Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,804)

Search Parameters:
Keywords = integrated environmental assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8618 KB  
Article
A Model Integrating Theory and Simulation to Establish the Link Between Outdoor Microclimate and Building Heating Load in High-Altitude Cold Regions
by Jiaqin Han, Xing Li and Yingzi Zhang
Buildings 2026, 16(2), 404; https://doi.org/10.3390/buildings16020404 (registering DOI) - 18 Jan 2026
Abstract
The heating load of residential buildings is closely related to the local microclimate. However, there is a lack of quantitative indicators for assessing the impact of the outdoor microclimate on building heating loads in Lhasa residential buildings. This study established an analytical relationship [...] Read more.
The heating load of residential buildings is closely related to the local microclimate. However, there is a lack of quantitative indicators for assessing the impact of the outdoor microclimate on building heating loads in Lhasa residential buildings. This study established an analytical relationship between surface temperature and building heating load through theoretical derivation. Simulations of the outdoor microclimate and building surface temperatures were conducted using Phoenics2019 and Ladybug1.8.0 tools. Statistical models were developed to correlate outdoor microclimate parameters with the surface temperatures of both transparent and opaque building envelopes. Ultimately, these individual models were integrated to form a comprehensive framework for directly calculating heating loads from microclimate data. The model validation results indicate that the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) is 12.87%, which meets the ASHRAE Guideline 14 international standard requirement of ≤30% for hourly data. The Normalized Mean Bias Error (NMBE) is –9.76%, also satisfying the ASHRAE Guideline 14 criterion of ±10% for hourly data. These results suggest that the model exhibits a minor underestimation, which is acceptable from an engineering perspective. The proposed model can provide a quantitative reference to a certain extent for the comprehensive evaluation of outdoor microclimate environmental performance in residential buildings in Lhasa. Full article
(This article belongs to the Special Issue Building Energy Performance and Simulations)
Show Figures

Figure 1

17 pages, 9792 KB  
Article
Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae)
by Ziyu Huang, Ling Wu, Huimin Yao, Shaopeng Cui, Angie Deng, Ruihe Gao, Fei Yu, Weifeng Wang, Shiyi Lian, Yali Li, Lina Men and Zhiwei Zhang
Insects 2026, 17(1), 109; https://doi.org/10.3390/insects17010109 (registering DOI) - 18 Jan 2026
Abstract
Carposina sasakii Matsumura is a significant lepidopteran pest in the Carposinidae family, inflicting substantial damage on stone and pome fruit trees such as jujube, peach, and apple. Using MaxEnt, we assessed the worldwide climatic suitability for C. sasakii and its key environmental drivers, [...] Read more.
Carposina sasakii Matsumura is a significant lepidopteran pest in the Carposinidae family, inflicting substantial damage on stone and pome fruit trees such as jujube, peach, and apple. Using MaxEnt, we assessed the worldwide climatic suitability for C. sasakii and its key environmental drivers, evaluating how climate change impacts dispersal risks. Integrating global occurrence records with 37 environmental variables, the model (AUC = 0.982) quantitatively identifies July precipitation (prec7), minimum average temperatures in April and August (tmin4 and tmin8, respectively), and maximum average temperature in May (tmax5) as critical distribution determinants. Among these, prec7 exhibits the highest contribution (threshold approximately 370 mm). The current suitable habitat spans 10.39 × 102 km2, concentrated predominantly in East Asia’s temperate monsoon zone (eastern China, the Korean Peninsula, and Japan) and southern North America. Under future climate scenarios, the high-emission pathway (SSP585) will reduce highly suitable areas, while moderately suitable zones expand coastward. In contrast, SSP370 projects a significant, albeit phased, habitat increase with a 19.61% growth rate. Precipitation regimes and extreme temperatures jointly regulate niche differentiation in C. sasakii, whose range shifts toward Southeast Asia and suboptimal regions in Europe and America, underscoring cascading climate change effects. These findings provide a scientific basis for transnational monitoring, early warning systems, and regional ecological governance. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 3250 KB  
Article
CYPOR Variability as a Biomarker of Environmental Conditions in Bream (Abramis brama), Roach (Rutilus rutilus), Perch (Perca flavescens), and Pike-Perch (Sander lucioperca) from Lake Ladoga
by Vladimir Ponamarev, Olga Popova, Elena Semenova, Evgeny Mikhailov and Alexey Romanov
Vet. Sci. 2026, 13(1), 94; https://doi.org/10.3390/vetsci13010094 (registering DOI) - 18 Jan 2026
Abstract
The fish liver, as the main detoxification organ, is highly susceptible to xenobiotic exposure, often resulting in various hepatopathies. The cytochrome P450 system plays a central role in xenobiotic metabolism, with cytochrome P450 reductase (CYPOR) supplying the electrons required for CYP enzyme activity. [...] Read more.
