Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,910)

Search Parameters:
Keywords = intelligent solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 9064 KB  
Article
PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing
by Aymen Ramadan Mohamed Alahwel Besha, Opeoluwa Seun Ojekemi, Tolga Oz and Oluwatayomi Adegboye
Processes 2025, 13(9), 2707; https://doi.org/10.3390/pr13092707 (registering DOI) - 25 Aug 2025
Abstract
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the [...] Read more.
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the Polar Lights Salp Cooperative Optimizer (PLSCO), to enhance predictive modeling in manufacturing processes. PLSCO combines the strengths of the Polar Light Optimizer (PLO), Competitive Swarm Optimization (CSO), and Salp Swarm Algorithm (SSA), utilizing a cooperative strategy that adaptively balances exploration and exploitation. In this mechanism, particles engage in a competitive division process, where winners intensify search via PLO and losers diversify using SSA, effectively avoiding local optima and premature convergence. The performance of PLSCO was validated on CEC2015 and CEC2020 benchmark functions, demonstrating superior convergence behavior and global search capabilities. When applied to a real-world predictive maintenance dataset, the ELM-PLSCO model achieved a high prediction accuracy of 95.4%, outperforming baseline and other optimization-assisted models. Feature importance analysis revealed that torque and tool wear are dominant indicators of machine failure, offering interpretable insights for condition monitoring. The proposed approach presents a robust, interpretable, and computationally efficient solution for predictive maintenance in intelligent manufacturing environments. Full article
Show Figures

Figure 1

23 pages, 933 KB  
Review
Leveraging Multimodal Foundation Models in Biliary Tract Cancer Research
by Yashbir Singh, Jesper B. Andersen, Quincy A. Hathaway, Diana V. Vera-Garcia, Varekan Keishing, Sudhakar K. Venkatesh, Sara Salehi, Davide Povero, Michael B. Wallace, Gregory J. Gores, Yujia Wei, Natally Horvat, Bradley J. Erickson and Emilio Quaia
Tomography 2025, 11(9), 96; https://doi.org/10.3390/tomography11090096 (registering DOI) - 25 Aug 2025
Abstract
This review explores how multimodal foundation models (MFMs) are transforming biliary tract cancer (BTC) research. BTCs are aggressive malignancies with poor prognosis, presenting unique challenges due to difficult diagnostic methods, molecular complexity, and rarity. Importantly, intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), and distal [...] Read more.
This review explores how multimodal foundation models (MFMs) are transforming biliary tract cancer (BTC) research. BTCs are aggressive malignancies with poor prognosis, presenting unique challenges due to difficult diagnostic methods, molecular complexity, and rarity. Importantly, intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), and distal bile duct cholangiocarcinoma (dCCA) represent fundamentally distinct clinical entities, with iCCA presenting as mass-forming lesions amenable to biopsy and targeted therapies, while pCCA manifests as infiltrative bile duct lesions with challenging diagnosis and primarily palliative management approaches. MFMs offer potential to advance research by integrating radiological images, histopathology, multi-omics profiles, and clinical data into unified computational frameworks, with applications tailored to these distinct BTC subtypes. Key applications include enhanced biomarker discovery that identifies previously unrecognizable cross-modal patterns, potential for improving currently limited diagnostic accuracy—though validation in BTC-specific cohorts remains essential—accelerated drug repurposing, and advanced patient stratification for personalized treatment. Despite promising results, challenges such as data scarcity, high computational demands, and clinical workflow integration remain to be addressed. Future research should focus on standardized data protocols, architectural innovations, and prospective validation studies. The integration of artificial intelligence (AI)-based methodologies offers new solutions for these historically challenging malignancies. However, current evidence for BTC-specific applications remains largely theoretical, with most studies limited to proof-of-concept designs or related cancer types. Comprehensive clinical validation studies and prospective trials demonstrating patient benefit are essential prerequisites for clinical implementation. The timeline for evidence-based clinical adoption likely extends 7–10 years, contingent on successful completion of validation studies addressing current evidence gaps. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

