Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition and Processing of Geographic Distribution Data for C. sasakii
2.2. Environmental Data Acquisition and Processing
2.3. Using the MaxEnt Model to Predict Global Suitable Habitats for C. sasakii
2.3.1. Parameter Settings
2.3.2. Accuracy Assessment of the MaxEnt Model
2.3.3. Habitat Suitability Classification and Centroid Shift Analysis for C. sasakii
3. Results
3.1. Model Validation
3.2. Environmental Variable Contributions
3.3. Threshold Analysis of Dominant Environmental Variables in the Suitable Distribution Area of C. sasakii
3.4. Prediction Results Under Current Climate Conditions
3.5. Predicted Results Under Future Climate Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| C. sasakii | Carposina sasakii |
| SDMs | Species distribution models |
| CMIP6 | Coupled Model Intercomparison Project Phase 6 |
| CMCC-ESM2 | Centro Euro-Mediterraneo sui Cambiamenti Climatici Earth System Model, version 2 |
| BCC-CSM2-MR | Beijing Climate Center Climat System Model, version 2-Medium Resolution |
| MIROC6 | Model for Interdisciplinary Research on Climate, version 6 |
| SSPs | Shared Socioeconomic Pathways |
| AICc | Corrected Akaike information criterion |
| ROC | Receiver Operating Characteristic |
| AUC | Area Under the ROC Curve |
References
- EFSA PLH Panel (EFSA Panel on Plant Health); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.-A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; et al. Scientific Opinion on the pest categorisation of Carposina sasakii. EFSA J. 2018, 16, 5516. [Google Scholar] [CrossRef]
- Fu, T.; Li, Y.; Ren, X.; Liu, Q.; Wu, L.; Deng, A.; Gao, R.; Zhang, Y.; Men, L.; Zhang, Z. Feeding Appropriate Nutrients during the Adult Stage to Promote the Growth and Development of Carposina sasakii Offspring. Insects 2024, 15, 283. [Google Scholar] [CrossRef]
- Cao, L.; Song, W.; Yue, L.; Guo, K.; Chen, J.; Gong, Y.; Hoffmann, A.A.; Wei, S. Chromosome-level genome of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae) provides a resource for evolutionary studies on moths. Mol. Ecol. Resour. 2021, 21, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chambi, C.; Du, T.; Huang, C.; Wang, F.; Zhang, G.; Li, C.; Juma Kayeke, M. Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae). Insects 2019, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Bastias, C.C.; Godoy, O.; Granda, E.; Escudero, A. Species Coexistence in a Changing World. Front. Plant Sci. 2015, 6, 866. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Schmidt, S. Editorial: Plant Competition in a Changing World. Front. Plant Sci. 2017, 8, 651. [Google Scholar] [CrossRef]
- Duan, R.; Kong, X.; Huang, M.; Fan, W.; Wang, Z. The Predictive Performance and Stability of Six Species Distribution Models. PLoS ONE 2014, 9, e112764. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, P.; Zou, H.; Ji, X.; Wang, Z.; Liu, Z. Adaptive Distribution and Vulnerability Assessment of Endangered Maple Species on the Tibetan Plateau. Forests 2024, 15, 491. [Google Scholar] [CrossRef]
- Xu, Y. Study on Diapause Termination and Emergence Conditions of Overwintering Larvae of Carposina sasakii Matsumura; Henan University of Science and Technology: Luoyang, China, 2015. [Google Scholar]
- Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13, 715. [Google Scholar] [CrossRef]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Carposina sasakii Matsumura, 1900 in GBIF Secretariat (2023). GBIF Backbone Taxonomy. Checklist Dataset. Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 15 September 2025).
- Sun, P.; Li, H.; Hao, E.; Lu, P.; Qiao, H. Prediction and analysis of global potential distribution of Semanotus bifasciatus based on MaxEnt model. J. Plant Prot. 2024, 51, 1506–1517. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Y.; Wang, C.; Chen, J.; Si, Q.; Ma, F. Potential distribution of three invasive agricultural pests in China under climate change. Sci. Rep. 2024, 14, 13672. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Qiao, X.; Su, S.; Jian, C.; Chen, M. Damage and Control Research Progress of Carposina sasakii. Shaanxi J. Agric. Sci. 2022, 68, 77–82. [Google Scholar]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, T.; Shi, J. Prediction and analysis of global potential distribution of Lymantria dispar based on MaxEnt model. J. Beijing For. Univ. 2021, 43, 59–69. [Google Scholar] [CrossRef]
- Daniel, J.S.; Fleming, E.L.; Portmann, R.W.; Velders, G.J.M.; Jackman, C.H.; Ravishankara, A.R. Options to accelerate ozone recovery: Ozone and climate benefits. Atmos. Chem. Phys. 2010, 10, 7697–7707. [Google Scholar] [CrossRef]
- Liang, T.; Wang, Q.; Xin, B.; Wu, Z.; Shi, J. Prediction of global potential geographical distribution of Scolytus multistriatus based on MaxEnt model. J. Plant Prot. 2023, 50, 1499–1507. [Google Scholar] [CrossRef]
- Yao, Z.; Han, Q.; Lin, B. Prediction of distribution areas of main toxic weeds in Xinjiang based on the Maximum Entropy model. Acta Ecol. Sin. 2023, 43, 5096–5109. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Li, M.; Yuan, J.; Jiang, K.; Bu, W. Prediction of the global potential suitable distribution area of Amphiareus obscuriceps based on the MaxEnt model. Acta Entomol. Sin. 2024, 67, 683–691. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Liu, J.; Zhang, H.; Zhang, Z.; Huang, R.; Gao, R. Prediction of potential suitable distribution areas of Monochamus alternatus in China under climate change based on optimized MaxEnt model. Sci. Silvae Sin. 2024, 60, 139–148. [Google Scholar]
- Liu, Y.; Shi, J. Prediction of suitable distribution area of Icerya aegyptiaca in China under climate change. Plant Prot. 2020, 46, 108–117. [Google Scholar] [CrossRef]
- Shi, J.; Xia, M.; He, G.; Gonzalez, N.C.T.; Zhou, S.; Lan, K.; Ouyang, L.; Shen, X.; Jiang, X.; Cao, F.; et al. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling. J. Environ. Manag. 2024, 357, 120841. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Pan, J.; Wu, Z.; Chen, A. Predicting the potential distribution of Campsis grandiflora in China under climate change. Environ. Sci. Pollut. Res. 2022, 29, 63629–63639. [Google Scholar] [CrossRef]
- Zhou, Y.; Ge, X.; Zou, Y.; Guo, S.; Wang, T.; Tao, J.; Zong, S. Prediction of global and China suitable areas for Dendroctonus valens based on MaxEnt model. J. Beijing For. Univ. 2022, 44, 90–99. [Google Scholar]
- Liu, Y.; Pan, W.; Rao, X.; Liu, H. Prediction of potential suitable areas for Rhus typhina in China based on optimized MaxEnt model. J. Biosaf. 2025, 34, 249–257. [Google Scholar]
- Feng, X.; Chen, F.; Yang, J.; Liu, H.; Tang, Y.; Li, J.; Shi, X.; Jia, Z.; Yin, Q. Prediction of potential suitable distribution areas for Rhododendron micranthum under different climate scenarios. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2025, 49, 161–169. [Google Scholar]
- Kolzenburg, R. The direct influence of climate change on marginal populations: A review. Aquat. Sci. 2022, 84, 24. [Google Scholar] [CrossRef]
- Caldas, A. Species traits of relevance for climate vulnerability and the prediction of phenological responses to climate change. J. Lepid. Soc. 2014, 68, 197–202. [Google Scholar] [CrossRef]
- Mott, C.L. Environmental constraints to the geographic expansion of plant and animal species. Nat. Educ. Knowl. 2010, 3, 72. [Google Scholar]
- Mallen-Cooper, M.; Cornwell, W.K.; Slavich, E.; Sabot, M.E.B.; Xirocostas, Z.A.; Eldridge, D.J. Limited range shifting in biocrusts despite climate warming: A 25-year resurvey. J. Ecol. 2023, 111, 2194–2207. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M.; Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008, 14, 885–890. [Google Scholar] [CrossRef]
- Hua, B.; Zhang, A.; Lu, X.; Hua, L. Occurrence patterns of Carposina sasakii in apricot orchards in the Qinling Mountains. Acta Agric. Boreali-Occident. Sin. 1998, 7, 39–42. [Google Scholar]
- Chen, C.; Harvey, J.A.; Biere, A.; Gols, R. Rain downpours affect survival and development of insect herbivores: The specter of climate change? Ecology 2019, 100, e02819. [Google Scholar] [CrossRef]
- Sun, R.; Wu, H.; Zhang, K.; Li, A.; Zhang, X. Effects of relative humidity and water immersion on egg hatching and adult eclosion of Carposina sasakii. J. Fruit Sci. 2013, 30, 449–451. [Google Scholar] [CrossRef]
- Franzén, M.; Francioli, Y.; Askling, J.; Kindvall, O.; Johansson, V.; Forsman, A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front. Ecol. Evol. 2022, 10, 917991. [Google Scholar] [CrossRef]
- Bian, H.; Yu, S.; Li, W.; Lu, J.; Jia, C.; Mao, J.; Fu, Q.; Song, Y.; Cai, P. Impact of Climate Change on Peach Fruit Moth Phenology: A Regional Perspective from China. Insects 2024, 15, 825. [Google Scholar] [CrossRef]
- Toledo-Hernández, E.; Peña-Chora, G.; Mancilla-Dorantes, I.; Torres-Rojas, F.I.; Romero-Ramírez, Y.; Palemón-Alberto, F.; Ortega-Acosta, S.Á.; Delgado-Núñez, E.J.; Salinas-Sánchez, D.O.; Tagle-Emigdio, L.J.; et al. A Review of Biological Control One Decade After the Sorghum Aphid (Melanaphis sorghi) Outbreak. Plants 2024, 13, 2873. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Gullino, M.L.; Albajes, R.; Al-Jboory, I.; Angelotti, F.; Chakraborty, S.; Garrett, K.A.; Hurley, B.P.; Juroszek, P.; Lopian, R.; Makkouk, K.; et al. Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability 2022, 14, 12421. [Google Scholar] [CrossRef]
- Guo, C.; Rong, Y. Damage of Carposina sasakii to peach trees and its pollution-free control. Hebei Fruits 2020, 2, 30–31. [Google Scholar] [CrossRef]
- Wei, X.; Xu, D.; Zhuo, Z. Predicting the Impact of Climate Change on the Geographical Distribution of Leafhopper, Cicadella viridis in China through the MaxEnt Model. Insects 2023, 14, 586. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Zhang, Y. Impact of environmental variables and species distribution data on prediction of potential suitable areas for Paeonia szechuanica based on MaxEnt model. J. Gansu For. Sci. Technol. 2024, 49, 49–55, 71. [Google Scholar]
- Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. Actinidiae under climate change in China. PLoS ONE 2018, 13, e0192153. [Google Scholar] [CrossRef]













| No. | Climatic Variable | Contribution Rate/% | Permutation Importance/% |
|---|---|---|---|
| prec7 | July precipitation | 38 | 6.2 |
| tmin8 | August average minimum temperature | 16.4 | 42.7 |
| tmin4 | April average minimum temperature | 15 | 28.1 |
| bio4 | Temperature Seasonality (standard deviation × 100) | 14.5 | 5.7 |
| bio15 | Precipitation seasonality | 8.7 | 2 |
| bio19 | Precipitation in the Coldest Quarter | 4 | 0.8 |
| tmax5 | May average maximum temperature | 3.4 | 14.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, Z.; Wu, L.; Yao, H.; Cui, S.; Deng, A.; Gao, R.; Yu, F.; Wang, W.; Lian, S.; Li, Y.; et al. Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae). Insects 2026, 17, 109. https://doi.org/10.3390/insects17010109
Huang Z, Wu L, Yao H, Cui S, Deng A, Gao R, Yu F, Wang W, Lian S, Li Y, et al. Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae). Insects. 2026; 17(1):109. https://doi.org/10.3390/insects17010109
Chicago/Turabian StyleHuang, Ziyu, Ling Wu, Huimin Yao, Shaopeng Cui, Angie Deng, Ruihe Gao, Fei Yu, Weifeng Wang, Shiyi Lian, Yali Li, and et al. 2026. "Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae)" Insects 17, no. 1: 109. https://doi.org/10.3390/insects17010109
APA StyleHuang, Z., Wu, L., Yao, H., Cui, S., Deng, A., Gao, R., Yu, F., Wang, W., Lian, S., Li, Y., Men, L., & Zhang, Z. (2026). Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae). Insects, 17(1), 109. https://doi.org/10.3390/insects17010109

