PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing
Abstract
1. Introduction
2. Methodology
2.1. Polar Light Optimizer (PLO)
2.2. Proposed PLSCO
2.2.1. Salp Swarm Algorithm (SSA)
2.2.2. Competitive Swarm Optimizer (CSO)
Algorithm 1: PLSCO Pseudo Code |
Initialize parameters: t = 0, Max_t (maximum number of iterations) Initialize the high-energy particle population Evaluate the fitness value of each particle in Set the current best solution: While t < Max_t: Identify winners and losers in the population using Equations (24) and (25) For each particle: If the particle is a winner: Update its position using the PLO update rule (Equation (17)) Else: Update its position using the Salp Swarm Optimization rule (Equation (19)) Calculate the fitness: If : Replace the current position with the updated position: = Else: Retain the current position of the particle Update based on the best fitness value in the population t = t + 1 Return |
2.3. Computational Complexity of PLSCO
3. Machine Learning Hyper-Parameter Optimization with PLSCO
3.1. Extreme Learning Machine (ELM)
3.2. ELM-PLSCO Model
4. Experiment and Discussion
4.1. Analysis of PLSCO Search Capability
4.1.1. Analysis of CEC 2015
4.1.2. Analysis of CEC2020
4.1.3. Convergence and Box Plot Analysis
4.1.4. Diversity Analysis
4.1.5. Exploration vs. Exploitation
4.1.6. Non-Parametric Analysis
4.2. Predictive Maintenance Prediction Using ELM-PLSCO Model
4.2.1. Dataset
- Type: This categorical variable classifies products into three categories based on performance levels: high (H, representing 20% of all products), medium (M, representing 30% of all products), and low (L, representing 50% of all products).
- Air Temperature: Measured in Kelvin (K), this feature is normalized to have a standard deviation of 2K centered around 300 K, reflecting the air temperature conditions during operations.
- Process Temperature: Also measured in Kelvin (K), this feature is normalized with a standard deviation of 1K and represents the temperature within the machine’s operational processes.
- Rotational Speed: Expressed in revolutions per minute (rpm), this value is calculated based on a machine power output of 2860 W, indicating the tool’s operational speed.
- Torque: Measured in Newton meters (N m), torque values are distributed around 40 N m with a standard deviation of 10 N m, with no negative values recorded.
- Tool Wear Time: This feature, measured in minutes, captures the cumulative operational time of the tool, representing its wear level over time.
- Failure type: Machine failures are categorized into five distinct modes:
- i.
- Tool Wear Failure: Tool wear or replacement occurs randomly between 200 and 240 minutes of operation.
- ii.
- Heat Dissipation Failure: Failure occurs when the difference between air temperature and process temperature falls below 8.6 K, and the rotational speed drops below 1380 rpm.
- iii.
- Power Failure: This failure arises when the product of torque and rotational speed results in power exceeding 9000 W or dropping below 3500 W.
- iv.
- Overstrain Failure: Overstrain occurs when the product of torque and tool wear exceeds specified thresholds for each product category: 11,000 min N m for L products, 12,000 min N m for M products, and 13,000 min N m for H products.
- v.
- Random Failure: Failures that occur randomly with a probability of 0.1%, irrespective of process parameters.
4.2.2. Evaluation Metrics
4.2.3. Prediction Results and Discussion
4.2.4. Feature Importance Score Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, P.; Santos, J.; Rocha, E. Challenges in predictive maintenance—A review. CIRP J. Manuf. Sci. Technol. 2023, 40, 53–67. [Google Scholar] [CrossRef]
- Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors 2021, 21, 1044. [Google Scholar] [CrossRef]
- Abidi, M.H.; Mohammed, M.K.; Alkhalefah, H. Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability 2022, 14, 3387. [Google Scholar] [CrossRef]
- A Survey of Predictive Maintenance: Systems, Purposes and Approaches. Available online: https://www.researchgate.net/publication/337971929_A_Survey_of_Predictive_Maintenance_Systems_Purposes_and_Approaches (accessed on 21 January 2025).
