Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = instrumented buoy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6218 KiB  
Article
The Design and Data Analysis of an Underwater Seismic Wave System
by Dawei Xiao, Qin Zhu, Jingzhuo Zhang, Taotao Xie and Qing Ji
Sensors 2025, 25(13), 4155; https://doi.org/10.3390/s25134155 - 3 Jul 2025
Viewed by 514
Abstract
Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage [...] Read more.
Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage architecture consisting of watertight instrument housing, a communication circuit, and a buoy to realize high-capacity real-time data transmissions. The host computer performs the collaborative optimization of multi-modal hardware architecture and adaptive signal processing algorithms, enabling the detection of ship targets in oceanic environments. Through verification in a water tank and sea trials, the system successfully measured seismic wave signals. An improved ALE-LOFAR (Adaptive Line Enhancer–Low-Frequency Analysis) joint framework, combined with DEMON (Demodulation of Envelope Modulation) demodulation technology, was proposed to conduct the spectral feature analysis of ship seismic wave signals, yielding the low-frequency signal characteristics of vessels. This scheme provides an important method for the covert monitoring of shallow-sea targets, providing early warnings of illegal fishing and ensuring underwater security. Full article
(This article belongs to the Special Issue Acoustic Sensing for Condition Monitoring)
Show Figures

Figure 1

21 pages, 5352 KiB  
Article
Hydrodynamic and Vibroacoustic Simulation Analysis of the Main Float in an Acoustic Submerged Buoy System
by Jie Liu, Zixuan Jiang, Libin Du, Zhichao Lv, Hanbing Cui, Xinyu Li and Guangxin Liang
J. Mar. Sci. Eng. 2025, 13(7), 1254; https://doi.org/10.3390/jmse13071254 - 28 Jun 2025
Cited by 1 | Viewed by 314
Abstract
During prolonged deployment, deep-sea acoustic submerged buoys may undergo displacement and torsional deformation of their main floating body under turbulent flows, which degrades the quality of acquired sensor data and introduces vibration-induced noise that interferes with acoustic measurements. This paper presents a novel [...] Read more.
During prolonged deployment, deep-sea acoustic submerged buoys may undergo displacement and torsional deformation of their main floating body under turbulent flows, which degrades the quality of acquired sensor data and introduces vibration-induced noise that interferes with acoustic measurements. This paper presents a novel structural design for acoustic buoy main bodies based on hydrodynamic principles. We performed fluid-structure interaction (FSI) simulations to evaluate the dynamic response characteristics of the structure in deep-sea conditions, including computational analysis of velocity and pressure field distributions surrounding the buoy. Leveraging pressure data derived from computational fluid dynamics (CFD) simulations, we developed an innovative vibration noise quantification methodology. This approach employs plane wave excitation with equivalent pressure magnitude to simulate hydrodynamic loading effects while incorporating tripartite coupling mechanisms among fluid, structural, and acoustic domains. The simulated vibration noise profiles establish environmental baseline noise levels for onboard acoustic monitoring instruments, thereby enhancing measurement fidelity. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures (2nd Edition))
Show Figures

Figure 1

11 pages, 1458 KiB  
Article
Evaluation of Measurement Uncertainty for the Wave Buoy Calibration Device Using a Vertical Lifting Method
by Yafei Huang, Donglei Zhao, Chenhao Gao, Tian Yan and Lijun He
J. Mar. Sci. Eng. 2025, 13(3), 605; https://doi.org/10.3390/jmse13030605 - 19 Mar 2025
Viewed by 414
Abstract
This study evaluates the measurement uncertainty of the wave buoy calibration device using a vertical lifting method to ensure the accuracy and reliability of wave buoy measurements for marine research. The calibration device employs a linear motor-driven vertical displacement system, integrating a standard [...] Read more.
This study evaluates the measurement uncertainty of the wave buoy calibration device using a vertical lifting method to ensure the accuracy and reliability of wave buoy measurements for marine research. The calibration device employs a linear motor-driven vertical displacement system, integrating a standard steel tape for wave height measurement and a photoelectric switch-based time calibration module for wave period verification. To address the limitations of traditional instruments, the device utilizes a 0.1 mm laser beam and image processing software to enhance the resolution of the standard steel tape, reducing the smallest division measurement from 1 mm to 0.1 mm. Additionally, a high-precision time calibration method synchronizes the time of the motor’s upper computer software and a frequency meter, minimizing indication error. Key uncertainty sources, including repeatability, environmental temperature effects, and the smallest division measure of instrument, were systematically analyzed. Results demonstrate that the extended measurement uncertainty (k = 2) for wave heights of 0.03 m and 40 m are 0.058 mm and 1.088 mm, respectively, while the uncertainty for a 30 s wave period is 3 ms. These values meet the stringent accuracy requirements (0.5% of measured values) for calibrating advanced wave buoys like the Directional Waverider 4. The proposed device provides a robust solution for validating wave buoy performance, offering significant practical value for oceanographic studies and coastal engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 5172 KiB  
Article
Lake SkyWater—A Portable Buoy for Measuring Water-Leaving Radiance in Lakes Under Optimal Geometric Conditions
by Arthur Coqué, Guillaume Morin, Tiphaine Peroux, Jean-Michel Martinez and Thierry Tormos
Sensors 2025, 25(5), 1525; https://doi.org/10.3390/s25051525 - 28 Feb 2025
Cited by 1 | Viewed by 978
Abstract
This study introduces Lake SkyWater (LSW), a novel radiometric buoy designed for the reliable measurement of remote sensing reflectance (Rrs) in lakes using the Skylight-Blocked Approach (SBA). LSW addresses key challenges in “on-water” field radiometry owing to its motorised rotating system, [...] Read more.
This study introduces Lake SkyWater (LSW), a novel radiometric buoy designed for the reliable measurement of remote sensing reflectance (Rrs) in lakes using the Skylight-Blocked Approach (SBA). LSW addresses key challenges in “on-water” field radiometry owing to its motorised rotating system, which maintains the radiance sensor in optimal geometrical conditions (i.e., facing the sun). Our device is easy to transport and deploy and can be controlled with a smartphone over Wi-Fi. Its modular design, which uses standard components and custom 3D-printed parts, facilitates customisation. A field experiment demonstrated excellent performance in the visible spectrum (400–700 nm) and no significant differences compared with handheld SBA measurements when measuring Rrs (coefficient of determination > 0.99 and general accuracy (median symmetric accuracy) of ~2.43%). Areas for potential improvement were identified, such as refinement of orientation control and addressing the occasional rotation of the float. Nonetheless, LSW shortens the acquisition time, reduces the risk of fore-optics contamination, and ensures that the measurements are conducted under optimal geometric conditions. In conclusion, LSW is a promising instrument for the operational collection of high-quality Rrs spectra in lakes, which is important for advancing both research and monitoring applications in aquatic remote sensing. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 5693 KiB  
Article
Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data
by Kuo Zhang, Yuxin Hu, Junxin Yang and Xiaochen Wang
Remote Sens. 2025, 17(4), 591; https://doi.org/10.3390/rs17040591 - 9 Feb 2025
Viewed by 779
Abstract
The primary payload onboard the Gaofen-3-02 (GF3-02) satellite is a C-band Synthetic Aperture Radar (SAR) capable of achieving a maximum resolution of 1 m. This instrument is critical to monitor the marine environment, particularly for tracking sea surface wind speeds, an important marine [...] Read more.
The primary payload onboard the Gaofen-3-02 (GF3-02) satellite is a C-band Synthetic Aperture Radar (SAR) capable of achieving a maximum resolution of 1 m. This instrument is critical to monitor the marine environment, particularly for tracking sea surface wind speeds, an important marine environmental parameter. In this study, we utilized 192 sets of GF3-02 SAR data, acquired in Quad-Polarization Strip I (QPSI) mode in March 2022, to retrieve sea surface wind speeds. Prior to wind speed retrieval for vertical-vertical (VV) polarization, radiometric calibration accuracy was analyzed, yielding good performance. The results showed a bias and root mean square errors (RMSEs) of 0.02 m/s and 1.36 m/s, respectively, when compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis V5 (ERA5) data. For horizontal–horizontal (HH) polarization, two types of polarization ratio (PR) models were introduced based on the GF3-02 SAR data. Combining these refitted PR models with CMOD5.N, the results for HH polarization exhibited a bias of −0.18 m/s and an RMSE of 1.25 m/s in comparison to the ERA5 data. Regarding vertical–horizontal (VH) polarization, two linear models based on both measured normalized radar cross sections (NRCSs) and denoised NRCSs were developed. The findings indicate that denoising significantly enhances the accuracy of wind speed measurements for VH polarization when dealing with low wind speeds. When compared against buoy data, the wind speed retrieval results demonstrated a bias of 0.23 m/s and an RMSE of 1.77 m/s. Finally, a comparative analysis of the above retrieval results across all three polarizations was conducted to further understand their respective performances. Full article
Show Figures

Figure 1

18 pages, 5665 KiB  
Article
Performance Characteristics of Newly Developed Real-Time Wave Measurement Buoy Using the Variometric Approach
by Chen Xue, Jingsong Guo, Shumin Jiang, Yanfeng Wang, Yanliang Guo and Jie Li
J. Mar. Sci. Eng. 2024, 12(11), 2032; https://doi.org/10.3390/jmse12112032 - 10 Nov 2024
Cited by 1 | Viewed by 2928
Abstract
Accurate measurement of ocean wave parameters is critical for applications including ocean modeling, coastal engineering, and disaster management. This article introduces a novel global navigation satellite system (GNSS) drifting buoy for surface wave measurements that addresses the challenges of performing real-time, high-precision measurements [...] Read more.
Accurate measurement of ocean wave parameters is critical for applications including ocean modeling, coastal engineering, and disaster management. This article introduces a novel global navigation satellite system (GNSS) drifting buoy for surface wave measurements that addresses the challenges of performing real-time, high-precision measurements and realizing cost-effective large-scale deployment. Unlike traditional approaches, this buoy uses the kinematic extension of the variometric approach for displacement analysis stand-alone engine (Kin-VADASE) velocity measurement method, thus eliminating the need for additional high-precision measurement units and an expensive complement of satellite orbital products. Through testing in the South China Sea and Laoshan Bay, the results showed good consistency in significant wave height and main wave direction between the novel buoy and a Datawell DWR-G4, even under mild wind and wave conditions. However, wave mean period disparities were observed partially because of sampling frequency differences. To validate this idea, we used Joint North Sea Wave Project (Jonswap) spectral waves as input signals, the bias characteristics of the mean periods of the spectral calculations were compared under conditions of identical input signals and gradient-distributed wind speeds. Results showed an average difference of 0.28 s between the sampling frequencies of 1.28 Hz and 5 Hz. The consequence that high-frequency signals have considerable effects on the mean wave period calculations indicates the necessity of the buoy’s high-frequency operation mode. This GNSS drifting buoy offers a cost-effective, globally deployable solution for ocean wave measurement. Its potential for large-scale networked ocean wave observation makes it a valuable oceanic research and monitoring instrument. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

11 pages, 3246 KiB  
Technical Note
Wavelength Cut-Off Error of Spectral Density from MTF3 of SWIM Instrument Onboard CFOSAT: An Investigation from Buoy Data
by Yuexin Luo, Ying Xu, Hao Qin and Haoyu Jiang
Remote Sens. 2024, 16(16), 3092; https://doi.org/10.3390/rs16163092 - 22 Aug 2024
Cited by 1 | Viewed by 967
Abstract
The Surface Waves Investigation and Monitoring instrument (SWIM) provides the directional wave spectrum within the wavelength range of 23–500 m, corresponding to a frequency range of 0.056–0.26 Hz in deep water. This frequency range is narrower than the 0.02–0.485 Hz frequency range of [...] Read more.
The Surface Waves Investigation and Monitoring instrument (SWIM) provides the directional wave spectrum within the wavelength range of 23–500 m, corresponding to a frequency range of 0.056–0.26 Hz in deep water. This frequency range is narrower than the 0.02–0.485 Hz frequency range of buoys used to validate the SWIM nadir Significant Wave Height (SWH). The modulation transfer function used in the current version of the SWIM data product normalizes the energy of the wave spectrum using the nadir SWH. A discrepancy in the cut-off frequency/wavelength ranges between the nadir and off-nadir beams can lead to an overestimation of off-nadir cut-off SWHs and, consequently, the spectral densities of SWIM wave spectra. This study investigates such errors in SWHs due to the wavelength cut-off effect using buoy data. Results show that this wavelength cut-off error of SWH is small in general thanks to the high-frequency extension of the resolved frequency range. The corresponding high-frequency cut-off errors are systematic errors amenable to statistical correction, and the low-frequency cut-off error can be significant under swell-dominated conditions. By leveraging the properties of these errors, we successfully corrected the high-frequency cut-off SWH error using an artificial neural network and mitigated the low-frequency cut-off SWH error with the help of a numerical wave hindcast. These corrections significantly reduced the error in the estimated cut-off SWH, improving the bias, root-mean-square error, and correlation coefficient from 0.086 m, 0.111 m, and 0.9976 to 0 m, 0.039 m, and 0.9994, respectively. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

18 pages, 7386 KiB  
Article
Sea Surface Height Measurements Based on Multi-Antenna GNSS Buoys
by Xiaoming Xue, Jichao Yang, Qing Zhao, Shengli Wang, Ranshuo Zhao and Hulin Shao
Sensors 2024, 24(11), 3451; https://doi.org/10.3390/s24113451 - 27 May 2024
Cited by 1 | Viewed by 1620
Abstract
Sea level monitoring is an essential foundational project for studying global climate change and the rise in sea levels. Satellite radar altimeters, which can sometimes provide inaccurate sea surface height data near the coast, are affected by both the instrument itself and geophysical [...] Read more.
Sea level monitoring is an essential foundational project for studying global climate change and the rise in sea levels. Satellite radar altimeters, which can sometimes provide inaccurate sea surface height data near the coast, are affected by both the instrument itself and geophysical factors. Buoys equipped with GNSS receivers offer a relatively flexible deployment at sea, allowing for long-term, high-precision measurements of sea surface heights. When operating at sea, GNSS buoys undergo complex movements with multiple degrees of freedom. Attitude measurements are a crucial source of information for understanding the motion state of the buoy at sea, which is related to the buoy’s stability and reliability during its development. In this study, we designed and deployed a four-antenna GNSS buoy with both position and attitude measurement capabilities near Jimiya Wharf in Qingdao, China, to conduct offshore sea surface monitoring activities. The GNSS data were processed using the Precise Point Positioning (PPK) method to obtain a time series of sea surface heights, and the accuracy was evaluated using synchronous observation data from a small sea surface height radar. The difference between the GNSS buoy and the full-time radar was calculated, resulting in a root-mean-square error (RMSE) of 1.15 cm. Concurrently, the attitude of the GNSS buoy was calculated using multi-antenna technology, and the vertical elevation of the GNSS buoy antenna was corrected using the obtained attitude data. The RMSE between the corrected GNSS buoy data and the high ground radar was 1.12 cm, indicating that the four-antenna GNSS buoy can not only acquire high-precision coastal sea level data but also achieve synchronous measurement of the buoy’s attitude. Furthermore, the data accuracy was also improved after the sea level attitude correction. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 6086 KiB  
Article
Design and Analysis of a Buoy-Based Cable Seafloor Observatory System Response under Extreme Weather Conditions
by Wenjie Zhou, Yanjun Li, Yulu Zhang, Qingyan Jiang, Dong Chen, Yanzhen Gu and Yuan Lin
J. Mar. Sci. Eng. 2024, 12(6), 889; https://doi.org/10.3390/jmse12060889 - 27 May 2024
Viewed by 1918
Abstract
In order to address the requirements of scientific multidisciplinary observation in diverse small-scale regions, we have introduced the Buoy-based Cable Seafloor Observatory System (BCSOS). This system offers a distinct advantage in contexts where the use of shorter cables is feasible, contrasting with the [...] Read more.
In order to address the requirements of scientific multidisciplinary observation in diverse small-scale regions, we have introduced the Buoy-based Cable Seafloor Observatory System (BCSOS). This system offers a distinct advantage in contexts where the use of shorter cables is feasible, contrasting with the lengthy cables typically necessary for conventional observatories. The BCSOS consists of three primary components: the Real-Time Electric Communication (RTEC) Buoy, the Power Information Transmission System (PITS), and the Seafloor Observation Subsystem (SOS). The RTEC Buoy is equipped with instruments for measuring sea surface parameters and serves as a data and power hub. The PITS, comprising a robust EM cable, connects the buoy to the SOS, which houses instruments for seafloor observations. The system is designed for a maximum water depth of 100 m and has an expected lifespan of about 5 years. The BCSOS prototypes were deployed at the Huangqi Peninsula, Fujian Province, and successfully documented the process during Typhoon Doksuri (international code 2305) at the end of July 2023. The recorded data from the BCSOS revealed a significant increase in wave height and period as the storm approached the Huangqi Peninsula. Additionally, the RTEC buoy exhibited a notable response to the large waves. The data analysis revealed a distinct pattern between the buoy response and the direction of wave propagation across various sea conditions, that the buoy’s angular movement in pitch and roll directions follows a regular elliptical distribution corresponding to different wave propagation directions. Upon thorough evaluation, future enhancements to the system are slated to concentrate on refining its design, with a particular emphasis on bolstering stability and enhancing corrosion resistance. These improvements are aimed at cementing the system’s long-term viability and performance within the challenging marine environment. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

18 pages, 6588 KiB  
Article
Meshfree Interpolation of Multidimensional Time-Varying Scattered Data
by Vaclav Skala and Eliska Mourycova
Computers 2023, 12(12), 243; https://doi.org/10.3390/computers12120243 - 21 Nov 2023
Cited by 4 | Viewed by 2376
Abstract
Interpolating and approximating scattered scalar and vector data is fundamental in resolving numerous engineering challenges. These methodologies predominantly rely on establishing a triangulated structure within the data domain, typically constrained to the dimensions of 2D or 3D. Subsequently, an interpolation or approximation technique [...] Read more.
Interpolating and approximating scattered scalar and vector data is fundamental in resolving numerous engineering challenges. These methodologies predominantly rely on establishing a triangulated structure within the data domain, typically constrained to the dimensions of 2D or 3D. Subsequently, an interpolation or approximation technique is employed to yield a smooth and coherent outcome. This contribution introduces a meshless methodology founded upon radial basis functions (RBFs). This approach exhibits a nearly dimensionless character, facilitating the interpolation of data evolving over time. Specifically, it enables the interpolation of dispersed spatio-temporally varying data, allowing for interpolation within the space-time domain devoid of the conventional “time-frames”. Meshless methodologies tailored for scattered spatio-temporal data hold applicability across a spectrum of domains, encompassing the interpolation, approximation, and assessment of data originating from various sources, such as buoys, sensor networks, tsunami monitoring instruments, chemical and radiation detectors, vessel and submarine detection systems, weather forecasting models, as well as the compression and visualization of 3D vector fields, among others. Full article
(This article belongs to the Special Issue Advances in Database Engineered Applications 2023)
Show Figures

Figure 1

17 pages, 7361 KiB  
Article
On the Functionality of Radar and Laser Ocean Wave Sensors
by Pramod Kumar Jangir, Kevin C. Ewans and Ian R. Young
J. Mar. Sci. Eng. 2022, 10(9), 1260; https://doi.org/10.3390/jmse10091260 - 6 Sep 2022
Cited by 6 | Viewed by 2722
Abstract
Ocean wave design criteria are required for the design of offshore platforms and floating systems, which are derived using in situ measurements. However, there is uncertainty regarding the performance of the instruments used for the in situ measurements. The main instruments used by [...] Read more.
Ocean wave design criteria are required for the design of offshore platforms and floating systems, which are derived using in situ measurements. However, there is uncertainty regarding the performance of the instruments used for the in situ measurements. The main instruments used by the offshore industry are the Datawell Directional Waverider buoy and Rosemount WaveRadar, with Laser instruments also having been used for specific studies. Recent reports indicate measurements from these three instruments differ in the order of 10% but given the quite disparate nature of the measurements made by these instruments, it is far from clear what the source of this difference is. This paper investigates the wave measurement principles of Radar and Laser instruments using linear wave field simulations to better understand how the instruments perform. The Radar and Laser simulations include modeling electromagnetic signal beam reflections from water surfaces of an area equal to their footprint sizes, considering their beam characteristics and antenna pattern. The study confirms that the Radar underestimates spectral levels at frequencies above 0.5 Hz due to its significantly larger footprint at the water sea surface compared to the Laser (5.25 m vs. 0.15 m). The Laser performs well for almost the entire frequency range for all the cases considered. Full article
(This article belongs to the Special Issue Wave, Tidal and Offshore Wind Energy Site Assessment and Monitoring)
Show Figures

