Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = intelligent public transportation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5349 KiB  
Review
A Comprehensive Survey of Artificial Intelligence and Robotics for Reducing Carbon Emissions in Supply Chain Management
by Mariem Mrad, Mohamed Amine Frikha and Younes Boujelbene
Logistics 2025, 9(3), 104; https://doi.org/10.3390/logistics9030104 - 4 Aug 2025
Viewed by 223
Abstract
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence [...] Read more.
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence on the applications, benefits, and challenges. Methods: A systematic scoping review was conducted on 23 peer-reviewed studies from the Scopus database, published between 2013 and 2024. Data were systematically extracted and analyzed for publication trends, application domains (e.g., transportation, warehousing), specific AI and robotic technologies, emissions reduction strategies, and implementation challenges. Results: The analysis reveals that AI-driven logistics optimization is the most frequently reported strategy for reducing transportation emissions. At the same time, robotic automation is commonly associated with improved energy efficiency in warehousing. Despite these benefits, the reviewed literature consistently identifies significant barriers, including the high energy demands of AI computation and complexities in data integration. Conclusions: This review confirms the transformative potential of AI and robotics for developing low-carbon supply chains. An evidence-based framework is proposed to guide practical implementation and identify critical gaps, such as the need for standardized validation benchmarks, to direct future research and accelerate the transition to sustainable SCM. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 235
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

41 pages, 3023 KiB  
Article
Enhanced Scalability and Security in Blockchain-Based Transportation Systems for Mass Gatherings
by Ahmad Mutahhar, Tariq J. S. Khanzada and Muhammad Farrukh Shahid
Information 2025, 16(8), 641; https://doi.org/10.3390/info16080641 - 28 Jul 2025
Viewed by 422
Abstract
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by [...] Read more.
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by utilizing state channels and rollups. Throughput is optimized, enabling transaction speeds of 800 to 3500 transactions per second (TPS) and delays of 5 to 1.5 s. Prevent data tampering, strengthen security, and enhance data integrity from 89% to 99.999%, as well as encryption efficacy from 90% to 98%. Furthermore, our system reduces congestion, optimizes vehicle movement, and shares real-time, secure data with stakeholders. Practical applications include fast and safe road toll payments, faster public transit ticketing, improved emergency response coordination, and enhanced urban mobility. The decentralized blockchain helps maintain trust among users, transportation authorities, and event organizers. Our approach extends beyond large-scale events and proposes a path toward ubiquitous, Artificial Intelligence (AI)-driven decision-making in a broader urban transit network, informing future operations in dynamic traffic optimization. This study demonstrates the potential of blockchain to create more intelligent, more secure, and scalable transportation systems, which will help reduce urban mobility inefficiencies and contribute to the development of resilient smart cities. Full article
Show Figures

Figure 1

27 pages, 16832 KiB  
Article
Effective Bus Travel Time Prediction System of Multiple Routes: Introducing PMLNet Based on MDARNN
by Jianmei Lei, Yulan Chen, Qingwen Han, Lingqiu Zeng and Guangyan He
Appl. Sci. 2025, 15(14), 8104; https://doi.org/10.3390/app15148104 - 21 Jul 2025
Viewed by 196
Abstract
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro [...] Read more.
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro and local impact factors. The system employs a pre-processing algorithm for constructing travel chains, partitions travel time into four components, utilizes LSTM along with the newly proposed MDARNN model for predicting each component, and applies four real-time traffic impact factors to calibrate the predictions of each component. Experimental validation on four bus routes demonstrates PMLNet’s superior performance, achieving mean absolute percentage errors (MAPE) as low as 2.91% and mean absolute errors (MAE) below 1.45 min, outperforming traditional models and various partitioned combination frameworks. These findings underscore PMLNet’s potential to significantly improve public transportation services by providing more accurate travel time predictions, ultimately enhancing the user experience in intelligent transportation systems. Full article
Show Figures

Figure 1

40 pages, 1540 KiB  
Review
A Survey on Video Big Data Analytics: Architecture, Technologies, and Open Research Challenges
by Thi-Thu-Trang Do, Quyet-Thang Huynh, Kyungbaek Kim and Van-Quyet Nguyen
Appl. Sci. 2025, 15(14), 8089; https://doi.org/10.3390/app15148089 - 21 Jul 2025
Viewed by 615
Abstract
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains [...] Read more.
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains limited. This paper presents a comprehensive survey of system architectures and enabling technologies in VBDA. It categorizes system architectures into four primary types as follows: centralized, cloud-based infrastructures, edge computing, and hybrid cloud–edge. It also analyzes key enabling technologies, including real-time streaming, scalable distributed processing, intelligent AI models, and advanced storage for managing large-scale multimodal video data. In addition, the study provides a functional taxonomy of core video processing tasks, including object detection, anomaly recognition, and semantic retrieval, and maps these tasks to real-world applications. Based on the survey findings, the paper proposes ViMindXAI, a hybrid AI-driven platform that combines edge and cloud orchestration, adaptive storage, and privacy-aware learning to support scalable and trustworthy video analytics. Our analysis in this survey highlights emerging trends such as the shift toward hybrid cloud–edge architectures, the growing importance of explainable AI and federated learning, and the urgent need for secure and efficient video data management. These findings highlight key directions for designing next-generation VBDA platforms that enhance real-time, data-driven decision-making in domains such as public safety, transportation, and healthcare. These platforms facilitate timely insights, rapid response, and regulatory alignment through scalable and explainable analytics. This work provides a robust conceptual foundation for future research on adaptive and efficient decision-support systems in video-intensive environments. Full article
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 529
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

15 pages, 6454 KiB  
Article
xLSTM-Based Urban Traffic Flow Prediction for Intelligent Transportation Governance
by Chung-I Huang, Jih-Sheng Chang, Jun-Wei Hsieh, Jyh-Horng Wu and Wen-Yi Chang
Appl. Sci. 2025, 15(14), 7859; https://doi.org/10.3390/app15147859 - 14 Jul 2025
Viewed by 373
Abstract
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police [...] Read more.
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police dispatch support. Utilizing a real-world dataset collected from over 300 vehicle detector (VD) sensors, the proposed model integrates vehicle volume, speed, and lane occupancy data at five-minute intervals. Methodologically, the xLSTM model incorporates matrix-based memory cells and exponential gating mechanisms to enhance spatio-temporal learning capabilities. Model performance is evaluated using multiple metrics, including congestion classification accuracy, F1-score, MAE, RMSE, and inference latency. The xLSTM model achieves a congestion prediction accuracy of 87.3%, an F1-score of 0.882, and an average inference latency of 41.2 milliseconds—outperforming baseline LSTM, GRU, and Transformer-based models in both accuracy and speed. These results validate the system’s suitability for real-time deployment in police control centers, where timely prediction of traffic congestion enables anticipatory patrol allocation and dynamic signal adjustment. By bridging AI-driven forecasting with public safety operations, this research contributes a validated and scalable approach to intelligent transportation governance, enhancing the responsiveness of urban mobility systems and advancing smart city initiatives. Full article
Show Figures

Figure 1

31 pages, 7121 KiB  
Article
Bidirectional Adaptation of Shared Autonomous Vehicles and Old Towns’ Urban Spaces: The Views of Residents on the Present
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(7), 395; https://doi.org/10.3390/wevj16070395 - 14 Jul 2025
Viewed by 337
Abstract
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow [...] Read more.
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow alleys, dense development, and sensitive cultural landscapes—shared autonomous vehicle adoption raises critical spatial and social questions. This study employs a qualitative, user-centered approach based on the ripple model to examine residents’ perceptions across four dimensions: residential patterns, parking land use, regional accessibility, and street-level infrastructure. Semi-structured interviews with 27 participants reveal five key findings: (1) public trust depends on transparent decision-making and safety guarantees; (2) shared autonomous vehicles may reshape generational residential clustering; (3) the short-term parking demand remains stable, but the long-term reuse of space is feasible; (4) shared autonomous vehicles could enhance accessibility in historic cores; (5) transport systems may evolve toward intelligent, human-centered designs. Based on these insights, the study proposes three strategies: (1) transparent risk assessment using explainable artificial intelligence and digital twins; (2) polycentric development to diversify land use; (3) hierarchical street retrofitting to balance mobility and preservation. While this study is limited by its qualitative scope and absence of simulation, it offers a framework for culturally sensitive, small-scale interventions supporting sustainable mobility transitions in historic urban contexts. Full article
Show Figures

Figure 1

27 pages, 2217 KiB  
Review
From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)
by Arpita Adhikari and Chaudhery Mustansar Hussain
Processes 2025, 13(7), 2207; https://doi.org/10.3390/pr13072207 - 10 Jul 2025
Viewed by 661
Abstract
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have [...] Read more.
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have revolutionized PM2.5 sensing by enabling high-accuracy predictions, and scalable solutions through data-driven approaches. Meanwhile, sustainable green technologies—such as urban greening, phytoremediation, and smart air purification systems—offer eco-friendly, long-term strategies to reduce PM2.5 levels. This review, covering research publications from 2021 to 2025, systematically explores the integration of ML models with conventional sensor networks to enhance pollution forecasting, pollutant source attribution, and intelligent pollutant monitoring. The paper also highlights the convergence of ML and green technologies, including nature-based solutions and AI-driven environmental planning, to support comprehensive air quality management. In addition, the study critically examines integrated policy frameworks and lifecycle-based assessments that enable equitable, sector-specific mitigation strategies across industrial, transportation, energy, and urban planning domains. By bridging the gap between cutting-edge technology and sustainable practices, this study provides a comprehensive roadmap for researchers to combat PM2.5 pollution. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Figure 1

20 pages, 2004 KiB  
Review
An Overview of Intelligent Transportation Systems in Europe
by Nicolae Cordoș, Irina Duma, Dan Moldovanu, Adrian Todoruț and István Barabás
World Electr. Veh. J. 2025, 16(7), 387; https://doi.org/10.3390/wevj16070387 - 9 Jul 2025
Viewed by 672
Abstract
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study [...] Read more.
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study examines how ITS technologies, such as automation, real-time traffic data analytics and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, have been integrated to improve urban mobility and road safety. In addition, it reviews significant European initiatives and case studies from several cities, which show visible improvements in reducing congestion, reducing CO2 emissions and increasing the use of public transport. The paper highlights, despite progress, major obstacles to widespread adoption, such as technical interoperability, inadequate regulatory frameworks and insufficient data sharing between stakeholders. These issues prevent ITS applications from scaling up and functioning well in EU Member States. To overcome these problems, the study highlights the need for common standards and cooperation frameworks. The research analyses the laws, technological developments and socio-economic effects of ITSs. By promoting sustainable and inclusive mobility, ITSs can contribute to the European Green Deal and climate goals. Finally, the paper presents ITSs as a revolutionary solution for future European transport systems and offers suggestions to improve their interoperability, data governance and policy support. Full article
Show Figures

Graphical abstract

29 pages, 10029 KiB  
Review
The Evolution of the Interaction Between Urban Rail Transit and Land Use: A CiteSpace-Based Knowledge Mapping Approach
by Haochen Yang, Nana Cui and Haishan Xia
Land 2025, 14(7), 1386; https://doi.org/10.3390/land14071386 - 1 Jul 2025
Viewed by 771
Abstract
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into [...] Read more.
Urban rail transit is a key enabler for optimizing urban spatial structures, and its interactive relationship with land use has long been a focus of attention. However, existing studies suffer from scattered methodologies, a lack of systematic analysis, and insufficient dynamic insights into global trends. This study comprehensively employs CiteSpace, VOSviewer, and Scimago Graphica to conduct bibliometric and knowledge map analysis on 1894 articles from the Web of Science database between 2004 and 2024, focusing on global research trends, collaboration networks, thematic evolution, and methodological advancements. Key findings include the following: (1) research on rail transit and land use has been steadily increasing, with a significant “US-China dual-core” distribution, where most studies are concentrated in the United States and China, with higher research density in Asia; (2) domestic and international research has primarily focused on themes such as the built environment, value capture, and public transportation, with a recent shift toward artificial intelligence and smart city technology applications; (3) research methods have evolved from foundational 3S technologies (GIS, GPS, RS) to spatial modeling tools (e.g., LUTI model, node-place model), and the current emergence of AI-driven analysis (e.g., machine learning, deep learning, digital twins). The study identifies three future research directions—technology integration, data governance, and institutional innovation—which provide guidance for the coordinated planning of transportation and land use in future smart city development. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

33 pages, 1710 KiB  
Systematic Review
Promoting Sustainable Transport: A Systematic Review of Walking and Cycling Adoption Using the COM-B Model
by Hisham Y. Makahleh, Madhar M. Taamneh and Dilum Dissanayake
Future Transp. 2025, 5(3), 79; https://doi.org/10.3390/futuretransp5030079 - 1 Jul 2025
Viewed by 981
Abstract
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically [...] Read more.
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion. Full article
Show Figures

Figure 1

35 pages, 1399 KiB  
Systematic Review
Congestion Forecasting Using Machine Learning Techniques: A Systematic Review
by Mehdi Attioui and Mohamed Lahby
Future Transp. 2025, 5(3), 76; https://doi.org/10.3390/futuretransp5030076 - 1 Jul 2025
Viewed by 1174
Abstract
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 [...] Read more.
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 to 2024, adhering to the PRISMA 2020 guidelines. A comprehensive search of three major databases (IEEE Xplore, SpringerLink, and ScienceDirect) yielded 9695 initial records, with 115 studies meeting the inclusion criteria following rigorous screening. Data extraction encompassed methodological approaches, ML techniques, traffic characteristics, and forecasting periods, with quality assessment achieving near-perfect inter-rater reliability (Cohen’s κ = 0.89). Deep Neural Networks were the predominant technical approach (47%), with supervised learning being the most prevalent (57%). Classification tasks were the most common (42%), primarily addressing recurrent congestion scenarios (76%) and passenger vehicles (90%). The quality of publications was notably high, with 85% appearing in Q1-ranked journals, demonstrating exponential growth from minimal activity in 2010 to 18 studies in 2022. Significant research gaps persist: reinforcement learning is underutilized (8%), rural road networks are underrepresented (2%), and industry–academia collaboration is limited (3%). Future research should prioritize multimodal transportation systems, real-time adaptation mechanisms, and enhanced practical implementation to advance intelligent transportation systems (ITSs). This review was not registered because it focused on mapping the research landscape rather than intervention effects. Full article
Show Figures

Figure 1

40 pages, 3259 KiB  
Review
Artificial Intelligence Application in Nonpoint Source Pollution Management: A Status Update
by Almando Morain, Ryan Nedd, Kevin Poole, Lauren Hawkins, Micala Jones, Brian Washington and Aavudai Anandhi
Sustainability 2025, 17(13), 5810; https://doi.org/10.3390/su17135810 - 24 Jun 2025
Viewed by 716
Abstract
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A [...] Read more.
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A total of 124 studies were included after rigorous identification, screening, and eligibility assessments based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Key findings from the bibliometric analysis include publication trends, regional research contributions, author and journal contributions, and core concepts in NPSP. The systematic analysis further provided: (a) a comprehensive synthesis of NPSP characterization, covering pollution sources, key drivers, pollutants, transport pathways, and environmental impacts; (b) identification of emerging AI technologies such as the Internet of Things, unmanned aerial vehicles, and geographic information systems, and their potential applications in NPSP contexts; (c) a detailed classification of AI models used in NPSP assessment, highlighting predictors, predictands, and performance metrics specifically in water quality prediction and monitoring, groundwater vulnerability mapping, and pollutant-specific modeling; and (d) a critical assessment of knowledge gaps categorized into AI model development and validation, data constraints, governance and policy challenges, and system integration, alongside proposed targeted future research directions emphasizing adaptive governance, transparent AI modeling, and interdisciplinary collaboration. The findings from this study provide essential insights for researchers, policymakers, environmental managers, and communities aiming to implement AI-driven strategies to mitigate NPSP. Full article
(This article belongs to the Special Issue AI Application in Sustainable MSWI Process)
Show Figures

Figure 1

27 pages, 5780 KiB  
Article
Utilizing GCN-Based Deep Learning for Road Extraction from Remote Sensing Images
by Yu Jiang, Jiasen Zhao, Wei Luo, Bincheng Guo, Zhulin An and Yongjun Xu
Sensors 2025, 25(13), 3915; https://doi.org/10.3390/s25133915 - 23 Jun 2025
Viewed by 535
Abstract
The technology of road extraction serves as a crucial foundation for urban intelligent renewal and green sustainable development. Its outcomes can optimize transportation network planning, reduce resource waste, and enhance urban resilience. Deep learning-based approaches have demonstrated outstanding performance in road extraction, particularly [...] Read more.
The technology of road extraction serves as a crucial foundation for urban intelligent renewal and green sustainable development. Its outcomes can optimize transportation network planning, reduce resource waste, and enhance urban resilience. Deep learning-based approaches have demonstrated outstanding performance in road extraction, particularly excelling in complex scenarios. However, extracting roads from remote sensing data remains challenging due to several factors that limit accuracy: (1) Roads often share similar visual features with the background, such as rooftops and parking lots, leading to ambiguous inter-class distinctions; (2) Roads in complex environments, such as those occluded by shadows or trees, are difficult to detect. To address these issues, this paper proposes an improved model based on Graph Convolutional Networks (GCNs), named FR-SGCN (Hierarchical Depth-wise Separable Graph Convolutional Network Incorporating Graph Reasoning and Attention Mechanisms). The model is designed to enhance the precision and robustness of road extraction through intelligent techniques, thereby supporting precise planning of green infrastructure. First, high-dimensional features are extracted using ResNeXt, whose grouped convolution structure balances parameter efficiency and feature representation capability, significantly enhancing the expressiveness of the data. These high-dimensional features are then segmented, and enhanced channel and spatial features are obtained via attention mechanisms, effectively mitigating background interference and intra-class ambiguity. Subsequently, a hybrid adjacency matrix construction method is proposed, based on gradient operators and graph reasoning. This method integrates similarity and gradient information and employs graph convolution to capture the global contextual relationships among features. To validate the effectiveness of FR-SGCN, we conducted comparative experiments using 12 different methods on both a self-built dataset and a public dataset. The proposed model achieved the highest F1 score on both datasets. Visualization results from the experiments demonstrate that the model effectively extracts occluded roads and reduces the risk of redundant construction caused by data errors during urban renewal. This provides reliable technical support for smart cities and sustainable development. Full article
Show Figures

Figure 1

Back to TopTop