17 pages, 1028 KB  
Article
Graph Neural Network-Based Beamforming Optimization for Multi-BS RIS-Aided Communication Systems
by Seung-Hwan Seo, Seong-Gyun Choi, Ji-Hee Yu, Yoon-Ju Choi, Ki-Chang Tong, Min-Hyeok Choi, Yeong-Gyun Jung, Hyoung-Kyu Song and Young-Hwan You
Mathematics 2025, 13(17), 2732; https://doi.org/10.3390/math13172732 (registering DOI) - 25 Aug 2025
Abstract
The optimization of beamforming in multi-base station (multi-BS) reconfigurable intelligent surface (RIS)-aided systems is a challenging task due to its high computational complexity. This paper first demonstrates that an optimized multi-BS system exhibits superior communication performance compared to a centralized large-scale single-BS system. [...] Read more.
The optimization of beamforming in multi-base station (multi-BS) reconfigurable intelligent surface (RIS)-aided systems is a challenging task due to its high computational complexity. This paper first demonstrates that an optimized multi-BS system exhibits superior communication performance compared to a centralized large-scale single-BS system. To efficiently solve the complex beamforming problem in the multi-BS environment, this paper proposes a novel optimization solver based on a graph neural network (GNN) that models the physical structure of the system. Experimental results show that the proposed GNN solver finds solutions of higher quality, achieving a 42% performance increase with 45% less total computational complexity compared to a conventional iterative optimization method. Furthermore, when compared to other complex AI models such as transformer and Bi-LSTM, the proposed GNN achieves similar state-of-the-art performance while having less than 1% of the parameters and a fraction of the computational cost. These findings demonstrate that the GNN is a powerful, efficient, and practical solution for beamforming optimization in multi-BS RIS-aided systems, satisfying the demands for performance, computational efficiency, and model compactness. Full article
10 pages, 769 KB  
Proceeding Paper
Smart Irrigation Based on Soil Moisture Sensors with Photovoltaic Energy for Efficient Agricultural Water Management: A Systematic Literature Review
by Abdul Rasyid Sidik, Akbar Tawakal, Gumilar Surya Sumirat and Panji Narputro
Eng. Proc. 2025, 107(1), 17; https://doi.org/10.3390/engproc2025107017 (registering DOI) - 25 Aug 2025
Abstract
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, [...] Read more.
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, while soil moisture sensors provide real-time data that is used to automatically manage irrigation according to plant needs. This technology not only increases the efficiency of water and energy use but also supports environmental conservation by reducing dependence on fossil fuels. This research was conducted using a Systematic Literature Review (SLR) approach guided by the PRISMA framework to analyze trends, benefits, and challenges in implementing this technology. The analysis results show that this system offers various advantages, including energy efficiency, reduced carbon emissions, and ease of management through the integration of Internet of Things (IoT) technology. Several challenges remain, such as high initial investment costs, limited network access, and obstacles. Technical matters related to installation and maintenance. Various solutions have been proposed, including providing subsidies for small farmers, implementing radiofrequency modules, and using modular designs to simplify implementation. This study contributes to the development of a conceptual framework that can be adapted to various geographic and socio-economic conditions. Potential further developments include the integration of artificial intelligence and additional sensors to increase efficiency and support the sustainability of the agricultural sector globally. Full article
Show Figures

Figure 1

24 pages, 1747 KB  
Article
HortiVQA-PP: Multitask Framework for Pest Segmentation and Visual Question Answering in Horticulture
by Zhongxu Li, Chenxi Du, Shengrong Li, Yaqi Jiang, Linwan Zhang, Changhao Ju, Fansen Yue and Min Dong
Horticulturae 2025, 11(9), 1009; https://doi.org/10.3390/horticulturae11091009 (registering DOI) - 25 Aug 2025
Abstract
A multimodal interactive system, HortiVQA-PP, is proposed for horticultural scenarios, with the aim of achieving precise identification of pests and their natural predators, modeling ecological co-occurrence relationships, and providing intelligent question-answering services tailored to agricultural users. The system integrates three core modules: semantic [...] Read more.
A multimodal interactive system, HortiVQA-PP, is proposed for horticultural scenarios, with the aim of achieving precise identification of pests and their natural predators, modeling ecological co-occurrence relationships, and providing intelligent question-answering services tailored to agricultural users. The system integrates three core modules: semantic segmentation, pest–predator co-occurrence detection, and knowledge-enhanced visual question answering. A multimodal dataset comprising 30 pest categories and 10 predator categories has been constructed, encompassing annotated images and corresponding question–answer pairs. In the semantic segmentation task, HortiVQA-PP outperformed existing models across all five evaluation metrics, achieving a precision of 89.6%, recall of 85.2%, F1-score of 87.3%, mAP@50 of 82.4%, and IoU of 75.1%, representing an average improvement of approximately 4.1% over the Segment Anything model. For the pest–predator co-occurrence matching task, the model attained a multi-label accuracy of 83.5%, a reduced Hamming Loss of 0.063, and a macro-F1 score of 79.4%, significantly surpassing methods such as ASL and ML-GCN, thereby demonstrating robust structural modeling capability. In the visual question answering task, the incorporation of a horticulture-specific knowledge graph enhanced the model’s reasoning ability. The system achieved 48.7% in BLEU-4, 54.8% in ROUGE-L, 43.3% in METEOR, 36.9% in exact match (EM), and a GPT expert score of 4.5, outperforming mainstream models including BLIP-2, Flamingo, and MiniGPT-4 across all metrics. Experimental results indicate that HortiVQA-PP exhibits strong recognition and interaction capabilities in complex pest scenarios, offering a high-precision, interpretable, and widely applicable artificial intelligence solution for digital horticulture. Full article
Show Figures

Figure 1

25 pages, 3472 KB  
Article
YOLOv10n-CF-Lite: A Method for Individual Face Recognition of Hu Sheep Based on Automated Annotation and Transfer Learning
by Yameng Qiao, Wenzheng Liu, Fanzhen Wang, Hang Zhang, Jinghan Cai, Huaigang He, Tonghai Liu and Xue Yang
Animals 2025, 15(17), 2499; https://doi.org/10.3390/ani15172499 (registering DOI) - 25 Aug 2025
Abstract
Individual recognition of Hu sheep is a core requirement for precision livestock management, significantly improving breeding efficiency and fine management. However, traditional machine vision methods face challenges such as high annotation time costs, the inability to quickly annotate new sheep, and the need [...] Read more.
Individual recognition of Hu sheep is a core requirement for precision livestock management, significantly improving breeding efficiency and fine management. However, traditional machine vision methods face challenges such as high annotation time costs, the inability to quickly annotate new sheep, and the need for manual intervention and retraining. To address these issues, this study proposes a solution that integrates automatic annotation and transfer learning, developing a sheep face recognition algorithm that adapts to complex farming environments and can quickly learn the characteristics of new Hu sheep individuals. First, through multi-view video collection and data augmentation, a dataset consisting of 82 Hu sheep and a total of 6055 images was created. Additionally, a sheep face detection and automatic annotation algorithm was designed, reducing the annotation time per image to 0.014 min compared to traditional manual annotation. Next, the YOLOv10n-CF-Lite model is proposed, which improved the recognition precision of Hu sheep faces to 92.3%, and the mAP@0.5 to 96.2%. To enhance the model’s adaptability and generalization ability for new sheep, transfer learning was applied to transfer the YOLOv10n-CF-Lite model trained on the source domain (82 Hu sheep) to the target domain (10 new Hu sheep). The recognition precision in the target domain increased from 91.2% to 94.9%, and the mAP@0.5 improved from 96.3% to 97%. Additionally, the model’s convergence speed was improved, reducing the number of training epochs required for fitting from 43 to 14. In summary, the Hu sheep face recognition algorithm proposed in this study improves annotation efficiency, recognition precision, and convergence speed through automatic annotation and transfer learning. It can quickly adapt to the characteristics of new sheep individuals, providing an efficient and reliable technical solution for the intelligent management of livestock. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

16 pages, 1492 KB  
Proceeding Paper
Hardware Challenges in AI Sensors and Innovative Approaches to Overcome Them
by Filip Tsvetanov
Eng. Proc. 2025, 104(1), 19; https://doi.org/10.3390/engproc2025104019 (registering DOI) - 25 Aug 2025
Abstract
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, [...] Read more.
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, and security, which limit their effectiveness. This article analyzes factors influencing the production and deployment of AI sensors. The key limitations are energy efficiency, computing power, scalability, and integration of AI sensors in real-time conditions. Among the main problems are the high requirements for data processing, the limitations of traditional microprocessors, and the balance between performance and energy consumption. To meet these challenges, the article presents several practical and innovative approaches, including the development of specialized microprocessors and optimized architectures for “edge computing,” which promise radical reductions in latency and power consumption. Through a synthesis of current research and practical examples, the article emphasizes the need for intermediate hardware–software solutions and standardization for mass deployment of AI sensors. Full article
Show Figures