- Hamasha, M.; Bani-Irshid, A.H.; Almashaqbeh, S.; Shwaheen, G.; Qadri, L.; Shbool, M.; Muathen, D.; Ababneh, M.; Harfoush, S.; Albedoor, Q.; et al. Strategical selection of maintenance type under different conditions. Sci. Rep. 2023, 13, 15560. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [Google Scholar] [CrossRef]
- Vithi, N.L.; Chibaya, C. Advancements in Predictive Maintenance: A Bibliometric Review of Diagnostic Models Using Machine Learning Techniques. Analytics 2024, 3, 493–507. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef]
- Grossberg, S. Recurrent Neural Networks. Scholarpedia 2013, 8, 1888. [Google Scholar] [CrossRef]
- Costa, V.G.; Pedreira, C.E. Recent advances in decision trees: An updated survey. Artif. Intell. Rev. 2023, 56, 4765–4800. [Google Scholar] [CrossRef]
- Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533–1543. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yang, F.-J. An Implementation of Naive Bayes Classifier. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 301–306. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 513–529. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Wang, S.-H.; Zhang, Y.-D. A review on extreme learning machine. Multimed. Tools Appl. 2022, 81, 41611–41660. [Google Scholar] [CrossRef]
- Liu, G. The application of fault diagnosis techniques and monitoring methods in building electrical systems—Based on ELM algorithm. J. Meas. Eng. 2023, 11, 388–404. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, X.; Deng, R. Predictive maintenance strategy of running fault based on ELM algorithm for power transformer. Int. J. Internet Manuf. Serv. 2018, 5, 297–309. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Bai, Y.; Cao, Y. Aeroengines Remaining Useful Life Prediction Based on Improved C-Loss ELM. IEEE Access 2020, 8, 49752–49764. [Google Scholar] [CrossRef]
- Wu, W.; Lu, S. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM. IEEE Trans. Instrum. Meas. 2023, 72, 2510814. [Google Scholar] [CrossRef]
- Dhini, A.; Surjandari, I.; Kusumoputro, B.; Kusiak, A. Extreme learning machine—Radial basis function (ELM-RBF) networks for diagnosing faults in a steam turbine. J. Ind. Prod. Eng. 2022, 39, 572–580. [Google Scholar] [CrossRef]
- Fu, H.; Lu, J.; Li, J.; Zou, W.; Tang, X.; Ning, X.; Sun, Y. Winter Wheat Yield Prediction Using Satellite Remote Sensing Data and Deep Learning Models. Agronomy 2025, 15, 205. [Google Scholar] [CrossRef]
- Van Thieu, N.; Nguyen, N.H.; Sherif, M.; El-Shafie, A.; Ahmed, A.N. Integrated metaheuristic algorithms with extreme learning machine models for river streamflow prediction. Sci. Rep. 2024, 14, 13597. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Zhang, S.; Sun, J.; Wang, L.; Wang, K. Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine. Energy 2022, 250, 123773. [Google Scholar] [CrossRef]
- Boriratrit, S.; Srithapon, C.; Fuangfoo, P.; Chatthaworn, R. Metaheuristic Extreme Learning Machine for Improving Performance of Electric Energy Demand Forecasting. Computers 2022, 11, 66. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency. J. Clean. Prod. 2022, 338, 130414. [Google Scholar] [CrossRef]
- Tan, K. Extreme Learning Machine based on Improved Multi-Objective Particle Swarm Optimization. In Proceedings of the 2024 5th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 12–14 April 2024; pp. 333–337. [Google Scholar]
- Hua, L.; Zhang, C.; Peng, T.; Ji, C.; Shahzad Nazir, M. Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction. Energy Convers. Manag. 2022, 252, 115102. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2022, 38, 3321–3340. [Google Scholar] [CrossRef]
- Gao, Z.; Yu, J.; Zhao, A.; Hu, Q.; Yang, S. A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine. Energy 2022, 238, 122073. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Ghahremani, B.; Azarhomayun, F.; Ahmadi, M.; Trung, N.T.; Shariati, A. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 2022, 38, 757–779. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar lights optimizer: Algorithm and applications in image segmentation and feature selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, Y.; Yeh, W.-C. Self-learning salp swarm algorithm for global optimization and its application in multi-layer perceptron model training. Sci. Rep. 2024, 14, 27401. [Google Scholar] [CrossRef]
- Pan, J.-S.; Liang, Q.; Chu, S.-C.; Tseng, K.-K.; Watada, J. A multi-strategy surrogate-assisted competitive swarm optimizer for expensive optimization problems. Appl. Soft Comput. 2023, 147, 110733. [Google Scholar] [CrossRef]
- Qaraad, M.; Aljadania, A.; Elhosseini, M. Large-Scale Competitive Learning-Based Salp Swarm for Global Optimization and Solving Constrained Mechanical and Engineering Design Problems. Mathematics 2023, 11, 1362. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Yu, X. An optimized extreme learning machine composite framework for point, probabilistic, and quantile regression forecasting of carbon price. Process Saf. Environ. Prot. 2025, 195, 106772. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Chen, Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Technical Report Volume 29. Technical Report201411A. Available online: https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2015/CEC2015.htm (accessed on 18 August 2025).
- Yue, C.T.; Price, K.V.; Suganthan, P.N.; Liang, J.J.; Ali, M.Z.; Qu, B.Y.; Awad, N.H.; Biswas, P.P. Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Technical Report, 2019. Available online: https://www3.ntu.edu.sg/home/EPNSugan/index_files/CEC2020/CEC2020-2.htm (accessed on 18 August 2025).