Figure 1

18 pages, 16103 KiB  
Article
SailBuoy Ocean Currents: Low-Cost Upper-Layer Ocean Current Measurements
by Nellie Wullenweber, Lars R. Hole, Peygham Ghaffari, Inger Graves, Harald Tholo and Lionel Camus
Sensors 2022, 22(15), 5553; https://doi.org/10.3390/s22155553 - 25 Jul 2022
Cited by 11 | Viewed by 3992
Abstract
This study introduces an alternative to the existing methods for measuring ocean currents based on a recently developed technology. The SailBuoy is an unmanned surface vehicle powered by wind and solar panels that can navigate autonomously to predefined waypoints and record velocity profiles [...] Read more.
This study introduces an alternative to the existing methods for measuring ocean currents based on a recently developed technology. The SailBuoy is an unmanned surface vehicle powered by wind and solar panels that can navigate autonomously to predefined waypoints and record velocity profiles using an integrated downward-looking acoustic Doppler current profiler (ADCP). Data collected on two validation campaigns show a satisfactory correlation between the SailBuoy current records and traditional observation techniques such as bottom-mounted and moored current profilers and moored single-point current meter. While the highest correlations were found in tidal signals, strong current, and calm weather conditions, low current speeds and varying high wave and wind conditions reduced correlation considerably. Filtering out some events with the high sea surface roughness associated with high wind and wave conditions may increase the SailBuoy ADCP listening quality and lead to better correlations. Not yet resolved is a systematic offset between the measurements obtained by the SailBuoy and the reference instruments of ±0.03 m/s. Possible reasons are discussed to be the differences between instruments (various products) as well as changes in background noise levels due to environmental conditions. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 5498 KiB  
Article
A Test Method for Obstacle-Avoidance Performance of Unmanned Surface Vehicles Based on Mobile-Buoy–Shore Multisource-Sensing-Data Fusion
by Guoquan Xiao, Guihong Zheng, Bing Ren, Yue Wang, Xiaobin Hong and Zhigang Zhang
J. Mar. Sci. Eng. 2022, 10(6), 819; https://doi.org/10.3390/jmse10060819 - 15 Jun 2022
Cited by 1 | Viewed by 2592
Abstract
In order to avoid the influence of the test system itself on the autonomous navigation and performance test accuracy of unmanned surface vehicles (USVs), a test method for the obstacle-avoidance performance of USVs based on mobile-buoy–shore multisource-sensing-data fusion is proposed. In this method, [...] Read more.
In order to avoid the influence of the test system itself on the autonomous navigation and performance test accuracy of unmanned surface vehicles (USVs), a test method for the obstacle-avoidance performance of USVs based on mobile-buoy–shore multisource-sensing-data fusion is proposed. In this method, a mobile-buoy-integrated test system is designed (that is, the test instrument is installed on the mobile buoy). The buoy is both the carrier of the test instrument and the obstacle. The software and hardware functions of the test system are realized in modules, and the obstacle-avoidance monitoring function of the USV is realized by the trajectory-tracking method of buoy perception preprocessing and shore adaptive weighted fusion. Then, on the basis of the mobile-buoy–shore sensing-data-fusion method, performance tests and a quantitative evaluation of the obstacle perception, static-obstacle avoidance, and dynamic-obstacle avoidance of the USV were carried out. The results show that: (1) the tested USV can accurately identify the distance between buoys; (2) the three static-obstacle-avoidance performance scores of the single obstacle, continuous obstacle, and inflection-point obstacle are 74.81, 77.14, and 47.61, respectively, and the quantitative evaluation score of the static-obstacle-avoidance comprehensive performance is 66.4; (3) the obstacle-avoidance-performance scores of overtaking, encounter, and cross encounter are about 53.92, 36.51, and 6.48, respectively, and the quantitative evaluation score of the comprehensive performance of the dynamic-obstacle avoidance is 72.36. The above quantitative evaluation results show that the system can: participate in track intervention and obstacle-avoidance monitoring as an obstacle; give the static- and dynamic-obstacle-avoidance quantitative evaluation results in a predetermined way, which verifies the feasibility and effectiveness of the obstacle-avoidance-performance test system of the USV on the basis of mobile-buoy–shore multisource-sensing fusion; and be used for the testing and evaluation of the obstacle-avoidance performance of USVs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 9410 KiB  
Article
Estimates of Hyperspectral Surface and Underwater UV Planar and Scalar Irradiances from OMI Measurements and Radiative Transfer Computations
by Alexander Vasilkov, Nickolay Krotkov, David Haffner, Zachary Fasnacht and Joanna Joiner
Remote Sens. 2022, 14(9), 2278; https://doi.org/10.3390/rs14092278 - 9 May 2022
Cited by 5 | Viewed by 3303
Abstract
Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate of the in-water hyperspectral radiation field. Solar UV radiation in ocean waters is estimated on a global scale by combining extraterrestrial solar irradiance from the Total and Spectral Solar Irradiance Sensor [...] Read more.
Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate of the in-water hyperspectral radiation field. Solar UV radiation in ocean waters is estimated on a global scale by combining extraterrestrial solar irradiance from the Total and Spectral Solar Irradiance Sensor (TSIS-1), satellite estimates of cloud/surface reflectivity, ozone from the Ozone Monitoring Instrument (OMI) and in-water chlorophyll concentration from the Moderate Resolution Imaging Spectroradiometer (MODIS) with radiative transfer computations in the ocean-atmosphere system. A comparison of the estimates of collocated OMI-derived surface irradiance with Marine Optical Buoy (MOBY) measurements shows a good agreement within 5% for different seasons. To estimate scalar irradiance at the ocean surface and in water, we propose scaling the planar irradiance, calculated from satellite observation, on the basis of Hydrolight computations. Hydrolight calculations show that the diffuse attenuation coefficients of scalar and planar irradiance with depth are quite close to each other. That is why the differences between the planar penetration and scalar penetration depths are small and do not exceed a couple of meters. A dominant factor defining the UV penetration depths is chlorophyll concentration. There are other constituents in water that absorb in addition to chlorophyll; the absorption from these constituents can be related to that of chlorophyll in Case I waters using an inherent optical properties (IOP) model. Other input parameters are less significant. The DNA damage penetration depths vary from a few meters in areas of productive waters to about 30–35 m in the clearest waters. A machine learning approach (an artificial neural network, NN) was developed based on the full physical algorithm for computational efficiency. The NN shows a very good performance in predicting the penetration depths (within 2%). Full article
(This article belongs to the Topic Advances in Environmental Remote Sensing)
Show Figures

Figure 1

25 pages, 3252 KiB  
Article
OpenMetBuoy-v2021: An Easy-to-Build, Affordable, Customizable, Open-Source Instrument for Oceanographic Measurements of Drift and Waves in Sea Ice and the Open Ocean
by Jean Rabault, Takehiko Nose, Gaute Hope, Malte Müller, Øyvind Breivik, Joey Voermans, Lars Robert Hole, Patrik Bohlinger, Takuji Waseda, Tsubasa Kodaira, Tomotaka Katsuno, Mark Johnson, Graig Sutherland, Malin Johansson, Kai Haakon Christensen, Adam Garbo, Atle Jensen, Olav Gundersen, Aleksey Marchenko and Alexander Babanin
Geosciences 2022, 12(3), 110; https://doi.org/10.3390/geosciences12030110 - 26 Feb 2022
Cited by 36 | Viewed by 9316
Abstract
There is a wide consensus within the polar science, meteorology, and oceanography communities that more in situ observations of the ocean, atmosphere, and sea ice are required to further improve operational forecasting model skills. Traditionally, the volume of such measurements has been limited [...] Read more.
There is a wide consensus within the polar science, meteorology, and oceanography communities that more in situ observations of the ocean, atmosphere, and sea ice are required to further improve operational forecasting model skills. Traditionally, the volume of such measurements has been limited by the high cost of commercially available instruments. An increasingly attractive solution to this cost issue is to use instruments produced in-house from open-source hardware, firmware, and postprocessing building blocks. In the present work, we release the next iteration of our open-source drifter and wave-monitoring instrument, which follows these solution aspects. The new design is significantly less expensive (typically by a factor of 5 compared with our previous, already cost-effective instrument), much easier to build and assemble for people without specific microelectronics and programming competence, more easily extendable and customizable, and two orders of magnitude more power-efficient (to the point where solar panels are no longer needed even for long-term deployments). Improving performance and reducing noise levels and costs compared with our previous generation of instruments is possible in large part thanks to progress from the electronics component industry. As a result, we believe that this will allow scientists in geosciences to increase by an order of magnitude the amount of in situ data they can collect under a constant instrumentation budget. In the following, we offer (1) a detailed overview of our hardware and software solution, (2) in situ validation and benchmarking of our instrument, (3) a fully open-source release of both hardware and software blueprints. We hope that this work, and the associated open-source release, will be a milestone that will allow our scientific fields to transition towards open-source, community-driven instrumentation. We believe that this could have a considerable impact on many fields by making in situ instrumentation at least an order of magnitude less expensive and more customizable than it has been for the last 50 years, marking the start of a new paradigm in oceanography and polar science, where instrumentation is an inexpensive commodity and in situ data are easier and less expensive to collect. Full article
Show Figures

Figure 1

Back to TopTop