Figure 1

36 pages, 590 KB  
Review
Machine Translation in the Era of Large Language Models:A Survey of Historical and Emerging Problems
by Duygu Ataman, Alexandra Birch, Nizar Habash, Marcello Federico, Philipp Koehn and Kyunghyun Cho
Information 2025, 16(9), 723; https://doi.org/10.3390/info16090723 - 25 Aug 2025
Abstract
Historically regarded as one of the most challenging tasks presented to achieve complete artificial intelligence (AI), machine translation (MT) research has seen continuous devotion over the past decade, resulting in cutting-edge architectures for the modeling of sequential information. While the majority of statistical [...] Read more.
Historically regarded as one of the most challenging tasks presented to achieve complete artificial intelligence (AI), machine translation (MT) research has seen continuous devotion over the past decade, resulting in cutting-edge architectures for the modeling of sequential information. While the majority of statistical models traditionally relied on the idea of learning from parallel translation examples, recent research exploring self-supervised and multi-task learning methods extended the capabilities of MT models, eventually allowing the creation of general-purpose large language models (LLMs). In addition to versatility in providing translations useful across languages and domains, LLMs can in principle perform any natural language processing (NLP) task given sufficient amount of task-specific examples. While LLMs now reach a point where they can both replace and augment traditional MT models, the extent of their advantages and the ways in which they leverage translation capabilities across multilingual NLP tasks remains a wide area for exploration. In this literature survey, we present an introduction to the current position of MT research with a historical look at different modeling approaches to MT, how these might be advantageous for the solution of particular problems, and which problems are solved or remain open in regard to recent developments. We also discuss the connection of MT models leading to the development of prominent LLM architectures, how they continue to support LLM performance across different tasks by providing a means for cross-lingual knowledge transfer, and the redefinition of the task with the possibilities that LLM technology brings. Full article
(This article belongs to the Special Issue Human and Machine Translation: Recent Trends and Foundations)
Show Figures

Figure 1

19 pages, 2450 KB  
Review
Nature-Based Solutions for Urban Drainage: A Systematic Review of Sizing and Monitoring Methods
by André Ricardo Cansian, Diego A. Guzmán, Altair Rosa and Juliana de Toledo Machado
Water 2025, 17(17), 2524; https://doi.org/10.3390/w17172524 - 25 Aug 2025
Abstract
Urban areas face escalating hydrological risks due to climate change, urban sprawl, and aging stormwater infrastructures. In this context, Nature-Based Solutions (NbSs), especially Sustainable Urban Drainage Systems (SUDSs), have emerged as viable strategies to enhance water resilience and sustainability. However, the literature still [...] Read more.
Urban areas face escalating hydrological risks due to climate change, urban sprawl, and aging stormwater infrastructures. In this context, Nature-Based Solutions (NbSs), especially Sustainable Urban Drainage Systems (SUDSs), have emerged as viable strategies to enhance water resilience and sustainability. However, the literature still lacks standardized and scalable methodologies for their design and performance monitoring. This study conducts a systematic review following the PRISMA protocol, combined with bibliometric and co-occurrence analyses, to identify prevailing approaches in the sizing and monitoring of NbS-based SUDSs. Based on the peer-reviewed literature indexed in Scopus and Web of Science from 2020 to 2024, the findings reveal an increasing integration of hydrological modeling with artificial intelligence, remote sensing, and IoT-based real-time monitoring. Despite this progress, challenges remain in methodology validation, data availability, and system adaptability. The review underscores the need for hybrid, context-sensitive frameworks that integrate empirical and simulated data to support decision-making in urban drainage planning and management. Full article
Show Figures

Figure 1

34 pages, 2219 KB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 - 24 Aug 2025
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

36 pages, 3670 KB  
Review
Electronic Artificial Intelligence and Digital Twins in Industry 5.0: A Systematic Review and Perspectives
by Alessandro Massaro
Machines 2025, 13(9), 755; https://doi.org/10.3390/machines13090755 - 23 Aug 2025
Viewed by 31
Abstract
This review analyzes the Electronic Digital Twin (EDT) tools characterizing the industrial transformation phase from Industry 4.0 to Industry 5.0. The goal is to provide innovative research EDT solutions to integrate in manufacturing production processes. Specifically, this research is focused on the possibility [...] Read more.
This review analyzes the Electronic Digital Twin (EDT) tools characterizing the industrial transformation phase from Industry 4.0 to Industry 5.0. The goal is to provide innovative research EDT solutions to integrate in manufacturing production processes. Specifically, this research is focused on the possibility of combining the advanced technologies and electronics and mechatronics of industrial machines with Artificial Intelligence (AI) algorithms. Furthermore, this review provides important elements about possible future implementations of AI-EDTs and some circuital examples to support the understanding of the concept of circuit simulation in EDT models. EDTs are useful to comprehend the modeling concepts functional to the AI application using the output of the circuit simulations. The output of the circuit is used to train the AI model, thus strengthening the capability to classify and predict the real behavior of production machines with a good accuracy. This review discusses perspectives, limits, and advantages of EDTs and is useful to define new research patterns integrating structured EDTs in advanced industrial environments. The focus of this paper is the definition of possible perspectives of EDT implementations, including AI, in data-driven processes in specific strategic areas of industrial research by classifying the scientific topics in six main pillars. This paper is also suitable for the researcher to develop innovative topics for projects scaled into different work packages based on EDT facilities. Full article
(This article belongs to the Special Issue Design and Manufacturing: An Industry 4.0 Perspective)
Show Figures

Figure 1

41 pages, 1855 KB  
Systematic Review
Stage-Wise IoT Solutions for Alzheimer’s Disease: A Systematic Review of Detection, Monitoring, and Assistive Technologies
by Sanket Salvi, Lalit Garg and Varadraj Gurupur
Sensors 2025, 25(17), 5252; https://doi.org/10.3390/s25175252 - 23 Aug 2025
Viewed by 61
Abstract
The Internet of Things (IoT) has emerged as a transformative technology in managing Alzheimer’s Disease (AD), offering novel solutions for early diagnosis, continuous patient monitoring, and assistive care. This review presents a comprehensive analysis of IoT-enabled systems tailored to AD care, focusing on [...] Read more.
The Internet of Things (IoT) has emerged as a transformative technology in managing Alzheimer’s Disease (AD), offering novel solutions for early diagnosis, continuous patient monitoring, and assistive care. This review presents a comprehensive analysis of IoT-enabled systems tailored to AD care, focusing on wearable biosensors, cognitive monitoring tools, smart home automation, and Artificial Intelligence (AI)-driven analytics. A systematic literature survey was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify, screen, and synthesize 236 relevant studies primarily published between 2020 and 2025 across IEEE Xplore, PubMed, Scopus and Web of Science. The inclusion criteria targeted peer-reviewed articles that proposed or evaluated IoT-based solutions for AD detection, progression monitoring, or patient assistance. Key findings highlight the effectiveness of the IoT in detecting behavioral and cognitive changes, enhancing safety through real-time alerts, and improving patient autonomy. The review also explores integration challenges such as data privacy, system interoperability, and clinical adoption. The study reveals critical gaps in real-world deployment, clinical validation, and ethical integration of IoT-based systems for Alzheimer’s care. This study aims to serve as a definitive reference for researchers, clinicians, and developers working at the intersection of the IoT and neurodegenerative healthcare. Full article
Show Figures

Figure 1

18 pages, 15231 KB  
Article
Stereo Vision-Based Underground Muck Pile Detection for Autonomous LHD Bucket Loading
by Emilia Hennen, Adam Pekarski, Violetta Storoschewich and Elisabeth Clausen
Sensors 2025, 25(17), 5241; https://doi.org/10.3390/s25175241 - 23 Aug 2025
Viewed by 131
Abstract
To increase the safety and efficiency of underground mining processes, it is important to advance automation. An important part of that is to achieve autonomous material loading using load–haul–dump (LHD) machines. To be able to autonomously load material from a muck pile, it [...] Read more.
To increase the safety and efficiency of underground mining processes, it is important to advance automation. An important part of that is to achieve autonomous material loading using load–haul–dump (LHD) machines. To be able to autonomously load material from a muck pile, it is crucial to first detect and characterize it in terms of spatial configuration and geometry. Currently, the technologies available on the market that do not require an operator at the stope are only applicable in specific mine layouts or use 2D camera images of the surroundings that can be observed from a control room for teleoperation. However, due to missing depth information, estimating distances is difficult. This work presents a novel approach to muck pile detection developed as part of the EU-funded Next Generation Carbon Neutral Pilots for Smart Intelligent Mining Systems (NEXGEN SIMS) project. It uses a stereo camera mounted on an LHD to gather three-dimensional data of the surroundings. By applying a topological algorithm, a muck pile can be located and its overall shape determined. This system can detect and segment muck piles while driving towards them at full speed. The detected position and shape of the muck pile can then be used to determine an optimal attack point for the machine. This sensor solution was then integrated into a complete system for autonomous loading with an LHD. In two different underground mines, it was tested and demonstrated that the machines were able to reliably load material without human intervention. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