The fish liver, as the main detoxification organ, is highly susceptible to xenobiotic exposure, often resulting in various hepatopathies. The cytochrome P450 system plays a central role in xenobiotic metabolism, with cytochrome P450 reductase (CYPOR) supplying the electrons required for CYP enzyme activity. This study aimed to evaluate the relationship between the ecological state of a reservoir and fish health, including CYPOR levels, through hematological, bacteriological, and histological analyses. Samples of water and fish were collected from 12 littoral sites of Lake Ladoga. A total of 1360 specimens of fish from carp (Cyprinidae) and perch (Percidae) families were examined. For histological examination and CYPOR level determination, we selected 40 specimens using a blind randomization method. This sample size was sufficient for statistical analyses. Hematological smears were stained with azure eosin; bacteriological cultures were grown on multiple media; liver samples were stained with hematoxylin and eosin and Sudan III. CYPOR levels in liver homogenates were measured by ELISA-test. Physical and hydrochemical analyses indicated a high pollution level in the littoral zones. Isolated bacterial species were non-pathogenic but exhibited broad antibiotic resistance. Hematological evaluation revealed erythrocyte vacuolization and anisocytosis. Histological analysis showed marked fatty degeneration in hepatocytes, indicating toxic damage. CYPOR concentrations ranged from 0.3–0.4 ng/mL in healthy fish to 5–6 ng/mL in exposed specimens, showing strong correlation between environmental influence and enzyme activity. These findings demonstrate the potential of CYPOR as a sensitive biomarker for biomonitoring programs. The integrated methodological approach provides a model for assessing aquatic ecosystem health and identifying zones requiring priority remediation. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
25 pages, 4235 KB  
Article
Global Comparative Genomics of Stenotrophomonas maltophilia Reveals Cryptic Species Diversity, Resistome Variation, and Population Structure
by Ei Phway Thant, Chollachai Klaysubun, Sirikan Suwannasin, Thitaporn Dechathai, Kamonnut Singkhamanan, Thunchanok Yaikhan, Nattarika Chaichana, Rattanaruji Pomwised, Monwadee Wonglapsuwan, Sarunyou Chusri and Komwit Surachat
Life 2026, 16(1), 158; https://doi.org/10.3390/life16010158 (registering DOI) - 17 Jan 2026
Abstract
Background: Stenotrophomonas maltophilia is an increasingly important multidrug-resistant opportunistic pathogen frequently isolated from clinical, environmental, and plant-associated niches. Despite its medical relevance, the global population structure, species-complex boundaries, and genomic determinants of antimicrobial resistance (AMR) and ecological adaptation remain poorly resolved, partly [...] Read more.