- Batis, M.; Chen, Y.; Wang, M.; Liu, L.; Heidari, A.A.; Chen, H. ACGRIME: Adaptive chaotic Gaussian RIME optimizer for global optimization and feature selection. Clust. Comput. 2024, 28, 61. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Talha, A.; Bouayad, A.; Malki, M.O.C. An improved pathfinder algorithm using opposition-based learning for tasks scheduling in cloud environment. J. Comput. Sci. 2022, 64, 101873. [Google Scholar] [CrossRef]
- Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot optimizer: Algorithm and applications to medical problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef] [PubMed]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Hu, G.; Zhong, J.; Zhao, C.; Wei, G.; Chang, C.-T. LCAHA: A hybrid artificial hummingbird algorithm with multi-strategy for engineering applications. Comput. Methods Appl. Mech. Eng. 2023, 415, 116238. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert. Syst. Appl. 2019, 119, 210–230. [Google Scholar] [CrossRef]
- Hu, G.; Huang, F.; Chen, K.; Wei, G. MNEARO: A meta swarm intelligence optimization algorithm for engineering applications. Comput. Methods Appl. Mech. Eng. 2024, 419, 116664. [Google Scholar] [CrossRef]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2019. [Google Scholar]
- Matzka, S. Explainable Artificial Intelligence for Predictive Maintenance Applications. In Proceedings of the 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), Irvine, CA, USA, 21–23 September 2020; pp. 69–74. [Google Scholar]
- Efeoğlu, E.; Tuna, G. Machine Learning for Predictive Maintenance: Support Vector Machines and Different Kernel Functions. J. Mach. Manuf. Reliab. 2022, 51, 447–456. [Google Scholar] [CrossRef]
- Christensen, F.; Kılıç, D.K.; Nielsen, I.E.; El-Galaly, T.C.; Glenthøj, A.; Helby, J.; Frederiksen, H.; Möller, S.; Fuglkjær, A.D. Classification of α-thalassemia data using machine learning models. Comput. Methods Programs Biomed. 2025, 260, 108581. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Coronel, J.A.; Mora, M.; Vilches, K. A Review of multilayer extreme learning machine neural networks. Artif. Intell. Rev. 2023, 56, 13691–13742. [Google Scholar] [CrossRef]
Method | Core Search Principle | Dynamic/Adaptive Control | Diversity/Perturbation Mechanism | ELM Tuning Target |
---|---|---|---|---|
PSS-ELM [29] (Pareto-like Sequential Sampling ELM) | Pareto-like Sequential Sampling using INFO and RUN strategies to select/update candidate solutions efficiently. | Sequential optimizer cooperation for progressive refinement, balancing exploration and exploitation over iterations. | Multi-strategy sampling patterns to maintain population diversity and stabilize convergence. | Input weights (W) and biases (B) |
HKF-ELM [30] (Heuristic Kalman Filter ELM) | Kalman Filter–based state estimation applied to ELM parameter search. | Noise-driven adaptive updates of state variables and gain coefficients. | Dimensionality reduction in search space for faster, real-time parameter adaptation. | Input weights (W) and biases (B) |
JS-ELM [31] (Jellyfish Search ELM) | Models’ jellyfish foraging and swarm drift in ocean currents. | Time-control mechanism switching between passive drifting and active prey-chasing phases. | Lévy-flight–like random walks to maintain diversity and reduce overfitting risk. | Input weights (W) and biases (B) |
WOA-ELM [32] (Whale Optimization Algorithm ELM) | Bubble-net hunting strategy with spiral updating and encircling maneuvers. | Adaptive adjustment of encircling radius and spiral pitch based on prey position. | Hybrid spiral search and stochastic position updates to avoid premature convergence. | Input weights (W) and biases (B) |
IMOPSO-ELM [33] (Improved Multi-Objective Particle Swarm Optimization ELM) | Multi-swarm cooperative PSO optimizing ELM input weights and hidden biases via RMSE, L2 norm, and L2,1 norm for network compactness and generalization | Adaptive multi-swarm and global-best selection strategies in IMOPSO; external elite archive guides particle updates to balance multiple objectives and prevent overfitting | Maintains diversity via multi-objective dominance sorting and crowding distance. | Input weights (W) and biases (B) |
VMD–PLS–IASO–ELM [34] (Variational Mode Decomposition, Partial Least Squares, Improved Atom Search Optimization ELM) | Combines VMD for signal decomposition, PLS extracts key features, and ASO with Simulated Annealing for parameter search. | Annealing-based control of atomic interaction forces. | Frequency-based decomposition from VMD plus stochastic perturbations in IASO to avoid local minima and maintain diversity in the search space. | Input weights (W) and biases (B) |
ELM-IFFA [35] (ELM with Improved Firefly Algorithm) | Firefly Algorithm (FFA) enhanced with Lévy-flight-based random steps | Dynamic light absorption coefficient and Lévy-flight step length adjust attraction range and exploration intensity | Lévy-flight-style randomization allows fireflies to jump out of local optima, maintaining diversity; random direction generation and population-based interactions prevent premature convergence | Input weights (W) and biases (B) |
RF-IPWOA-ELM [36] (Random Forest, Improved Parallel Whale Optimization Algorithm ELM) | Feature selection via RF, followed by parallelized WOA search. | Two populations with different convergence factor strategies (nonlinear decrease tailored to random vs. chaotic initialization) adapt global/local search balance | Random, chaotic sequence initialization ensures diverse starting points; immigration operator exchanges individuals by fitness tiers to maintain diversity and avoid local optima | Input weights (W) and biases (B) |
ELM-GWO [37] (ELM with Grey Wolf Optimizer) | Grey Wolf Optimizer’s leadership hierarchy (α, β, δ roles) guides search in the weight–bias space | Adaptive role switching and encircling prey behavior; positions updated iteratively based on best wolves | Random leader selection and position updates help escape local optima | Input weights (W) and biases (B) |
ELM-PLSCO (Extreme Learning Machine, Polar Lights Salp Cooperative Optimizer) (Current Work) | Cooperative hybrid of Polar Light Optimizer (PLO), Competitive Swarm Optimizer (CSO), and Salp Swarm Algorithm (SSA) | Adaptive division of population into winners and losers through CSO; winners exploit via PLO, losers explore via SSA; global best dynamically updated | Leader–follower dynamics in SSA, competitive pairing in CSO, and stochastic updates maintain diversity and prevent premature convergence | Input weights (W) and biases (B) |
Algorithm | Parameter |
---|---|
ACGRIME | |
AO | µ = 0.00565, |
AVOA | L1 = 0.8, L2 = 0.2, w = 2.5, P1 = 0.6, P2 = 0.4, P3 = 0.6 |
OBLPFA | |
PFA | |
PO | = rand [0,1]/5, = rand [0,1] * |
POA | |
SCA | |
PLO | |
PLSCO | , |
ACGRIME | AO | AVOA | OBLPFA | PFA | PO | POA | SCA | PLO | PLSCO | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | AVG | 1.916 × 105 | 4.862 × 1010 | 2.650 × 108 | 2.687 × 109 | 2.627 × 109 | 4.689 × 1010 | 1.517 × 1010 | 1.354 × 1010 | 1.181 × 107 | 7.105 × 104 |
STD | 1.217 × 105 | 5.360 × 109 | 2.422 × 108 | 5.893 × 108 | 5.530 × 108 | 7.015 × 109 | 7.118 × 109 | 2.622 × 109 | 3.604 × 106 | 1.129 × 104 | |
F2 | AVG | 1.622 × 104 | 5.941 × 104 | 5.167 × 104 | 7.891 × 104 | 1.030 × 105 | 6.312 × 104 | 2.631 × 104 | 4.313 × 104 | 7.850 × 104 | 3.531 × 104 |
STD | 4.304 × 103 | 2.703 × 103 | 3.492 × 103 | 2.941 × 104 | 2.942 × 104 | 6.476 × 103 | 7.014 × 103 | 6.064 × 103 | 1.155 × 104 | 1.050 × 104 | |
F3 | AVG | 3.166 × 102 | 3.427 × 102 | 3.353 × 102 | 3.311 × 102 | 3.305 × 102 | 3.398 × 102 | 3.280 × 102 | 3.367 × 102 | 3.210 × 102 | 3.157 × 102 |
STD | 2.848 | 2.165 | 3.554 | 3.166 | 2.770 | 1.351 | 2.828 | 2.848 | 2.239 | 3.242 | |
F4 | AVG | 4.359 × 103 | 7.293 × 103 | 5.298 × 103 | 8.210 × 103 | 8.173 × 103 | 7.936 × 103 | 4.057 × 103 | 7.888 × 103 | 4.672 × 103 | 4.030 × 103 |
STD | 6.897 × 102 | 6.898 × 102 | 7.942 × 102 | 3.651 × 102 | 3.705 × 102 | 3.048 × 102 | 6.221 × 102 | 2.939 × 102 | 3.865 × 102 | 7.001 × 102 | |
F5 | AVG | 5.009 × 102 | 5.026 × 102 | 5.015 × 102 | 5.034 × 102 | 5.034 × 102 | 5.029 × 102 | 5.006 × 102 | 5.029 × 102 | 5.009 × 102 | 5.006 × 102 |
STD | 3.245 × 10−1 | 4.607 × 10−1 | 5.769 × 10−1 | 4.159 × 10−1 | 3.287 × 10−1 | 3.902 × 10−1 | 2.188 × 10−1 | 3.195 × 10−1 | 1.994 × 10−1 | 3.812 × 10−1 | |
F6 | AVG | 6.004 × 102 | 6.047 × 102 | 6.005 × 102 | 6.011 × 102 | 6.010 × 102 | 6.046 × 102 | 6.023 × 102 | 6.023 × 102 | 6.007 × 102 | 6.005 × 102 |
STD | 6.826 × 10−2 | 2.437 × 10−1 | 1.199 × 10−1 | 2.288 × 10−1 | 1.397 × 10−1 | 3.990 × 10−1 | 9.669 × 10−1 | 4.981 × 10−1 | 1.892 × 10−1 | 5.368 × 10−2 | |
F7 | AVG | 7.005 × 102 | 7.769 × 102 | 7.005 × 102 | 7.055 × 102 | 7.059 × 102 | 7.856 × 102 | 7.315 × 102 | 7.290 × 102 | 7.005 × 102 | 7.003 × 102 |
STD | 2.036 × 10−1 | 6.934 | 2.180 × 10−1 | 2.512 | 2.824 | 1.182 × 101 | 1.053 × 101 | 4.526 | 3.736 × 10−1 | 3.224 × 10−2 | |
F8 | AVG | 8.099 × 10+2 | 5.126 × 106 | 1.152 × 103 | 3.417 × 103 | 7.016 × 103 | 5.097 × 106 | 7.465 × 104 | 9.573 × 104 | 8.233 × 102 | 8.093 × 102 |
STD | 4.178 | 2.184 × 106 | 3.410 × 102 | 2.695 × 103 | 1.213 × 103 | 1.845 × 106 | 5.296 × 103 | 9.340 × 104 | 3.187 | 2.675 | |
F9 | AVG | 9.124 × 10+2 | 9.136 × 102 | 9.131 × 102 | 9.135 × 102 | 9.135 × 102 | 9.135 × 102 | 9.122 × 102 | 9.134 × 102 | 9.128 × 102 | 9.124 × 102 |
STD | 3.941 × 10−1 | 1.297 × 10−1 | 2.712 × 10−1 | 1.903 × 10−1 | 2.249 × 10−1 | 1.490 × 10−1 | 4.731 × 10−1 | 1.934 × 10−1 | 4.352 × 10−1 | 3.075 × 10−1 | |
F10 | AVG | 5.396 × 105 | 5.875 × 107 | 6.376 × 106 | 9.125 × 106 | 9.551 × 106 | 3.236 × 107 | 5.819 × 105 | 1.292 × 107 | 9.916 × 105 | 7.136 × 105 |
STD | 3.873 × 105 | 1.799 × 107 | 3.720 × 106 | 6.068 × 106 | 3.807 × 106 | 1.164 × 107 | 3.802 × 105 | 5.507 × 106 | 4.432 × 105 | 4.413 × 105 | |
F11 | AVG | 2.224 × 103 | 1.841 × 108 | 2.554 × 104 | 4.359 × 105 | 4.362 × 105 | 1.374 × 108 | 5.431 × 103 | 1.029 × 107 | 5.151 × 103 | 1.204 × 103 |
STD | 2.032 × 103 | 1.420 × 108 | 1.930 × 104 | 2.433 × 105 | 2.906 × 105 | 1.028 × 108 | 4.836 × 103 | 9.620 × 106 | 4.718 × 103 | 8.584 × 101 | |
F12 | AVG | 2.719 × 103 | 8.133 × 1012 | 9.235 × 1012 | 6.077 × 105 | 1.538 × 106 | 5.409 × 1011 | 2.869 × 103 | 1.050 × 109 | 3.197 × 103 | 3.072 × 103 |
STD | 5.693 × 102 | 1.153 × 1012 | 4.617 × 1012 | 4.340 × 105 | 3.095 × 105 | 3.022 × 1011 | 8.608 × 102 | 6.374 × 108 | 9.429 × 102 | 4.269 × 102 | |
F13 | AVG | 1.579 × 103 | 2.411 × 103 | 1.644 × 103 | 1.711 × 103 | 1.717 × 103 | 1.798 × 103 | 1.578 × 103 | 1.590 × 103 | 1.562 × 103 | 1.559 × 103 |
STD | 2.798 × 101 | 3.609 × 102 | 3.002 × 101 | 4.094 × 101 | 4.464 × 101 | 6.980 × 101 | 1.085 × 101 | 7.228 | 1.335 | 1.366 × 10−4 | |
F14 | AVG | 2.001 × 103 | 3.853 × 103 | 4.993 × 103 | 2.523 × 103 | 2.521 × 103 | 4.494 × 103 | 2.413 × 103 | 3.029 × 103 | 2.133 × 103 | 1.974 × 103 |
STD | 5.228 × 101 | 1.020 × 103 | 3.284 × 103 | 3.156 × 102 | 2.536 × 102 | 7.527 × 102 | 2.761 × 102 | 2.259 × 102 | 1.436 × 102 | 1.111 | |
F15 | AVG | 2.537 × 103 | 2.968 × 103 | 2.821 × 103 | 2.983 × 103 | 2.976 × 103 | 2.998 × 103 | 2.513 × 103 | 2.920 × 103 | 2.534 × 103 | 2.441 × 103 |
STD | 1.450 × 102 | 7.974 × 101 | 7.609 × 101 | 3.829 × 101 | 3.358 × 101 | 1.098 × 102 | 3.521 × 102 | 4.779 × 101 | 8.323 × 101 | 3.054 × 102 |
ACGRIME | AO | AVOA | OBLPFA | PFA | PO | POA | SCA | PLO | PLSCO | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F16 | AVG | 6.97 × 103 | 4.55 × 1010 | 1.37 × 109 | 4.56 × 109 | 4.40 × 109 | 4.70 × 1010 | 1.29 × 1010 | 1.70 × 1010 | 2.37 × 107 | 3.95 × 104 |
STD | 6.92 × 103 | 5.88 × 109 | 9.51 × 108 | 9.16 × 108 | 9.67 × 108 | 6.53 × 109 | 5.19 × 109 | 3.03 × 109 | 8.34 × 106 | 9.57 × 103 | |
F17 | AVG | 1.56 × 106 | 6.18 × 1012 | 1.15 × 1011 | 5.15 × 1011 | 4.42 × 1011 | 5.46 × 1012 | 1.71 × 1012 | 1.86 × 1012 | 2.69 × 109 | 3.80 × 106 |
STD | 1.12 × 106 | 6.97 × 1011 | 8.49 × 1010 | 9.43 × 1010 | 6.52 × 1010 | 7.29 × 1011 | 8.24 × 1011 | 2.33 × 1011 | 1.18 × 109 | 8.82 × 105 | |
F18 | AVG | 2.07 × 105 | 1.86 × 1012 | 4.39 × 1010 | 1.59 × 1011 | 1.67 × 1011 | 1.74 × 1012 | 5.68 × 1011 | 6.06 × 1011 | 1.21 × 109 | 1.74 × 106 |
STD | 7.86 × 104 | 2.43 × 1011 | 3.86 × 1010 | 2.76 × 1010 | 3.91 × 1010 | 2.76 × 1011 | 2.27 × 1011 | 1.03 × 1011 | 4.36 × 108 | 6.60 × 105 | |
F19 | AVG | 1.91 × 103 | 9.05 × 105 | 2.48 × 103 | 2.12 × 103 | 2.06 × 103 | 5.30 × 105 | 9.44 × 103 | 1.66 × 104 | 1.92 × 103 | 1.91 × 103 |
STD | 2.47 | 4.15 × 105 | 7.47 × 102 | 3.77 × 102 | 1.46 × 102 | 1.59 × 105 | 8.59 × 103 | 1.46 × 104 | 1.87 | 2.71 | |
F20 | AVG | 2.56 × 105 | 2.28 × 108 | 9.45 × 105 | 9.33 × 106 | 1.01 × 107 | 5.30 × 107 | 6.36 × 105 | 1.18 × 107 | 7.74 × 105 | 2.16 × 105 |
STD | 1.15 × 105 | 1.17 × 108 | 8.39 × 105 | 3.87 × 106 | 4.96 × 106 | 2.40 × 107 | 4.00 × 105 | 5.53 × 106 | 3.76 × 105 | 5.61 × 104 | |
F21 | AVG | 3.31 × 104 | 1.01 × 108 | 3.29 × 104 | 1.13 × 106 | 1.02 × 106 | 1.02 × 108 | 3.59 × 104 | 5.73 × 106 | 1.05 × 104 | 8.63 × 103 |
STD | 2.44 × 104 | 7.95 × 107 | 2.18 × 104 | 5.93 × 105 | 4.98 × 105 | 6.50 × 107 | 1.34 × 104 | 4.37 × 106 | 4.27 × 103 | 6.23 × 103 | |
F22 | AVG | 3.33 × 105 | 9.96 × 108 | 4.25 × 106 | 1.95 × 107 | 1.94 × 107 | 3.08 × 108 | 1.23 × 106 | 3.49 × 107 | 9.36 × 105 | 2.61 × 105 |
STD | 2.44 × 105 | 8.05 × 108 | 2.49 × 106 | 8.44 × 106 | 7.65 × 106 | 1.64 × 108 | 7.76 × 105 | 1.79 × 107 | 6.72 × 105 | 1.32 × 105 | |
F23 | AVG | 2.39 × 103 | 5.30 × 103 | 2.55 × 103 | 2.49 × 103 | 2.49 × 103 | 3.70 × 103 | 2.85 × 103 | 2.62 × 103 | 2.38 × 103 | 2.37 × 103 |
STD | 1.20 × 101 | 9.48 × 102 | 8.93 × 101 | 2.48 × 101 | 2.00 × 101 | 3.59 × 102 | 4.46 × 102 | 4.89 × 101 | 3.60 | 3.58 | |
F24 | AVG | 2.63 × 103 | 3.16 × 104 | 6.02 × 103 | 7.34 × 103 | 7.43 × 103 | 3.22 × 104 | 1.73 × 104 | 1.48 × 104 | 3.00 × 103 | 2.62 × 103 |
STD | 7.72 × 101 | 1.30 × 103 | 1.84 × 103 | 7.28 × 102 | 6.78 × 102 | 3.00 × 103 | 4.67 × 103 | 1.27 × 103 | 1.05 × 102 | 4.26 × 101 | |
F25 | AVG | 2.93 × 103 | 5.80 × 103 | 3.18 × 103 | 3.21 × 103 | 3.21 × 103 | 6.25 × 103 | 3.43 × 103 | 3.62 × 103 | 2.93 × 103 | 2.93 × 103 |
STD | 9.56 | 5.56 × 102 | 9.31 × 101 | 9.67 × 101 | 1.20 × 102 | 6.85 × 102 | 2.55 × 102 | 1.49 × 102 | 1.64 | 1.41 × 101 |
ACGRIME | AO | AVOA | OBLPFA | PFA | PO | POA | SCA | PLO | PLSCO | ||
---|---|---|---|---|---|---|---|---|---|---|---|
CEC2015 | Friedman Mean | 2.27 | 8.73 | 5.43 | 6.9 | 6.97 | 8.7 | 3.87 | 6.87 | 3.63 | 1.63 |
Friedman Rank | 2 | 10 | 5 | 7 | 8 | 9 | 4 | 6 | 3 | 1 | |
p-Value | 3.305 × 10−1 | 6.550 × 10−4 | 9.815 × 10−4 | 6.550 × 10−4 | 6.550 × 10−4 | 6.550 × 10−4 | 2.209 × 10−1 | 6.550 × 10−4 | 6.533 × 10−4 | - | |
CEC2020 | Friedman Mean | 1.95 | 9.6 | 4.5 | 5.7 | 5.5 | 9.4 | 6.3 | 7.8 | 2.8 | 1.45 |
Friedman Rank | 2 | 10 | 4 | 6 | 5 | 9 | 7 | 8 | 3 | 1 | |
p-Value | 8.886 × 10−1 | 5.062 × 10−3 | 5.062 × 10−3 | 5.062 × 10−3 | 5.062 × 10−3 | 5.062 × 10−3 | 5.062 × 10−3 | 5.062 × 10−3 | 7.632 × 10−3 | - |
Evaluation Metric | Value |
---|---|
Accuracy Score | |
Recall Score | |
Specificity | |
Precision | |
F1-Score |
Accuracy | Recall | F1 | Precision | Specificity | ROC-AUC | ||
---|---|---|---|---|---|---|---|
ELM-ACGRIME | AVG | 0.94498 | 0.83380 | 0.82504 | 0.83642 | 0.96699 | 0.95842 |
STD | 3.4833 × 10−3 | 1.0473 × 10−2 | 1.1492 × 10−2 | 1.2322 × 10−2 | 2.0880 × 10−3 | 1.6508 × 10−2 | |
Best | 0.95565 | 0.86580 | 0.85882 | 0.87571 | 0.97338 | 0.96830 | |
ELM-AO | AVG | 0.93673 | 0.80908 | 0.79753 | 0.81062 | 0.96204 | 0.93748 |
STD | 2.5019 × 10−3 | 7.4594 × 10−3 | 8.5143 × 10−3 | 8.7628 × 10−3 | 1.4983 × 10−3 | 1.5216 × 10−2 | |
Best | 0.94204 | 0.82513 | 0.81667 | 0.82939 | 0.96522 | 0.95196 | |
ELM-AVOA | AVG | 0.93717 | 0.81043 | 0.79861 | 0.80985 | 0.96231 | 0.94697 |
STD | 5.9840 × 10−3 | 1.7981 × 10−2 | 2.1161 × 10−2 | 1.7712 × 10−2 | 3.5876 × 10−3 | 2.2907 × 10−2 | |
Best | 0.95000 | 0.84921 | 0.84301 | 0.84726 | 0.97001 | 0.96569 | |
ELM-OBLPFA | AVG | 0.93157 | 0.79354 | 0.77997 | 0.79385 | 0.95895 | 0.93500 |
STD | 2.5022 × 10−3 | 7.5026 × 10-3 | 9.0911 × 10−3 | 7.9754 × 10−3 | 1.5003 × 10−3 | 1.9411 × 10−2 | |
Best | 0.93544 | 0.80513 | 0.79431 | 0.80547 | 0.96127 | 0.95133 | |
ELM-PFA | AVG | 0.93040 | 0.79007 | 0.77597 | 0.79028 | 0.95825 | 0.93885 |
STD | 2.6446 × 10−3 | 7.9372 × 10−3 | 9.2766 × 10−3 | 8.2712 × 10−3 | 1.5870 × 10−3 | 1.8975 × 10−2 | |
Best | 0.93581 | 0.80610 | 0.79658 | 0.81164 | 0.96149 | 0.95174 | |
ELM-PO | AVG | 0.91674 | 0.74912 | 0.73687 | 0.75546 | 0.95004 | 0.93572 |
STD | 1.5943 × 10−2 | 4.7889 × 10−2 | 5.1919 × 10−2 | 4.4899 × 10−2 | 9.5756 × 10−3 | 2.3394 × 10−2 | |
Best | 0.94599 | 0.83693 | 0.82948 | 0.84001 | 0.96759 | 0.95573 | |
ELM-POA | AVG | 0.93891 | 0.81564 | 0.80486 | 0.81754 | 0.96335 | 0.95430 |
STD | 4.2540 × 10−3 | 1.2755 × 10−2 | 1.4522 × 10−2 | 1.4342 × 10−2 | 2.5510 × 10−3 | 1.5111 × 10−2 | |
Best | 0.94617 | 0.83754 | 0.83014 | 0.84554 | 0.96770 | 0.96257 | |
ELM-SCA | AVG | 0.93197 | 0.79477 | 0.78184 | 0.79444 | 0.95919 | 0.93724 |
STD | 2.6744 × 10−3 | 8.0207 × 10−3 | 9.5402 × 10−3 | 9.2014 × 10−3 | 1.6044 × 10−3 | 1.6640 × 10−2 | |
Best | 0.93787 | 0.81283 | 0.80230 | 0.81426 | 0.96274 | 0.95226 | |
ELM-PLO | AVG | 0.93718 | 0.81034 | 0.79938 | 0.81129 | 0.96231 | 0.94835 |
STD | 2.5911 × 10−3 | 7.7804 × 10−3 | 8.8441 × 10−3 | 8.4426 × 10−3 | 1.5523 × 10-3 | 1.4603 × 10−2 | |
Best | 0.94350 | 0.82927 | 0.82014 | 0.83394 | 0.96610 | 0.95984 | |
ELM-PLSCO | AVG | 0.95682 | 0.86951 | 0.86479 | 0.87366 | 0.97409 | 0.97265 |
STD | 3.2343 × 10−3 | 9.7067 × 10−3 | 1.0065 × 10−2 | 9.1041 × 10−3 | 1.9420 × 10−3 | 1.1501 × 10−2 | |
Best | 0.96236 | 0.88609 | 0.88067 | 0.88768 | 0.97742 | 0.98163 | |
ELM | AVG | 0.92756 | 0.78149 | 0.76405 | 0.78079 | 0.95654 | 0.86978 |
STD | 1.1156 × 10−4 | 3.4839 × 10−4 | 4.2909 × 10−4 | 5.0514 × 10−4 | 6.7278 × 10−5 | 1.7422 × 10−4 | |
Best | 0.92765 | 0.78177 | 0.76439 | 0.78122 | 0.95660 | 0.86990 |
Accuracy | Recall | F1 | Precision | Specificity | ROC-AUC | ||
---|---|---|---|---|---|---|---|
ELM-ACGRIME | AVG | 0.94296 | 0.83124 | 0.82036 | 0.83093 | 0.96578 | 0.95794 |
STD | 3.6422 × 10−3 | 1.0869 × 10−2 | 1.1953 × 10−2 | 1.2902 × 10−2 | 2.1895 × 10−3 | 1.7226 × 10−2 | |
Best | 0.95413 | 0.86476 | 0.85526 | 0.87153 | 0.97250 | 0.96822 | |
ELM-AO | AVG | 0.93490 | 0.80694 | 0.79342 | 0.80473 | 0.96093 | 0.93654 |
STD | 2.5060 × 10−3 | 7.6073 × 10−3 | 8.4363 × 10−3 | 8.9505 × 10−3 | 1.5103 × 10−3 | 1.5305 × 10−2 | |
Best | 0.94073 | 0.82421 | 0.81368 | 0.82453 | 0.96445 | 0.95125 | |
ELM-AVOA | AVG | 0.93530 | 0.80807 | 0.79449 | 0.80419 | 0.96117 | 0.94664 |
STD | 5.9249 × 10−3 | 1.7724 × 10−2 | 2.0922 × 10−2 | 1.8062 × 10−2 | 3.5619 × 10−3 | 2.3484 × 10−2 | |
Best | 0.94795 | 0.84540 | 0.83786 | 0.84181 | 0.96876 | 0.96558 | |
ELM-OBLPFA | AVG | 0.92961 | 0.79123 | 0.77551 | 0.78747 | 0.95776 | 0.93336 |
STD | 2.6930 × 10−3 | 8.0910 × 10−3 | 9.9844 × 10−3 | 9.0900 × 10−3 | 1.6191 × 10−3 | 1.9308 × 10−2 | |
Best | 0.93416 | 0.80490 | 0.79229 | 0.80172 | 0.96049 | 0.94989 | |
ELM-PFA | AVG | 0.92865 | 0.78823 | 0.77227 | 0.78467 | 0.95718 | 0.93737 |
STD | 2.7388 × 10−3 | 8.2006 × 10−3 | 9.7908 × 10−3 | 8.7281 × 10−3 | 1.6435 × 10−3 | 1.9135 × 10−2 | |
Best | 0.93482 | 0.80686 | 0.79602 | 0.80457 | 0.96088 | 0.95128 | |
ELM-PO | AVG | 0.91526 | 0.74807 | 0.73396 | 0.75156 | 0.94917 | 0.93512 |
STD | 1.5925 × 10−2 | 4.7671 × 10−2 | 5.1907 × 10−2 | 4.4197 × 10−2 | 9.5354 × 10−3 | 2.2797 × 10−2 | |
Best | 0.94447 | 0.83553 | 0.82610 | 0.83605 | 0.96670 | 0.95500 | |
ELM-POA | AVG | 0.93677 | 0.81250 | 0.79970 | 0.81095 | 0.96206 | 0.95330 |
STD | 4.4501 × 10−3 | 1.3354 × 10−2 | 1.5188 × 10−2 | 1.5464 × 10−2 | 2.6744 × 10−3 | 1.5877 × 10−2 | |
Best | 0.94411 | 0.83427 | 0.82540 | 0.84037 | 0.96645 | 0.96206 | |
ELM-SCA | AVG | 0.93004 | 0.79245 | 0.77753 | 0.78864 | 0.95802 | 0.93686 |
STD | 2.7910 × 10−3 | 8.3961 × 10−3 | 1.0006 × 10−2 | 9.6542 × 10−3 | 1.6760 × 10-3 | 1.7222 × 10−2 | |
Best | 0.93505 | 0.80667 | 0.79494 | 0.80971 | 0.96099 | 0.95231 | |
ELM-PLO | AVG | 0.93555 | 0.80907 | 0.79611 | 0.80670 | 0.96133 | 0.94720 |
STD | 2.6505 × 10−3 | 7.9224 × 10−3 | 9.0507 × 10−3 | 8.6087 × 10−3 | 1.5953 × 10−3 | 1.4666 × 10−2 | |
Best | 0.94173 | 0.82756 | 0.81551 | 0.82714 | 0.96503 | 0.95879 | |
ELM-PLSCO | AVG | 0.95465 | 0.86587 | 0.85936 | 0.86785 | 0.97280 | 0.97224 |
STD | 3.3773 × 10−3 | 1.0111 × 10−2 | 1.0633 × 10−2 | 9.6555 × 10−3 | 2.0226 × 10−3 | 1.2381 × 10−2 | |
Best | 0.96003 | 0.88211 | 0.87507 | 0.88161 | 0.97601 | 0.98189 | |
ELM | AVG | 0.92487 | 0.77706 | 0.75677 | 0.77095 | 0.95490 | 0.86649 |
STD | 1.4291 × 10−4 | 4.0735 × 10−4 | 4.8355 × 10−4 | 4.9587 × 10−4 | 8.4736 × 10−5 | 9.0289 × 10−5 | |
Best | 0.92499 | 0.77739 | 0.75716 | 0.77135 | 0.95497 | 0.86656 |
ELM-ACGRIME | ELM-AO | ELM-AVOA | ELM-OBLPFA | ELM-PFA | ELM-PO | ELM-POA | ELM-SCA | ELM-PLSCO | ELM-PLO | ELM |
---|---|---|---|---|---|---|---|---|---|---|
376.51 | 389.58 | 135.21 | 245.58 | 137.14 | 1454.18 | 446.77 | 132.45 | 287.21 | 132.10 | 3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besha, A.R.M.A.; Ojekemi, O.S.; Oz, T.; Adegboye, O. PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing. Processes 2025, 13, 2707. https://doi.org/10.3390/pr13092707
Besha ARMA, Ojekemi OS, Oz T, Adegboye O. PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing. Processes. 2025; 13(9):2707. https://doi.org/10.3390/pr13092707
Chicago/Turabian StyleBesha, Aymen Ramadan Mohamed Alahwel, Opeoluwa Seun Ojekemi, Tolga Oz, and Oluwatayomi Adegboye. 2025. "PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing" Processes 13, no. 9: 2707. https://doi.org/10.3390/pr13092707
APA StyleBesha, A. R. M. A., Ojekemi, O. S., Oz, T., & Adegboye, O. (2025). PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing. Processes, 13(9), 2707. https://doi.org/10.3390/pr13092707