45 pages, 6665 KB  
Review
AI-Driven Digital Twins in Industrialized Offsite Construction: A Systematic Review
by Mohammadreza Najafzadeh and Armin Yeganeh
Buildings 2025, 15(17), 2997; https://doi.org/10.3390/buildings15172997 - 23 Aug 2025
Viewed by 178
Abstract
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in [...] Read more.
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in addressing these challenges within IOC. Employing a hybrid re-view methodology—combining scientometric mapping and qualitative content analysis—52 relevant studies were analyzed to identify technological trends, implementation barriers, and emerging research themes. The findings reveal that AI-driven DTs enable dynamic scheduling, predictive maintenance, real-time quality control, and sustainable lifecycle management across all IOC phases. Seven thematic application clusters are identified, including logistics optimization, safety management, and data interoperability, supported by a layered architectural framework and key enabling technologies. This study contributes to the literature by providing an early synthesis that integrates technical, organizational, and strategic dimensions of AI-driven DT implementation in IOC context. It distinguishes DT applications in IOC from those in onsite construction and expands AI’s role beyond conventional data analytics toward agentive, autonomous decision-making. The proposed future research agenda offers strategic directions such as the development of DT maturity models, lifecycle-spanning integration strategies, scalable AI agent systems, and cost-effective DT solutions for small and medium enterprises. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 763 KB  
Article
A Blockchain-Enabled Decentralized Autonomous Access Control Scheme for Data Sharing
by Kunyang Li, Heng Pan, Yaoyao Zhang, Bowei Zhang, Ying Xing, Yuyang Zhan, Gaoxu Zhao and Xueming Si
Mathematics 2025, 13(17), 2712; https://doi.org/10.3390/math13172712 - 22 Aug 2025
Viewed by 150
Abstract
With the rapid development of artificial intelligence, multi-party collaboration based on data sharing has become an inevitable trend. However, in practical applications, shared data often originate from multiple providers. Therefore, achieving secure and efficient data sharing while protecting the rights and interests of [...] Read more.
With the rapid development of artificial intelligence, multi-party collaboration based on data sharing has become an inevitable trend. However, in practical applications, shared data often originate from multiple providers. Therefore, achieving secure and efficient data sharing while protecting the rights and interests of each data provider is a key challenge currently faced. Existing access control methods have the following shortcomings in multi-owner data scenarios. Most methods rely on centralized management, which makes it difficult to solve conflicts caused by inconsistent permission policies among multiple owners. There are problems such as poor consistency of permission management, low security, and lack of protection for the autonomous will of each owner. To this end, our paper proposes a fine-grained decentralized autonomous access control scheme based on blockchain, which includes three core stages: formulation, deployment, and execution of access control policies. In the access control policy formulation stage, the scheme constructs a multi-owner data policy matrix and introduces a benefit function based on a Stackelberg game to balance conflicting attributes to form a unified access policy. Secondly, in the access control policy deployment stage based on smart contracts, all data owners vote on the access control policy by calculating their own benefits to achieve a consensus on joint decision-making on the policy. Finally, in the policy execution and joint authorization phase, a decentralized authorization method based on threshold passwords is used to distribute access keys to each owner, ensuring that data is only granted after receiving authorization from a sufficient number of owners, thereby ensuring the ultimate control of each owner and the fine-grained access control. Finally, we verified the feasibility of the solution through case analysis and experiments. Full article
(This article belongs to the Special Issue Advances in Blockchain and Intelligent Computing)
Show Figures

Figure 1

Back to TopTop