Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = institutional carbon management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3601 KiB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

26 pages, 1062 KiB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 (registering DOI) - 5 Aug 2025
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 1090 KiB  
Article
Analyzing CO2 Emissions by CSI Categories: A Life Cycle Perspective
by Gulbin Ozcan-Deniz and Sarah Rodovalho
Sustainability 2025, 17(15), 6830; https://doi.org/10.3390/su17156830 - 27 Jul 2025
Viewed by 433
Abstract
As the construction industry continues to evolve, energy consumption of buildings, particularly CO2 emissions, has become a critical focus for sustainable development. The need for effective design decisions regarding the selection of materials throughout the project life cycle is apparent, yet the [...] Read more.
As the construction industry continues to evolve, energy consumption of buildings, particularly CO2 emissions, has become a critical focus for sustainable development. The need for effective design decisions regarding the selection of materials throughout the project life cycle is apparent, yet the link between specifications and CO2 emissions has not been set yet. This study presents a comprehensive life cycle assessment (LCA) of CO2 emissions across various Construction Specifications Institute (CSI) categories, aiming to identify the carbon footprint of different building systems and materials. The methodology focuses on using 3D building model case studies to evaluate the design decisions versus their impact on global warming potential (GWP). The results of this study emphasize that within CSI categories, concrete divisions consistently emerge as the predominant contributors to GWP, exceeding 75% in several instances. Following closely, metals contribute approximately 50% in multiple projects. The study also explores sustainable design options across CSI divisions to provide insights into building components contributing most to a building’s overall carbon footprint. This deeper understanding of sustainable design principles regarding CSI divisions and their impact on carbon footprint reduction will help sustainable designers and construction managers to implement carbon-conscious material choices and design strategies early in the planning phase. Full article
(This article belongs to the Special Issue Green Building: CO2 Emissions in the Construction Industry)
Show Figures

Figure 1

16 pages, 589 KiB  
Article
CT-Based Radiomics Enhance Respiratory Function Analysis for Lung SBRT
by Alice Porazzi, Mattia Zaffaroni, Vanessa Eleonora Pierini, Maria Giulia Vincini, Aurora Gaeta, Sara Raimondi, Lucrezia Berton, Lars Johannes Isaksson, Federico Mastroleo, Sara Gandini, Monica Casiraghi, Gaia Piperno, Lorenzo Spaggiari, Juliana Guarize, Stefano Maria Donghi, Łukasz Kuncman, Roberto Orecchia, Stefania Volpe and Barbara Alicja Jereczek-Fossa
Bioengineering 2025, 12(8), 800; https://doi.org/10.3390/bioengineering12080800 - 25 Jul 2025
Viewed by 446
Abstract
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this [...] Read more.
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this study is to test the capability of radiomic features to predict pulmonary function parameters, focusing on the diffusing capacity of lungs to carbon monoxide (DLCO). Methods: Retrospective data were retrieved from electronical medical records of patients treated with Stereotactic Body Radiation Therapy (SBRT) at a single institution. Inclusion criteria were as follows: (1) SBRT treatment performed for primary early-stage non-small cell lung cancer (ES-NSCLC) or oligometastatic lung nodules, (2) availability of simulation four-dimensional computed tomography (4DCT) scan, (3) baseline spirometry data availability, (4) availability of baseline clinical data, and (5) written informed consent for the anonymized use of data. The gross tumor volume (GTV) was segmented on 4DCT reconstructed phases representing the moment of maximum inhalation and maximum exhalation (Phase 0 and Phase 50, respectively), and radiomic features were extracted from the lung parenchyma subtracting the lesion/s. An iterative algorithm was clustered based on correlation, while keeping only those most associated with baseline and post-treatment DLCO. Three models were built to predict DLCO abnormality: the clinical model—containing clinical information; the radiomic model—containing the radiomic score; the clinical-radiomic model—containing clinical information and the radiomic score. For the models just described, the following were constructed: Model 1 based on the features in Phase 0; Model 2 based on the features in Phase 50; Model 3 based on the difference between the two phases. The AUC was used to compare their performances. Results: A total of 98 patients met the inclusion criteria. The Charlson Comorbidity Index (CCI) scored as the clinical variable most associated with baseline DLCO (p = 0.014), while the most associated features were mainly texture features and similar among the two phases. Clinical-radiomic models were the best at predicting both baseline and post-treatment abnormal DLCO. In particular, the performances for the three clinical-radiomic models at predicting baseline abnormal DLCO were AUC1 = 0.72, AUC2 = 0.72, and AUC3 = 0.75, for Model 1, Model 2, and Model 3, respectively. Regarding the prediction of post-treatment abnormal DLCO, the performances of the three clinical-radiomic models were AUC1 = 0.91, AUC2 = 0.91, and AUC3 = 0.95, for Model 1, Model 2, and Model 3, respectively. Conclusions: This study demonstrates that radiomic features extracted from healthy lung parenchyma on a 4DCT scan are associated with baseline pulmonary function parameters, showing that radiomics can add a layer of information in surrogate models for lung function assessment. Preliminary results suggest the potential applicability of these models for predicting post-SBRT lung function, warranting validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Engineering the Future of Radiotherapy: Innovations and Challenges)
Show Figures

Figure 1

27 pages, 2136 KiB  
Article
The Effect of Shared and Inclusive Governance on Environmental Sustainability at U.S. Universities
by Dragana Djukic-Min, James Norcross and Elizabeth Searing
Sustainability 2025, 17(14), 6630; https://doi.org/10.3390/su17146630 - 21 Jul 2025
Viewed by 427
Abstract
As climate change consequences intensify, higher education institutions (HEIs) have an opportunity and responsibility to model sustainable operations. This study examines how embracing shared knowledge and inclusion in sustainability decision making facilitates green human resource management (GHRM) efforts to invigorate organizational environmental performance. [...] Read more.
As climate change consequences intensify, higher education institutions (HEIs) have an opportunity and responsibility to model sustainable operations. This study examines how embracing shared knowledge and inclusion in sustainability decision making facilitates green human resource management (GHRM) efforts to invigorate organizational environmental performance. The study examines the effects of shared and inclusive governance on campus sustainability via a regression model and the mediating role of employee participation via a structural equation modeling approach. The results show that shared governance and inclusive governance positively predict the commitment of HEIs to reducing greenhouse gas emissions, and campus engagement mediates these relationships, underscoring the importance of participation. These findings align with stakeholder theory in demonstrating that diverse voices in decision making can enhance commitment to organizational goals like sustainability. The findings also highlight the importance of shared and inclusive governance arrangements at college campuses not only for ethical reasons but also for achieving desired outcomes like carbon neutrality. For campus leaders striving to “green” their institutions, evaluating cross-departmental representation in governance structures and promoting inclusive cultures that make all students and staff feel welcome appear as important complements to GHRM practices. Full article
(This article belongs to the Special Issue Sustainable Management for the Future of Education Systems)
Show Figures

Figure 1

25 pages, 1771 KiB  
Article
Construction of Multi-Sample Public Building Carbon Emission Database Model Based on Energy Activity Data
by Yue Guo, Xin Zheng, Wei Wei, Yuancheng He, Xiang Peng, Fei Zhao, Hailong Wu, Wenxin Bi, Hongyang Yan and Xiaohan Ren
Energies 2025, 18(14), 3635; https://doi.org/10.3390/en18143635 - 9 Jul 2025
Viewed by 224
Abstract
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the [...] Read more.
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the energy consumption data of relevant buildings in the region and classifying the building types, aiming to quantitatively analyze the carbon emission characteristics of different types of public buildings and provide data support for the national and local governments, enterprises, universities and research institutions, and the power industry. This study is divided into three phases: The first stage is the mapping of carbon emission benchmarks. The second stage is the analysis of multi-dimensional-building carbon emission characteristics. The third stage is to evaluate the design optimization plan and propose technical improvement suggestions. At present, this research is in the first stage: collecting and analyzing information data such as the energy consumption of different types of buildings, building a carbon emission database model, and extracting and analyzing the carbon emission benchmarks and characteristics of each building type from the data of 184 public buildings in a given area. Moreover, preliminary exploration of the second phase has been conducted, focusing on identifying key influencing factors of carbon emissions during the operational phase of public buildings. Office buildings have been selected as representative samples to carry out baseline modeling and variable selection using linear regression analysis. The results of this study are of great significance in the energy field, providing data support for public building energy management, energy policy formulation, and carbon trading mechanisms. Full article
Show Figures

Figure 1

31 pages, 1271 KiB  
Article
Assessment of the Projects’ Prospects in the Economic and Technological Development of the Oil and Gas Complex in the Republic of Mozambique
by Tatyana Semenova and Nunes Churrana
Resources 2025, 14(7), 106; https://doi.org/10.3390/resources14070106 - 28 Jun 2025
Viewed by 1051
Abstract
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including [...] Read more.
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including Coral South FLNG and Mozambique LNG, focused on their technological features, economic parameters and environmental impact. It is shown that the introduction of floating liquefaction technology reduces capital expenditures, increases operational flexibility, and minimizes infrastructure risks, especially in conditions of geopolitical instability. Based on a comparative analysis of the projects, it was found that the use of modular solutions and the integration of carbon capture and storage (CCS) systems contribute to improving sustainability and investment attractiveness. A patent analysis of technological innovations was carried out, which made it possible to substantiate the prospects for using nanotechnologies and advanced CO2 capture systems for further development of the sector. The results of the study indicate the need to strengthen content localization, develop human capital, and create effective revenue management mechanisms to ensure sustainable growth. The developed strategic development concept is based on the principles of the sixth technological paradigm, which implies an emphasis on environmental standards and technological modernization, including on the basis of nanotechnology. Thus, it is established that the successful implementation of gas projects in Mozambique can become the basis for long-term socio-economic development of the country, provided that technological and institutional innovations are integrated. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

25 pages, 379 KiB  
Article
Unlocking the Economic and Business Potential of District Heating: The State of the Art and a Research Agenda
by Amir Maghssudipour, Marco Noro, Giovanni Giacomello, Elena Buoso and Giorgia Dalla Santa
Sustainability 2025, 17(13), 5796; https://doi.org/10.3390/su17135796 - 24 Jun 2025
Viewed by 461
Abstract
District heating (DH) systems offer a sustainable solution to local energy needs by improving energy efficiency, reducing emissions, and fostering economic development. Despite their growing technological relevance, DH systems remain underexplored in the economics, business, and management literature. This study addresses this gap [...] Read more.
District heating (DH) systems offer a sustainable solution to local energy needs by improving energy efficiency, reducing emissions, and fostering economic development. Despite their growing technological relevance, DH systems remain underexplored in the economics, business, and management literature. This study addresses this gap by conducting a bibliometric analysis of DH research at the intersection of these fields, using data extracted from the Web of Science. We identify major theoretical foundations, including the resource-based view, stakeholder theory, and institutional economics, and explore key themes such as economic viability, business model innovation, regulatory frameworks, and sustainability strategies. By framing DH systems within broader economic and managerial discourses, our findings highlight the interdisciplinary nature of DH research and suggest critical avenues for future investigation, including the role of emerging technologies, consumer behavior, and policy design, and contribute to low-carbon, sustainable development. Full article
Show Figures

Figure 1

32 pages, 10668 KiB  
Review
From Energy Efficiency to Carbon Neutrality: A Global Bibliometric Review of Energy Conservation and Emission Reduction in Building Stock
by Junhong Liu, Shufan Zhang, Minda Ma, Ying He and Bo Wang
Buildings 2025, 15(12), 2051; https://doi.org/10.3390/buildings15122051 - 14 Jun 2025
Viewed by 815
Abstract
As a major contributor to global energy consumption and carbon emissions, the building sector plays a pivotal role in achieving carbon peaking and neutrality targets. This study systematically reviews the evolution of research on building stock energy conservation and emission reduction (BSECER) from [...] Read more.
As a major contributor to global energy consumption and carbon emissions, the building sector plays a pivotal role in achieving carbon peaking and neutrality targets. This study systematically reviews the evolution of research on building stock energy conservation and emission reduction (BSECER) from 1992 to 2025, which is based on a comprehensive bibliometric analysis of 2643 publications. The analysis highlights the research contributions of countries, institutions, and scholars in the BSECER field, reveals patterns in collaborative networks, and identifies the development and shifting focus of research topics over time. The findings indicate that current BSECER research centers around four main areas: behavioral efficiency optimization, full life cycle carbon management, urban system transformation, and the integration of intelligent technologies, which collectively form a multiscale emission reduction framework from individual behavior to large-scale systems. Building on these insights, this study outlines five key future research directions: advancing comprehensive carbon neutrality technologies, accelerating the engineering application of intelligent technologies, developing innovative multi-scenario policy simulation tools, overcoming integration challenges in renewable energy systems, and establishing an interdisciplinary platform that links health, behavior, and energy conservation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 2152 KiB  
Article
Farmers’ Indigenous Knowledge of Soil Management in an Altitudinal Gradient in Southern Ecuador
by Génesis Hualpa, Vinicio Carrión-Paladines, Wilmer Jiménez, Daniel Capa-Mora, Pablo Quichimbo, Natacha Fierro and Leticia Jiménez
Sustainability 2025, 17(11), 4983; https://doi.org/10.3390/su17114983 - 29 May 2025
Viewed by 1458
Abstract
This study aimed to (i) identify soil management practices implemented by farmers at the local level, (ii) determine the local soil fertility indicators recognized by farmers along an altitudinal gradient, (iii) evaluate the influence of altitude on soil properties, and (iv) integrate local [...] Read more.
This study aimed to (i) identify soil management practices implemented by farmers at the local level, (ii) determine the local soil fertility indicators recognized by farmers along an altitudinal gradient, (iii) evaluate the influence of altitude on soil properties, and (iv) integrate local and scientific knowledge of soil indicators and soil management. A total of 368 surveys were conducted to document traditional knowledge, visible indicators of soil fertility, and perceptions of soil health. These were compared with field-based measurements of soil organic carbon, texture, and environmental variables. A significant convergence was found between farmers’ perception of soil texture and scientific classification. A moderate correlation was observed between soil color and soil carbon stocks. Altitude showed a clear influence on carbon stocks, with soil at a higher elevation, characterized by greater rainfall and lower temperatures, storing more carbon. This integration of local and scientific knowledge offers practical value for farmers, extension agents, and institutions by supporting context-specific soil management decisions. It empowers farmers to actively participate in the design of sustainable agricultural practices that are both ecologically sound and culturally relevant. The study demonstrates that combining experiential knowledge with scientific data contributes to more resilient agroecosystems in mountainous rural areas. Full article
Show Figures

Figure 1

14 pages, 698 KiB  
Article
Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration
by Joana Prisco Pinheiro, Priscila Rosseto Camiloti, Ildo Luis Sauer and Carlos Eduardo Keutenedjian Mady
Energies 2025, 18(11), 2804; https://doi.org/10.3390/en18112804 - 28 May 2025
Viewed by 441
Abstract
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these [...] Read more.
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these solutions and the carbon footprint that better destinations could avoid. However, not treating the waste correctly aggravates land availability problems, especially in large cities such as São Paulo. Anaerobic digestion is an alternative to traditional waste management, and in addition to treating residues, it generates energy and recovers the nutrients present in MSW. Thermodynamic analyses are still scarce in the literature despite being a known process. This study performed an exergy analysis of an existing biogas plant at the Institute of Energy and Environment of the University of São Paulo with a processing capacity of 20 tons of MSW per day composed of three reactors (430 m3 each) and one internal combustion engine (ICE) of 75 kW. The plant uses MSW as the substrate for anaerobic digestion and generates electrical energy, biogas, and fertilizer for agriculture (digestate). Additionally, the plant operates in cogeneration, as the anaerobic digestion reactor uses the heat produced to generate electrical energy. The results showed that the exergy present in the substrate is 67,320 MJ/day. The products’ exergy flows and the processes’ efficiencies show that the exergy flow of the biogas (44,488 MJ/day) is significantly higher than the exergy flow of the digestate (1455 MJ/day). When considering the cogeneration process, the exergy flow was similar for heat and electric energy as the final products, with 10,987 MJ/day for electric energy and 5215 MJ/day for electric energy. The exergy efficiency of the digestion process was 68.25%, while that of cogeneration (digestate, heat and electric energy) was 26.23%. These results can help identify inefficiencies and optimize processes in an anaerobic digestion plant. Furthermore, thermodynamic analyses of anaerobic digestion found in the literature are mostly based on theoretical models. Thus, this study fills a gap regarding exergy analysis of actual biogas plants. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 954 KiB  
Review
Subnational REDD+ Implementation: A Synthesis of Opportunities and Challenges
by Youjin Jung and Joonsoon Kim
Land 2025, 14(6), 1152; https://doi.org/10.3390/land14061152 - 26 May 2025
Viewed by 570
Abstract
REDD+ is a global mechanism that reduces greenhouse gas emissions by preventing deforestation and forest degradation, enhancing forest carbon stocks, and promoting sustainable forest management in developing countries. It plays a crucial role for developing countries in achieving climate targets under the Paris [...] Read more.
REDD+ is a global mechanism that reduces greenhouse gas emissions by preventing deforestation and forest degradation, enhancing forest carbon stocks, and promoting sustainable forest management in developing countries. It plays a crucial role for developing countries in achieving climate targets under the Paris Agreement and can be implemented at the project, subnational, and national levels. Subnational REDD+ offers several advantages over project-level, such as reduced risk of overestimating emissions and enhanced management of leakage. However, the comprehensive opportunities and challenges of subnational REDD+ have not been extensively investigated in the literature. This paper aims to undertake a thorough review of subnational REDD+, highlighting its potential and the obstacles it faces. This systematic review synthesizes the existing literature on subnational REDD+ implementation, analyzing 54 peer-reviewed articles published between 2005 and 2024. The review identified three key factors for the effective implementation of subnational REDD+: financial, social, and institutional factors. Within these three factors, both opportunities and challenges were discussed, drawing on case studies and synthesizing practical implications. Our findings demonstrate that successful subnational REDD+ initiatives require integrated approaches that address the causal relationships between financing mechanisms, governance structures, and stakeholder engagement. The discussion further explores these interdependencies, revealing how constraints in one dimension create cascading effects across others. This study provides empirical insights and actionable recommendations for policymakers and project developers engaged in climate change mitigation efforts. Full article
Show Figures

Figure 1

20 pages, 1122 KiB  
Article
Valuing Carbon Assets for Sustainability: A Dual-Approach Assessment of China’s Certified Emission Reductions
by Jiawen Liu, Yue Liu, Jiayi Wang, Xinyue Chen and Liyuan Deng
Sustainability 2025, 17(11), 4777; https://doi.org/10.3390/su17114777 - 22 May 2025
Viewed by 686
Abstract
As China’s voluntary greenhouse gas emission reduction mechanism undergoes institutional revitalization, the accurate valuation of carbon assets such as China Certified Emission Reductions (CCERs) becomes increasingly critical for effective climate finance and sustainability-oriented investment. This study proposes an integrated value assessment model for [...] Read more.
As China’s voluntary greenhouse gas emission reduction mechanism undergoes institutional revitalization, the accurate valuation of carbon assets such as China Certified Emission Reductions (CCERs) becomes increasingly critical for effective climate finance and sustainability-oriented investment. This study proposes an integrated value assessment model for CCERs that combines Long Short-Term Memory (LSTM) neural network-based carbon price forecasting with both the discounted net cash flow method and the Black–Scholes option pricing framework. Applying this model to a wind power project, the study found that the practical value of CCERs, derived from verified emission reductions, significantly exceeds their market option value, underscoring the economic and environmental viability of such projects. By distinguishing between the realized and potential values of carbon credits, this research offers a comprehensive tool for carbon asset valuation that supports corporate carbon management and policy development. The framework contributes to the growing literature on sustainable finance by aligning carbon asset pricing with long-term climate goals and enhancing transparency in carbon markets. Full article
Show Figures

Figure 1

26 pages, 2141 KiB  
Review
Intelligent Maritime Shipping: A Bibliometric Analysis of Internet Technologies and Automated Port Infrastructure Applications
by Yangqiong Zou, Guangnian Xiao, Qingjun Li and Salvatore Antonio Biancardo
J. Mar. Sci. Eng. 2025, 13(5), 979; https://doi.org/10.3390/jmse13050979 - 19 May 2025
Cited by 10 | Viewed by 1533
Abstract
Amid the dual imperatives of global trade expansion and low-carbon transition, intelligent maritime shipping has emerged as a central driver for the innovation of international logistics systems, now entering a critical window period for the deep integration of Internet technologies and automated port [...] Read more.
Amid the dual imperatives of global trade expansion and low-carbon transition, intelligent maritime shipping has emerged as a central driver for the innovation of international logistics systems, now entering a critical window period for the deep integration of Internet technologies and automated port infrastructure. While existing research predominantly focuses on isolated applications of intelligent technologies, systematic evaluations of the synergistic effects of technological integration on maritime ecosystems, policy compatibility, and contributions to global carbon emission governance remain under-explored. Leveraging bibliometric analysis, this study systematically examines 488 publications from the Web of Science (WoS) Core Collection (2000–2024), yielding three pivotal findings: firstly, China dominates the research landscape, with a 38.5% contribution share, where Artificial Intelligence (AI), the Internet of Things (IoT), and port automation constitute the technological pillars. However, critical gaps persist in cross-system protocol standardization and climate-adaptive modeling, accounting for only 2.7% and 4.2% of the literature, respectively. Secondly, international collaboration networks exhibit pronounced “Islamization”, characterized by an inter-team collaboration rate of 17.3%, while the misalignment between rapid technological iteration and existing maritime regulations exacerbates industry risks. Thirdly, a dual-track pathway integrating Cyber–Physical System (CPS)-based digital twin ports and open-source vertical domain-specific large language models is proposed. Empirical evidence demonstrates its efficacy in reducing cargo-handling energy consumption by 15% and decision-making latency by 40%. This research proposes a novel tripartite framework, encompassing technological, institutional, and data sovereignty dimensions, to resolve critical challenges in integrating multi-source maritime data and managing cross-border governance. The model provides academically validated and industry-compatible strategies for advancing sustainable maritime intelligence. Subsequent investigations should expand data sources to include regional repositories and integrate interdisciplinary approaches, ensuring the adaptability of both technical systems and international policy coordination mechanisms across diverse maritime ecosystems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1169 KiB  
Article
Integrated Assessment of Rooftop Photovoltaic Systems and Carbon Footprint for Organization: A Case Study of an Educational Facility in Thailand
by Nattapon Leeabai, Natthakarn Sakaraphantip, Neeraphat Kunbuala, Kamonchanok Roongrueng and Methawee Nukunudompanich
Energies 2025, 18(10), 2485; https://doi.org/10.3390/en18102485 - 12 May 2025
Viewed by 549
Abstract
This study presents an integrated methodology to assess and reduce greenhouse gas (GHG) emissions in institutional buildings by combining organizational carbon footprint (CFO) analysis with rooftop photovoltaic (PV) system simulation. The HM Building at King Mongkut’s Institute of Technology Ladkrabang (KMITL), Thailand, was [...] Read more.
This study presents an integrated methodology to assess and reduce greenhouse gas (GHG) emissions in institutional buildings by combining organizational carbon footprint (CFO) analysis with rooftop photovoltaic (PV) system simulation. The HM Building at King Mongkut’s Institute of Technology Ladkrabang (KMITL), Thailand, was selected as a case study to evaluate carbon emissions and the feasibility of solar-based mitigation strategies. The CFO assessment, conducted in accordance with ISO 14064-1:2018 and the Thailand Greenhouse Gas Management Organization (TGO) guidelines, identified total emissions of 1841.04 tCO2e/year, with Scope 2 electricity-related emissions accounting for 442.00 tCO2e/year. Appliance-level audits revealed that classroom activities represent 36.7% of the building’s electricity demand. These findings were validated using utility data totaling 850,000 kWh/year. A rooftop PV system with a capacity of 207 kWp was simulated using PVsyst software (version 7.1), incorporating site-specific solar irradiance and technical loss parameters. Monocrystalline modules produced the highest energy output of 292,000 kWh/year, capable of offsetting 151.84 tCO2e/year, equivalent to 34.4% of Scope 2 emissions. Economic evaluation indicated a 7.4-year payback period, with a net present value (NPV) of THB 12.49 million and an internal rate of return (IRR) of 12.79%. The integration of verified CFO data with empirical load modeling and derated PV performance projections provides a robust, scalable framework for institutional carbon mitigation. This approach supports data-driven Net Zero campus planning aligned with Thailand’s Nationally Determined Contributions (NDCs) and carbon neutrality policies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop