Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data
Abstract
:1. Introduction
2. Materials
2.1. SAR Data
2.2. ERA5 Data
2.3. Buoy Data
3. Methods and Results
3.1. GF3-02 SAR Wind Speed Retrieval for VV Polarization
3.1.1. Radiometric Calibration Accuracy for VV Polarization
3.1.2. Wind Speed Retrieval for VV Polarization
3.2. GF3-02 SAR Wind Speed Retrieval for HH Polarization
3.2.1. Development of the PR Model from GF3-02 HH Polarization Data
3.2.2. Validation of the PR Model from GF3-02 HH Polarization Data
3.3. GF3-02 SAR Wind Speed Retrieval for VH Polarization
3.3.1. Development of the Wind Speed Retrieval Model from GF3-02 VH Polarization Data
3.3.2. Validation of the Linear Model from GF3-02 VH Polarization Data
3.4. Comparison of GF3-02 SAR Wind Speed Retrieval for VV, HH and VH Polarizations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, K.; Xu, Q.; Xu, D.; Xie, H.; Ning, J.; Huang, J. Review of remote sensing of sea surface wind field by space-borne SAR. Prog. Geophys. 2022, 37, 1807–1817. [Google Scholar]
- Zhang, K.; Dong, X.; Zhu, D.; Yun, R.; Wang, B.; Yu, M. An Improved Method of Noise Subtraction for the CFOSAT Scatterometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7506–7515. [Google Scholar] [CrossRef]
- Valenzuela, G.R. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound. Layer Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Beal, R.C.; Kudryavtsev, V.N.; Thompson, D.R. The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream. J. Geophys. Res.-Oceans 1997, 102, 5799–5814. [Google Scholar] [CrossRef]
- Yang, X.F.; Li, X.F.; Pichel, W.G.; Li, Z.W. Comparison of Ocean Surface Winds from ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res.-Ocean. 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res.-Ocean. 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res.-Ocean. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Verhoef, A.; Portabella, M.; Stoffelen, A.; Hersbach, H. CMOD5. n-the CMOD5 GMF for NeutralWinds. 2008. Available online: https://digital.csic.es/bitstream/10261/156198/1/Verhoef_et_al_2008.pdf (accessed on 27 January 2025).
- Ricciardulli, L.; Meissner, T.; Wentz, F. Towards a climate data record of satellite ocean vector winds. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2067–2069. [Google Scholar]
- Soisuvarn, S.; Jelenak, Z.; Chang, P.S.; Alsweiss, S.O.; Zhu, Q. CMOD5. H—A high wind geophysical model function for C-band vertically polarized satellite scatterometer measurements. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3744–3760. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Fan, K.; Huang, W.; Chang, J.; Lin, H.; Gu, Y. Sea Surface Wind Speeds Retrieval by SAR Combing with the NCEP/QSCAT Blended Wind Directions. Remote Sens. Technol. Appl. 2010, 25, 873–876. [Google Scholar]
- Zhang, K.; Xu, X.; Han, B.; Mansaray, L.R.; Guo, Q.; Huang, J. The Influence of Different Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed With C-2PO Models Using Full Polarization C-Band SAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5015–5025. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Xu, X.; Guo, Q.; Chen, Y.; Mansaray, L.R.; Li, Z.; Wang, X. Spatial Scale Effect on Wind Speed Retrieval Accuracy Using Sentinel-1 Copolarization SAR. IEEE Geosci. Remote Sens. Lett. 2018, 15, 882–886. [Google Scholar] [CrossRef]
- Wang, L.; Han, B.; Yuan, X.; Lei, B.; Ding, C.; Yao, Y.; Chen, Q. A preliminary analysis of wind retrieval, based on GF-3 wave mode data. Sensors 2018, 18, 1604. [Google Scholar] [CrossRef]
- Li, X.M.; Zhang, T.; Huang, B.; Jia, T. Capabilities of Chinese Gaofen-3 Synthetic Aperture Radar in Selected Topics for Coastal and Ocean Observations. Remote Sens. 2018, 10, 1929. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef]
- Shao, W.; Sheng, Y.; Sun, J. Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, X.; Feng, Q.; Ren, Y.; Shi, Y. Retrieval of Sea Surface Wind Speeds from Gaofen-3 Full Polarimetric Data. Remote Sens. 2019, 11, 813. [Google Scholar] [CrossRef]
- Elfouhaily, T. Physical Modeling of Electromagnetic Backscatter from the Ocean Surface; Application to Retrieval of Wind Fields and Wind Stress by Remote Sensing of the Marine Atmospheric Boundary Layer. Ph.D. Thesis, Univ. Paris VII, Paris, France, 1996. [Google Scholar]
- Thompson, D.R.; Elfouhaily, T.M.; Chapron, B. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing (IGARSS), Seattle, WA, USA, 6–10 July 1998; pp. 1671–1673. [Google Scholar]
- Mouche, A.; Hauser, D.; Daloze, J.F.; Guerin, C. Dual-polarization measurements at C-band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 753–769. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B. Global C-B and Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. J. Geophys. Res.-Ocean. 2015, 120, 7195–7207. [Google Scholar] [CrossRef]
- Zhang, B.; Mouche, A.; Lu, Y.; Perrie, W.; Zhang, G.; Wang, H. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1521–1525. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.; Li, X.; Pichel, W.; Guo, J.; He, Y. Ocean Vector Winds Retrieval From C-Band Fully Polarimetric SAR Measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
- Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte-Rivas, M. Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos. Meas. Tech. 2014, 7, 437–449. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, B.; Perrie, W.; Zheng, G.; Yang, J.; Fang, H. Assessment of Thermal Noise Effect on Wind Speed Retrieval Accuracy Using Sentinel-1 Cross-Polarized TOPSAR Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4208011. [Google Scholar] [CrossRef]
- Yang, J.; Han, B.; Zhong, L.; Yuan, X.; Wang, X.; Hu, Y.; Ding, C. First Assessment of GF3-02 SAR Ocean Wind Retrieval. Remote Sens. 2022, 14, 1880. [Google Scholar] [CrossRef]
- Peixoto, J.; Oort, A. Physics of Climate; American Institute of Physics.: Woodbury, NY, USA, 1992. [Google Scholar]
- Schulz-Stellenfleth, J.; Lehner, S. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1149–1160. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; Zhao, L.; Li, P.; Yang, J.; Zhang, L. NESZ Estimation and Calibration for Gaofen-3 Polarimetric Products by the Minimum Noise Envelope Estimator. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7517–7534. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, L.; Yuan, X.; Wang, X.; Han, B.; Hu, Y. First assessment of Noise-Equivalent Sigma-Zero in GF3-02 TOPSAR mode with sea surface wind speed retrieval. Acta Oceanol. Sin. 2023, 42, 84–96. [Google Scholar] [CrossRef]
Researchers | Time Span | Reference Dataset | CMOD | RMSE(m/s) |
---|---|---|---|---|
Li et al. [17] | 09/2016–11/2017 | WindSat Data | CMOD5.N | 1.72 |
Wang et al. [18] | 01/2017–04/2017 | Buoy Data | CMOD5.N | 2.34 |
Shao et al. [19] | 09/2016–03/2017 | ERA5 Data | CMOD5.N | 2.00 |
Zhang et al. [20] | 10/2016–05/2018 | ERA5 Data | CMOD5.N | 2.36 |
Researchers | Time Span | Reference Dataset | Optimal Model | RMSE (m/s) |
---|---|---|---|---|
Wang et al. [18] | 01/2017–04/2017 | Buoy Data | Mouche model | 2.50 |
Shao et al. [19] | 09/2016–03/2017 | ERA5 Data | Mouche model | 2.20 |
Zhang et al. [20] | 10/2016–05/2018 | ERA5 Data | Mouche model | 2.26 |
Orbit Code | Beam Code | Center Incidence Angle (deg) | Observation Time | Count of Scene |
---|---|---|---|---|
1607 | 199 | 36.23 | 14 March 2022 | 32 |
1614 | 199 | 36.22 | 14 March 2022 | 57 |
1614 | 192 | 26.56 | 14 March 2022 | 26 |
1629 | 211 | 46.03 | 15 March 2022 | 39 |
1634 | 213 | 47.41 | 16 March 2022 | 38 |
Station Code | Area | Station Geolocation (Lat/Lon(deg)) | Anemometer Height (m) |
---|---|---|---|
46002 | West Coastal Seas of America | 42.662N/130.507W | 3.8 |
51000 | Seas off the Hawaiian Islands | 23.528N/153.792W | 4.1 |
51004 | Seas off the Hawaiian Islands | 17.538N/152.230W | 4.1 |
Coefficient | Value |
---|---|
1.9693 | |
1.1106 | |
0.0166 | |
0.0980 | |
0.9279 |
Coefficient | Value |
---|---|
12.9948 | |
0.0054 | |
−13.9381 | |
9.9005 × 10−6 | |
0.2413 | |
1.3640 | |
2.2308 × 10−5 | |
0.2273 | |
1.6298 |
Beam Code | NESZ Value (dB) |
---|---|
192 | −35.0294 |
199 | −41.1854 |
211 | −36.8109 |
213 | −39.7870 |
Polarizations | Reference Dataset | Bias (m/s) | RMSE (m/s) |
---|---|---|---|
VV | ERA5 Data | 0.02 | 1.36 |
HH | ERA5 Data | −0.18 | 1.25 |
VH | ERA5/Buoy Data | 0.01/0.23 | 2.07/1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Hu, Y.; Yang, J.; Wang, X. Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data. Remote Sens. 2025, 17, 591. https://doi.org/10.3390/rs17040591
Zhang K, Hu Y, Yang J, Wang X. Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data. Remote Sensing. 2025; 17(4):591. https://doi.org/10.3390/rs17040591
Chicago/Turabian StyleZhang, Kuo, Yuxin Hu, Junxin Yang, and Xiaochen Wang. 2025. "Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data" Remote Sensing 17, no. 4: 591. https://doi.org/10.3390/rs17040591
APA StyleZhang, K., Hu, Y., Yang, J., & Wang, X. (2025). Sea Surface Wind Speed Retrieval Using Gaofen-3-02 SAR Full Polarization Data. Remote Sensing, 17(4), 591. https://doi.org/10.3390/rs17040591