Background: Stenotrophomonas maltophilia is an increasingly important multidrug-resistant opportunistic pathogen frequently isolated from clinical, environmental, and plant-associated niches. Despite its medical relevance, the global population structure, species-complex boundaries, and genomic determinants of antimicrobial resistance (AMR) and ecological adaptation remain poorly resolved, partly due to inconsistent annotations and fragmented genomic datasets. Methods: Approximately 2400 genome assemblies annotated as Stenotrophomonas maltophilia were available in the NCBI Assembly database at the time of query. After pre-download filtering to exclude metagenome-assembled genomes and atypical lineages, 1750 isolate genomes were retrieved and subjected to stringent quality control (completeness ≥90%, contamination ≤5%, ≤500 contigs, N50 ≥ 10 kb, and ≤1% ambiguous bases), yielding a final curated dataset of 1518 high-quality genomes used for downstream analyses. Genomes were assessed using CheckM, annotated with Prokka, and compared using average nucleotide identity (ANI), pan-genome analysis, core-genome phylogenomics, and functional annotation. AMR genes, mobile genetic elements (MGEs), and metadata (source, host, and geographic origin) were integrated to assess lineage-specific genomic features and ecological distributions. Results: ANI-based clustering resolved the S. maltophilia complex into multiple distinct genomospecies and revealed extensive misidentification of publicly deposited genomes. The pan-genome was highly open, reflecting strong genomic plasticity driven by accessory gene acquisition. Core-genome phylogeny resolved well-supported clades associated with clinical, environmental, and plant-related niches. Resistome profiling showed widespread intrinsic MDR determinants, with certain lineages enriched for efflux pumps, β-lactamases, and trimethoprim–sulfamethoxazole resistance markers. MGE analysis identified lineage-specific integrative conjugative elements, prophages, and transposases that correlated with source and geographic distribution. Conclusions: This large-scale analysis provides the most comprehensive genomic overview of the S. maltophilia complex to date. Our findings clarify species boundaries, highlight substantial taxonomic misannotation in public databases, and reveal lineage-specific AMR and mobilome patterns linked to ecological and clinical origins. The curated dataset and evolutionary insights generated here establish a foundation for global genomic surveillance, epidemiological tracking, and future studies on the evolution of antimicrobial resistance in S. maltophilia. Full article
(This article belongs to the Section Genetics and Genomics)
40 pages, 4921 KB  
Systematic Review
Grid-Scale Battery Energy Storage and AI-Driven Intelligent Optimization for Techno-Economic and Environmental Benefits: A Systematic Review
by Nipon Ketjoy, Yirga Belay Muna, Malinee Kaewpanha, Wisut Chamsa-ard, Tawat Suriwong and Chakkrit Termritthikun
Batteries 2026, 12(1), 31; https://doi.org/10.3390/batteries12010031 (registering DOI) - 17 Jan 2026
Abstract
Grid-Scale Battery Energy Storage Systems (GS-BESS) play a crucial role in modern power grids, addressing challenges related to integrating renewable energy sources (RESs), load balancing, peak shaving, voltage support, load shifting, frequency regulation, emergency response, and enhancing system stability. However, harnessing their full [...] Read more.
Grid-Scale Battery Energy Storage Systems (GS-BESS) play a crucial role in modern power grids, addressing challenges related to integrating renewable energy sources (RESs), load balancing, peak shaving, voltage support, load shifting, frequency regulation, emergency response, and enhancing system stability. However, harnessing their full potential and lifetime requires intelligent operational strategies that balance technological performance, economic viability, and environmental sustainability. This systematic review examines how artificial intelligence (AI)-based intelligent optimization enhances GS-BESS performance, focusing on its techno-economic, environmental impacts, and policy and regulatory implications. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we review the evolution of GS-BESS, analyze its advancements, and assess state-of-the-art applications and emerging AI techniques for GS-BESS optimization. AI techniques, including machine learning (ML), predictive modeling, optimization algorithms, deep learning (DL), and reinforcement learning (RL), are examined for their ability to improve operational efficiency and control precision in GS-BESSs. Furthermore, the review discusses the benefits of advanced dispatch strategies, including economic efficiency, emissions reduction, and improved grid resilience. Despite significant progress, challenges persist in data availability, model generalization, high computational requirements, scalability, and regulatory gaps. We conclude by identifying emerging opportunities to guide the next generation of intelligent energy storage systems. This work serves as a foundational resource for researchers, engineers, and policymakers seeking to advance the deployment of AI-enhanced GS-BESS for sustainable, resilient power systems. By analyzing the latest developments in AI applications and BESS technologies, this review provides a comprehensive perspective on their synergistic potential to drive sustainability, cost-effectiveness, and energy systems reliability. Full article
(This article belongs to the Special Issue AI-Powered Battery Management and Grid Integration for Smart Cities)
29 pages, 6513 KB  
Article
Hydrochemical Evolution of Groundwater Under Landfill Leachate Influence: Case of the Tangier Municipal Site
by Mohamed-Amine Lahkim-Bennani, Abdelghani Afailal Tribak, Brunella Bonaccorso, Haitam Afilal and Abdelhamid Rossi
Sustainability 2026, 18(2), 965; https://doi.org/10.3390/su18020965 (registering DOI) - 17 Jan 2026
Abstract
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean [...] Read more.
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean settings. This study assesses the hydrogeochemical impact of the newly operational Tangier Landfill and Recovery Center on local groundwater resources to inform sustainable remediation strategies. A combined approach was applied to samples collected in dry and wet seasons, using Piper and Stiff diagrams to trace facies evolution together with a dual-index assessment based on the Canadian (CCME-WQI) and Weighted Arithmetic (WAWQI) Water Quality Indices. Results show that upgradient waters remain of Good–Excellent quality and are dominated by Ca–HCO3 facies, whereas downgradient wells display extreme mineralization, with EC up to 15,480 µS/cm and Cl and SO42− exceeding 1834 and 2114 mg/L, respectively. At hotspot sites P4 and P8, As reaches 0.065 mg/L and Cd 0.006 mg/L, far above the WHO drinking-water guidelines. While the CCME-WQI captures the general salinity-driven degradation pattern, the WAWQI pinpoints these acute toxicity zones as Very poor–Unsuitable. The study demonstrates that rainfall intensifies toxicity through a seasonal “Piston Effect” that mobilizes stored contaminants rather than diluting them, underscoring the need for seasonally adaptive monitoring to ensure the environmental sustainability of landfill-adjacent aquifers. Full article
(This article belongs to the Section Sustainable Water Management)
19 pages, 831 KB  
Systematic Review
Assessing Water Reuse Through Life Cycle Assessment: A Systematic Review of Recent Trends, Impacts, and Sustainability Challenges
by Lenise Santos, Isabel Brás, Anna Barreto, Miguel Ferreira, António Ferreira and José Ferreira
Processes 2026, 14(2), 330; https://doi.org/10.3390/pr14020330 (registering DOI) - 17 Jan 2026
Abstract
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse [...] Read more.
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse projects, focusing on research trends, methodological approaches, and opportunities for improvement. A systematic search was conducted in Web of Science, ScienceDirect, and Google Scholar for studies published from 2020 onwards using combinations of the keywords “life cycle assessment”, “LCA”, “water reuse”, “water recycling”, and “wastewater recycling”. Twelve studies were selected from 57 records identified, based on predefined eligibility criteria requiring quantitative LCA of water reuse systems. The results reveal a predominance of European research, reflecting regulatory advances and strong academic engagement in this field. The most frequently assessed impact categories were global warming, eutrophication, human toxicity and ecotoxicity, highlighting the environmental relevance of reuse systems. Energy consumption and water transport were identified as critical hotspots, especially in scenarios involving long distances and fossil-based energy sources. Nevertheless, most studies demonstrate that water reuse is environmentally viable, particularly when renewable energy and optimized logistics are applied. The review also emphasizes the need to better integrate economic and social dimensions and to adapt LCA methodologies to local conditions. Overall, the findings confirm LCA as a robust decision-support tool for sustainable planning and management of water reuse systems. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

38 pages, 1697 KB  
Article
Learning from Unsustainable Post-Disaster Temporary Housing Programs in Spain: Lessons from the 2011 Lorca Earthquake and the 2021 La Palma Volcano Eruption
by Pablo Bris, Félix Bendito and Daniel Martínez
Sustainability 2026, 18(2), 963; https://doi.org/10.3390/su18020963 (registering DOI) - 17 Jan 2026
Abstract
This article examines the failure of the two most recent temporary housing programs implemented in Spain following two major disasters: the 2011 Lorca earthquake and the 2021 La Palma volcanic eruption. Despite differing hazard typologies, both cases resulted in incomplete and ultimately unsuccessful [...] Read more.
This article examines the failure of the two most recent temporary housing programs implemented in Spain following two major disasters: the 2011 Lorca earthquake and the 2021 La Palma volcanic eruption. Despite differing hazard typologies, both cases resulted in incomplete and ultimately unsuccessful housing programs, with only 13 of the 60 planned units built in Lorca and 121 of the 200 planned units delivered in La Palma. Using a qualitative comparative case study approach, the research analyzes governance decisions, housing design, and implementation processes to assess their impact on the sustainability of post-disaster temporary housing. The analysis adopts the five dimensions of sustainability—environmental, economic, social, cultural, and institutional—as an integrated analytical framework for evaluating public management performance in post-disaster temporary housing. The findings show that early decision-making, shaped by political urgency, technical misjudgments, and the absence of adaptive governance, led to severe delays, cost overruns, inadequate and energy-inefficient construction, and the formation of marginalized settlements. This study concludes that the lack of regulatory frameworks, legal instruments, and operational protocols for temporary housing in Spain was a determining factor in both failures, generating vulnerability, prolonging recovery processes, and undermining sustainability across all five dimensions. By drawing lessons from these cases, this article contributes to debates on resilient and sustainable post-disaster recovery and highlights the urgent need for integrated regulatory frameworks for temporary housing in Spain. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Sustainability)
29 pages, 671 KB  
Review
Equity-Oriented Decision-Making for Renewable Energy Investments
by Justas Streimikis and Indre Siksnelyte-Butkiene
Energies 2026, 19(2), 463; https://doi.org/10.3390/en19020463 (registering DOI) - 17 Jan 2026
Abstract
Renewable energy investment evaluation continues to rely predominantly on techno-economic and environmental criteria, while equity-related considerations remain weakly embedded within formal decision-support frameworks. Although recent research increasingly acknowledges social impacts, spatial constraints, policy uncertainty, and financing structures, these dimensions are rarely integrated in [...] Read more.
Renewable energy investment evaluation continues to rely predominantly on techno-economic and environmental criteria, while equity-related considerations remain weakly embedded within formal decision-support frameworks. Although recent research increasingly acknowledges social impacts, spatial constraints, policy uncertainty, and financing structures, these dimensions are rarely integrated in a systematic and operational manner into investment appraisal. This paper addresses this gap by advancing an equity-oriented conceptual framework for renewable energy investment evaluation. Using an integrative literature review combined with thematic analysis, the study synthesises insights from techno-economic assessment, multi-criteria decision-making, energy justice scholarship, and equity-focused modelling studies. The analysis demonstrates that existing evaluation approaches inadequately capture distributional impacts, accessibility constraints, differentiated vulnerability, and equity-adjusted risk. In response, the proposed framework systematises these equity dimensions and embeds them directly into the core logic of investment evaluation alongside conventional criteria. By consolidating fragmented research insights into a coherent evaluative structure, the study contributes to the literature by clarifying how equity can be operationalised within renewable energy investment decision-making. The framework provides a foundation for future empirical applications and supports more socially responsive and analytically robust investment evaluation. Full article
17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 (registering DOI) - 17 Jan 2026
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

19 pages, 1098 KB  
Article
Simulation-Based Evaluation of AI-Orchestrated Port–City Logistics
by Nistor Andrei
Urban Sci. 2026, 10(1), 58; https://doi.org/10.3390/urbansci10010058 (registering DOI) - 17 Jan 2026
Abstract
AI technologies are increasingly applied to optimize operations in both port and urban logistics systems, yet integration across the full maritime city chain remains limited. The objective of this study is to assess, using a simulation-based experiment, the impact of an AI-orchestrated control [...] Read more.
