Distribution Width (MDW) in aiding the diagnosis of sepsis in the Emergency Department (ED) and Intensive Care Unit (ICU). A systematic literature search was performed in PubMed, Scopus, and OVID to retrieve studies published up to 29 January 2024. We examined results using mean difference and conducted a diagnostic test accuracy (DTA) meta-analysis using a bivariate random effects model. Pooled results showed that MDW was significantly higher in sepsis patients admitted to the ED (MD = 5.59, 95%CI: 4.14–7.05) or to the ICU (MD = 8.30, 95%CI: 2.98–13.62). Nine studies conducted in the ED were included in the DTA review. The overall sensitivity was 0.80 (95%CI: 0.75–0.85), the specificity was 0.76 (95%CI: 0.66–0.83), and the false-positive rate (FPR) was 0.24 (95%CI: 0.17–0.34). Three studies were conducted in the ICU, but only two were included in the DTA meta-analysis. Of the 662 patients admitted to the ICU, 175 developed sepsis, showing higher MDW values than non-septic patients. However, significant heterogeneity was noted among the studies. MDW is a helpful biomarker for sepsis in adult patients admitted to the ED and ICU. In the ED, MDW could aid clinicians in ruling out sepsis. Full article
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 (registering DOI) - 1 Aug 2025
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 (registering DOI) - 1 Aug 2025
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

21 pages, 2557 KiB  
Article
Coupling Patterns Between Urbanization and the Water Environment: A Case Study of Neijiang City, Sichuan Province, China
by Xiaofan Min, Jirong Liu, Yanlin Liu, Jie Zhou and Jiangtao Zhao
Sustainability 2025, 17(15), 6993; https://doi.org/10.3390/su17156993 (registering DOI) - 1 Aug 2025
Abstract
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation [...] Read more.
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation model was developed to examine the development trajectories in Neijiang City from 2012 to 2022. Methodologically, a comprehensive evaluation approach was applied to assess urbanization and water resource trends over this period, followed by the development of a Coupling Coordination Degree Model (CCDM) to quantify their synergistic relationship. The results showed that the coupling between the comprehensive urbanization index and the water environment system evolved over time, as reflected in the following key findings: (1) Neijiang underwent three distinct stages from 2012 to 2022 in terms of coupling and coordination between urbanization and the water environment: Basic Coordination (2012–2015), Good Coordination (2016–2020), and Excellent Coordination (2020–2022). (2) Urbanization exerted varying impacts on subsystems of the water environment, with the pressure-response subsystems exhibiting marked volatility from 2012 to 2022. The impact intensity followed the order spatial urbanization > economic urbanization > social urbanization > population urbanization. These findings offer valuable theoretical and practical insights for aligning urban sustainability goals with effective water environment protection measures. This study provides essential guidance for policymakers in Neijiang and similar regions, enabling the development of tailored strategies for sustainable urbanization and enhanced water management. Full article
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 3114 KiB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 (registering DOI) - 1 Aug 2025
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop