Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (377)

Search Parameters:
Keywords = integrated waveguide devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1724 KB  
Article
Fabrication Process Research for Silicon-Waveguide-Integrated Cavity Optomechanical Devices Using Magnesium Fluoride Protection
by Chengwei Xian, Pengju Kuang, Ning Fu, Zhe Li, Changsong Wang, Yi Zhang, Rudi Zhou, Guangjun Wen, Boyu Fan and Yongjun Huang
Micromachines 2025, 16(11), 1217; https://doi.org/10.3390/mi16111217 - 26 Oct 2025
Viewed by 278
Abstract
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during [...] Read more.
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during hydrofluoric acid (HF) release of the microstructures, leading to waveguide collapse and significantly reducing production yields. This study proposes a novel selective protection process based on a magnesium fluoride (MgF2) thin film to address the critical challenge of long-range waveguide collapse during hydrofluoric acid (HF) etching. By depositing a MgF2 protective layer over the waveguide regions via optical coating technology, localized protection of specific SiO2 areas during HF etching is achieved. The experimental results demonstrate the successful release of silicon waveguides with lengths of up to 5000 μm and a significant improvement in production yield. This work provides a compatible and efficient strategy for the fabrication of robust photonic–microelectromechanical integrated devices. Full article
Show Figures

Figure 1

15 pages, 2936 KB  
Article
Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm
by Muhammad A. Butt, Mateusz Słowikowski, Dagmara Drecka, Michał Jarosik and Ryszard Piramidowicz
Nanomaterials 2025, 15(19), 1532; https://doi.org/10.3390/nano15191532 - 8 Oct 2025
Viewed by 477
Abstract
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction [...] Read more.
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction length without enlarging the device footprint, enhancing sensitivity and improving stability against environmental noise. Subwavelength grating (SWG) waveguides were integrated into the sensing arm to further strengthen light-matter interaction. The fabricated devices exhibited stable and well-defined interference fringes, with uniform wavelength shifts that scaled linearly with changes in the surrounding refractive index. Standard a-LT-MZI structures (ΔL = 300 μm) achieved experimental sensitivities of 288.75–301.25 nm/RIU, while SWG-enhanced devices reached 496–518 nm/RIU, confirming the effectiveness of refractive index engineering. Comparative analysis against previously reported MZI-based sensors highlights the competitive performance of the proposed design. By combining the scalability and CMOS compatibility of silicon nitride with the sensitivity and robustness of the a-LT-MZI architecture, this device provides a compact and versatile platform for next-generation lab-on-chip photonic sensors. It holds strong potential for applications in biochemical diagnostics, medical testing, and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

27 pages, 5252 KB  
Review
Polymeric Optical Waveguides: An Approach to Different Manufacturing Processes
by Frank Martinez Abreu, José Javier Imas, Aritz Ozcariz, Cesar Elosua, Jesus M. Corres and Ignacio R. Matias
Appl. Sci. 2025, 15(19), 10644; https://doi.org/10.3390/app151910644 - 1 Oct 2025
Viewed by 570
Abstract
Polymeric optical waveguides represent an essential component in photonic technology thanks to their ability to guide light through controlled structures, enabling applications in telecommunications, sensors, and integrated devices. With the development of new materials and increasingly versatile manufacturing methods, these structures are being [...] Read more.
Polymeric optical waveguides represent an essential component in photonic technology thanks to their ability to guide light through controlled structures, enabling applications in telecommunications, sensors, and integrated devices. With the development of new materials and increasingly versatile manufacturing methods, these structures are being integrated into various systems at a rapid pace, while their dimensions are constantly being reduced. This article explores the main fabrication methods for polymeric optical waveguides, such as traditional and maskless photolithography, laser ablation, hot embossing, nanoimprint lithography, the Mosquito method, inkjet printing, aerosol jet printing, and electrohydrodynamic (EHD) printing. The operating principle of each method, the equipment and materials used, and their advantages, limitations, and practical applications are evaluated, in addition to the propagation losses and characterization of the waveguides obtained with each method. Full article
Show Figures

Figure 1

16 pages, 2410 KB  
Article
Design and Preparation of Compact 3-Bit Reconfigurable RF MEMS Attenuators for Millimeter-Wave Bands
by Shilong Miao, Rui Chai, Yuheng Si, Yulong Zhang, Qiannan Wu and Mengwei Li
Micromachines 2025, 16(10), 1117; https://doi.org/10.3390/mi16101117 - 29 Sep 2025
Viewed by 292
Abstract
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, [...] Read more.
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, low attenuation accuracy, large physical dimensions, and insufficient process reliability, this paper proposes a design scheme for an RF three-bit reconfigurable stepped attenuator based on radio frequency micro-electromechanical systems (RF MEMS) switches. The attenuator employs planar integration of the T-type attenuation network, Coplanar Waveguide (CPW), Y-shaped power divider, and RF MEMS switches. While ensuring rational power distribution and stable attenuation performance over the full bandwidth, it reduces the number of switches to suppress parasitic parameters, thereby enhancing process feasibility. Test results confirm that this device demonstrates significant advancements in attenuation accuracy, achieving a precision of 1.18 dB across the 0–25 dB operational range from DC to 20 GHz, with insertion loss kept below 1.65 dB and return loss exceeding 12.15 dB. Additionally, the device boasts a compact size of merely 0.66 mm × 1.38 mm × 0.32 mm, significantly smaller than analogous products documented in existing literature. Meanwhile, its service life approaches 5 × 107 cycles. Together, these two attributes validate the device’s performance reliability and miniaturization advantages. Full article
Show Figures

Figure 1

16 pages, 1577 KB  
Review
Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate
by Jingsong Wang, Xun Lu, Di Qiao and Xingjuan Zhao
Crystals 2025, 15(10), 846; https://doi.org/10.3390/cryst15100846 - 28 Sep 2025
Viewed by 829
Abstract
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application [...] Read more.
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application value in light source generation, signal transmission, and intensity modulation of optical communication systems, and are hailed as the “silicon of the photonics field,” attracting significant attention from both academia and industry. Especially with the commercialization of high-quality thin-film lithium niobate (TFLN) materials, the performance of thin-film optoelectronic devices based on waveguide structures has achieved leapfrog improvements, with their loss characteristics and modulation bandwidth far exceeding those of traditional bulk material devices. This paper systematically combs the photonic properties of LN materials, introduces in detail the electro-optic effect and electro-optic modulation principle of LN electro-optic modulators, reviews some recent research achievements of scholars, focuses on expounding the preparation processes of waveguide-based TFLN, the types of waveguide-based optoelectronic devices, and the research progress of these devices, and discusses and compares the advantages and development potential of different routes. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 4449 KB  
Article
Design of High-Efficiency Silicon Nitride Grating Coupler with Self-Compensation for Temperature Drift
by Qianwen Lin, Yunxin Wang, Yu Zhang, Chang Liu and Wenqi Wei
Photonics 2025, 12(10), 959; https://doi.org/10.3390/photonics12100959 - 28 Sep 2025
Viewed by 491
Abstract
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this [...] Read more.
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this paper, the double-layer DBR is used to make the down-scattered light interfere with other light and reflect it back into the waveguide. The finite difference time domain (FDTD) method is used to simulate and optimize the key parameters such as grating period, duty cycle, incident angle and cladding thickness, achieving a coupling efficiency of −1.59 dB and a 3 dB bandwidth of 106 nm. In order to further enhance the temperature stability, the amorphous silicon (a-Si) thermo-optical material layer and titanium metal serpentine heater are embedded in the DBR. The reduction in coupling efficiency caused by fluctuations in environmental temperature is compensated via local temperature control. The simulation results show that within the wide temperature range from −55 °C to 150 °C, the compensated coupling efficiency fluctuation is less than 0.02 dB, and the center wavelength undergoes a blue shift. This design is compatible with complementary metal-oxide-semiconductor (CMOS) processes, which not only simplifies the fabrication process but also significantly improves device stability over a wide temperature range. This provides a feasible and efficient coupling solution for photonic integrated chips in non-temperature-controlled environments, such as optical communications, data centers, and automotive systems. Full article
Show Figures

Figure 1

11 pages, 3388 KB  
Communication
On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material
by Tianman Shu, Yuexiang Guo, Shengxiong Lai, Lun Zhang, Yin Xu and Hualong Bao
Photonics 2025, 12(9), 934; https://doi.org/10.3390/photonics12090934 - 19 Sep 2025
Viewed by 638
Abstract
The development of reconfigurable photonic integrated circuits (PICs) demands photonic devices with high-efficiency tuning capabilities, yet conventional thermo-optic and electro-optic methods suffer from limited index modulation and excessive power consumption. To overcome these limitations, we propose an etchless and tunable silicon nitride waveguide [...] Read more.
The development of reconfigurable photonic integrated circuits (PICs) demands photonic devices with high-efficiency tuning capabilities, yet conventional thermo-optic and electro-optic methods suffer from limited index modulation and excessive power consumption. To overcome these limitations, we propose an etchless and tunable silicon nitride waveguide mode converter based on low-loss phase change material, antimony triselenide (Sb2Se3). By depositing an Sb2Se3 layer on the silicon nitride wafer and using a laser-induced phase transition technique, we can write and erase the waveguide structure in the phase change wafer without waveguide etching, where the input/output waveguide is a strip waveguide and the conversion region is built using a tilted subwavelength grating structure. From the results, the obtained TE0-TE1 mode conversion efficiency, crosstalk, and insertion loss are higher than 96%, lower than −16 dB, and lower than 0.4 dB at a wavelength of 1.55 µm, respectively. The proposed device enables post-fabrication tuning of the grating duty cycle, allowing working wavelength adjustment for the same device. Furthermore, the device exhibits scalability to other higher-order mode conversions (e.g., TE0-TE2). Consequently, we expect that such devices could have important uses in programmable and multifunctional PICs. Full article
(This article belongs to the Special Issue Emerging Technologies for Silicon Photonics and Integrated Circuits)
Show Figures

Figure 1

10 pages, 1893 KB  
Article
Design of a High-Efficiency Hydrogenated Amorphous Silicon Electro-Absorption Modulator with Embedded Graphene Capacitor
by Babak Hashemi, Sandro Rao, Maurizio Casalino and Francesco Giuseppe Della Corte
Photonics 2025, 12(9), 916; https://doi.org/10.3390/photonics12090916 - 13 Sep 2025
Viewed by 655
Abstract
Waveguide-integrated electro-optical modulators play a crucial role in the design of new-generation photonic integrated circuits. The target of this paper is to demonstrate the potential offered by the association of graphene (Gr) and hydrogenated amorphous silicon (a-Si:H) in enhancing silicon photonics technology, enabling, [...] Read more.
Waveguide-integrated electro-optical modulators play a crucial role in the design of new-generation photonic integrated circuits. The target of this paper is to demonstrate the potential offered by the association of graphene (Gr) and hydrogenated amorphous silicon (a-Si:H) in enhancing silicon photonics technology, enabling, in particular, the fabrication of efficient, wide-bandwidth, highly compact active devices. The design of the proposed electro-optic modulator is based on accurate numerical simulations where Gr is explored as the active material, absorbing (or not) the light propagating along the waveguide core, with its absorption coefficient being tunable through the application of an external electric bias. By strategically embedding two Gr monolayers where the propagating optical field is at its maximum, the performance of the modulator is maximized, resulting in a 39.5 GHz 3 dB bandwidth, corresponding to a 0.34 dB/µm modulation depth. The straightforward feasibility of the proposed structure is bolstered by the use of the Plasma-Enhanced Chemical Vapor Deposition technique, which allows for the deposition of a-Si:H on a silicon-on-insulator platform as a post-processing phase, ensuring potential scalability and practical implementation for advanced photonics. Full article
Show Figures

Figure 1

12 pages, 5974 KB  
Article
A Low-Profile Beam-Scanning Antenna Array for 5G Low-Cost Millimeter-Wave Applications
by Guan-Long Huang, Ming-Feng Xu, Jing Wu, Zi-Yu Pang, Yan-Ji Chen, Chow-Yen-Desmond Sim, Wei Lin, Su-Wei Chang and Yiannis Vardaxoglou
Electronics 2025, 14(17), 3453; https://doi.org/10.3390/electronics14173453 - 29 Aug 2025
Viewed by 593
Abstract
A low-profile beam-scanning antenna array for cost-effective 5G millimeter-wave (mmWave) applications is proposed in this work. The array features a compact single-layer substrate structure while achieving a wide operating bandwidth covering the 5G n257 band (26.5–29.5 GHz). A novel antenna element is first [...] Read more.
A low-profile beam-scanning antenna array for cost-effective 5G millimeter-wave (mmWave) applications is proposed in this work. The array features a compact single-layer substrate structure while achieving a wide operating bandwidth covering the 5G n257 band (26.5–29.5 GHz). A novel antenna element is first designed and analyzed, employing a metallic rectangular patch with shorting pins as the radiator, excited through a modified coplanar waveguide (CPW) feeding structure. Based on this element, four-element and eight-element linear arrays are developed with an overall profile of only 0.07 λ at 28 GHz and fabricated to experimentally assess beam-scanning performance. To accurately characterize and validate the radiation behavior, an mmWave beam box system is utilized for pattern measurements. The results demonstrate that the fabricated arrays achieve an impedance bandwidth fully covering the 5G n257 band with VSWR < 2, while the measured beam-scanning performance closely agrees with simulations. These findings confirm that the proposed design and its extensions offer strong potential for practical integration into future 5G mmWave communication devices. Full article
Show Figures

Figure 1

13 pages, 1888 KB  
Article
Femtosecond-Laser Direct Writing of Double-Line and Tubular Depressed-Cladding Waveguides in Ultra-Low-Expansion Glass
by Yuhao Wu, Sixuan Guo, Guanghua Cheng, Feiran Wang, Xu Wang and Yunjie Zhang
Photonics 2025, 12(8), 797; https://doi.org/10.3390/photonics12080797 - 8 Aug 2025
Viewed by 1866
Abstract
Addressing the stability requirements of photonic integrated devices operating over wide temperature ranges, this work achieves controlled fabrication of femtosecond-laser direct-written Type II double-line waveguides and Type III depressed-cladding tubular waveguides within ultra-low-expansion LAS glass-ceramics. The light-guiding mechanisms were elucidated through finite element [...] Read more.
Addressing the stability requirements of photonic integrated devices operating over wide temperature ranges, this work achieves controlled fabrication of femtosecond-laser direct-written Type II double-line waveguides and Type III depressed-cladding tubular waveguides within ultra-low-expansion LAS glass-ceramics. The light-guiding mechanisms were elucidated through finite element modeling. The influences of laser writing parameters and waveguide geometric structures on guiding performance were systematically investigated. Experimental results demonstrate that the double-line waveguides exhibit optimal single-mode guiding performance at 30 μm spacing and 120 mW writing power. For the tubular depressed-cladding waveguides, both single-mode and multi-mode fields are attainable across a broad processing parameter window. Large-mode-area characteristics manifested in the 50 μm core waveguide, exhibiting an edge-shifted intensity profile for higher-order modes that generated a hollow beam, enabling applications in atom guidance and particle trapping. Full article
(This article belongs to the Special Issue Direct Ultrafast Laser Writing in Photonics and Optoelectronics)
Show Figures

Figure 1

15 pages, 6688 KB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 - 2 Aug 2025
Viewed by 755
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

15 pages, 6406 KB  
Communication
Design and Static Analysis of MEMS-Actuated Silicon Nitride Waveguide Optical Switch
by Yan Xu, Tsen-Hwang Andrew Lin and Peiguang Yan
Micromachines 2025, 16(8), 854; https://doi.org/10.3390/mi16080854 - 25 Jul 2025
Viewed by 2832
Abstract
This article aims to utilize a microelectromechanical system (MEMS) to modulate coupling behavior of silicon nitride (Si3N4) waveguides to perform an optical switch based on a directional coupling (DC) mechanism. There are two states of the switch. First state, [...] Read more.
This article aims to utilize a microelectromechanical system (MEMS) to modulate coupling behavior of silicon nitride (Si3N4) waveguides to perform an optical switch based on a directional coupling (DC) mechanism. There are two states of the switch. First state, a Si3N4 wire is initially positioned up suspended in the air. In the second state, this wire will be moved down to be placed between two arms of the DC waveguides, changing the coupling behavior to achieve bar and cross states of the optical switch function. In the future, the MEMS will be used to move this wire down. In this work, we present simulations of the two static states to optimize the DC structure parameters. Based on the simulated results, the device size is 8.8 μm × 55 μm. The insertion loss is calculated to be approximately 0.24 dB and 0.33 dB, the extinction ratio is approximately 24.70 dB and 25.46 dB, and the crosstalk is approximately −24.60 dB and −25.56 dB, respectively. In the C band of optical communication, the insertion loss ranges from 0.18 dB to 0.47 dB. As such, this device will exhibit excellent optical switch performance and provide advantages in many integrated optics-related optical systems applications. Furthermore, it can be used in optical communications, data centers, LiDAR, and so on, enhancing important reference value for such applications. Full article
Show Figures

Figure 1

15 pages, 9497 KB  
Article
Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power
by Zizhuo Liu, Hongxiao Li, Jiagang Chen, Anlan Chen, Shan Niu, Changlei Wu, Yongqiang Sun, Xingli Zhong, Hui Su, Hao Xu, Jinchuan Zhang, Jiang Wu and Fengqi Liu
Sensors 2025, 25(15), 4572; https://doi.org/10.3390/s25154572 - 24 Jul 2025
Viewed by 795
Abstract
In this work, we present a high-performance tapered quantum cascade laser (QCL) designed to achieve both high output power and low divergence angle. By integrating a tapered waveguide with a Fabry–Perot structure, significant improvements of tapered QCL devices in both output power and [...] Read more.
In this work, we present a high-performance tapered quantum cascade laser (QCL) designed to achieve both high output power and low divergence angle. By integrating a tapered waveguide with a Fabry–Perot structure, significant improvements of tapered QCL devices in both output power and beam quality are demonstrated. The optimized 50 µm wide tapered QCL achieved a maximum output power of 2.76 W in pulsed operation with a slope efficiency of 3.52 W/A and a wall-plug efficiency (WPE) of 16.2%, while reducing the divergence angle to 13.01°. The device maintained a maximum power of 1.34 W with a WPE exceeding 8.2%, measured under room temperature and continuous wave (CW) operation. Compared to non-tapered Fabry–Perot QCLs, the tapered devices exhibited a nearly 10-fold increase in output power and over 200% improvement in WPE. This work provides a promising pathway for advancing mid-infrared laser technology, particularly for applications requiring high power, low divergence, and temperature stability. Full article
(This article belongs to the Special Issue Recent Trends in Quantum Sensing)
Show Figures

Figure 1

15 pages, 2929 KB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 615
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

14 pages, 2149 KB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 793
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

Back to TopTop