AI technologies are increasingly applied to optimize operations in both port and urban logistics systems, yet integration across the full maritime city chain remains limited. The objective of this study is to assess, using a simulation-based experiment, the impact of an AI-orchestrated control policy on the performance of port–city logistics relative to a baseline scheduler. The study proposes an AI-orchestrated approach that connects autonomous ships, smart ports, central warehouses, and multimodal urban networks via a shared cloud control layer. This approach is designed to enable real-time, cross-domain coordination using federated sensing and adaptive control policies. To evaluate its impact, a simulation-based experiment was conducted comparing a traditional scheduler with an AI-orchestrated policy across 20 paired runs under identical conditions. The orchestrator dynamically coordinated container dispatching, vehicle assignment, and gate operations based on capacity-aware logic. Results show that the AI policy substantially reduced the total completion time, lowered truck idle time and estimated emissions, and improved system throughput and predictability without modifying physical resources. These findings support the expectation that integrated, data-driven decision-making can significantly enhance logistics performance and sustainability in port–city contexts. The study provides a replicable pathway from conceptual architecture to quantifiable evidence and lays the groundwork for future extensions involving learning controllers, richer environmental modeling, and real-world deployment in digitally connected logistics corridors. Full article
(This article belongs to the Special Issue Advances in Urban Planning and the Digitalization of City Management)
Show Figures

Figure 1

16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

25 pages, 2024 KB  
Article
Nitrogen Dynamics and Environmental Sustainability in Rice–Crab Co-Culture System: Optimal Fertilization for Sustainable Productivity
by Hao Li, Shuxia Wu, Yang Xu, Weijing Li, Xiushuang Zhang, Siqi Ma, Wentao Sun, Bo Li, Bingqian Fan, Qiuliang Lei and Hongbin Liu
AgriEngineering 2026, 8(1), 34; https://doi.org/10.3390/agriengineering8010034 (registering DOI) - 16 Jan 2026
Viewed by 24
Abstract
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm [...] Read more.
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm−2), assessing N dynamics in field water and N distribution in soil. The results showed that field water ammonium nitrogen (NH4+-N) concentrations increased nonlinearly, showing sharp increases beyond 210 kg N·hm−2. Notably, crab activity in the RC altered the N transformation and transport processes, leading to a prolonged presence of nitrate nitrogen (NO3-N) in field water for two additional days after tillering fertilization compared to RM. This indicates a critical window for potential nitrogen loss risk, rather than enhanced retention, 15 days after basal fertilizer application. Compared to RM, RC exhibited enhanced nitrogen retention capacity, with NO3-N concentrations remaining elevated for an additional two days following tillering fertilization, suggesting a potential critical period for nitrogen loss risk. Post-harvest soil analysis revealed contrasting nitrogen distribution patterns: RC showed enhanced NH4+-N accumulation in surface layers (0–2 cm) with minimal vertical NO3-N redistribution, while RM exhibited progressive NO3-N increases in subsurface layers (2–10 cm) with increasing fertilizer rates. The 210 kg N·hm−2 rate proved optimal for the RC, producing a rice yield 12.08% higher than that of RM and sustaining high crab yields, while avoiding the excessive aqueous N levels seen at higher rates. It is important to note that these findings are based on a single-site, single-growing season field experiment conducted in Panjin, Liaoning Province, and thus the general applicability of the optimal nitrogen rate may require further validation across diverse environments. We conclude that a fertilization rate of 210 kg N·hm−2 is the optimal strategy for RC, effectively balancing productivity and environmental sustainability. This finding provides a clear, quantitative guideline for precise N management in integrated aquaculture systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
25 pages, 728 KB  
Review
Microalgae as a Synergistic Enhancer for In Situ and Ex Situ Treatment Technologies in Sustainable Shrimp Aquaculture: A Critical Review
by Sheng Dong, Fei Huang, Xianghui Zou, Qiulan Luo and Jiancheng Li
Fishes 2026, 11(1), 60; https://doi.org/10.3390/fishes11010060 (registering DOI) - 16 Jan 2026
Viewed by 19
Abstract
The intensification of shrimp aquaculture is crucial for global food security, but poses significant environmental challenges. This review critically assesses the strengths and bottlenecks of two main treatment paradigms: in situ systems, chiefly biofloc technology (BFT), and advanced ex situ systems, such as [...] Read more.
The intensification of shrimp aquaculture is crucial for global food security, but poses significant environmental challenges. This review critically assesses the strengths and bottlenecks of two main treatment paradigms: in situ systems, chiefly biofloc technology (BFT), and advanced ex situ systems, such as recirculating aquaculture systems (RASs), constructed wetlands (CWs), and membrane bioreactors (MBRs). Although BFT enables nutrient recycling, it suffers from nitrate accumulation and a high energy demand. Likewise, ex situ technologies can achieve a high treatment efficiency, but contend with high costs, large footprints, or membrane fouling. In this review, we propose the strategic integration of microalgae, representing a universal and synergistic solution for overcoming these disparate bottlenecks. We dissect how a microalgal co-culture can simultaneously remove nitrate and reduce the aeration costs in BFT systems. Furthermore, we explore how microalgae-based units can serve as efficient polishing steps for RASs, enhance the performance of CWs, and mitigate fouling in MBRs. This review delves into the fundamental mechanisms of the microalgal–bacterial symbiosis that underpins these enhancements. Finally, we highlight the valorization of the resulting algal biomass as a high-value aquafeed ingredient, which can transform waste management into a value-creation opportunity. This review aims to provide a comprehensive roadmap for developing next-generation, microalgae-enhanced aquaculture systems. Full article
(This article belongs to the Special Issue Advances in the Application of Microalgae in Aquaculture)
27 pages, 804 KB  
Article
Sustainable Development Agenda: Historical Evolution, Goal Progression, and Future Prospects
by Chaofeng Shao, Sihan Chen and Xuesong Zhan
Sustainability 2026, 18(2), 948; https://doi.org/10.3390/su18020948 (registering DOI) - 16 Jan 2026
Viewed by 33
Abstract
The concept of sustainable development has emerged as a global consensus, forged in response to environmental constraints and critical reflection on conventional growth-oriented paradigms. It now serves as the overarching framework for addressing climate, ecological, and socio-economic crises. In the period after the [...] Read more.
The concept of sustainable development has emerged as a global consensus, forged in response to environmental constraints and critical reflection on conventional growth-oriented paradigms. It now serves as the overarching framework for addressing climate, ecological, and socio-economic crises. In the period after the adoption of the Sustainable Development Goals (SDGs) in 2016, there was an observable trend of increased integration of these objectives into the strategic frameworks of national and subnational entities. However, global assessments have indicated a divergence between the progress achieved and the trajectory delineated by the SDGs. The Earth system is demonstrating signs of decreased resilience, with widening inequalities and the emergence of multiple crises, thereby hindering the implementation of the 2030 Agenda for Sustainable Development. As the 2030 deadline approaches, a fundamental question arises for global development governance: what should be the future of the SDGs beyond 2030? While insufficient progress has prompted debates over the adequacy of the SDG framework, fundamentally revising or replacing the SDGs would risk undermining a hard-won international consensus forged through decades of negotiation and institutional investment. Based on a comprehensive review of the historical evolution of the sustainable development concept, this study argues that the SDGs represent a rare and fragile achievement in global governance. While insufficient progress has sparked debates about their effectiveness, fundamentally revising or replacing the SDGs would jeopardize the hard-won international consensus forged through decades of negotiations and institutional investments. This study further analyzes the latest progress on the SDGs and identifies emerging risks, aiming to explore how to accelerate and optimize sustainable development pathways within the existing SDG framework rather than propose a new global goal system. Based on both global experience and practice in China, four interconnected strategic priorities—namely, economic reform, social equity, environmental justice, and technology sharing—are proposed as a comprehensive framework to accelerate SDG implementation and guide the transformation of development pathways towards a more just, low-carbon, and resilient future. Full article
Back to TopTop