Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = insect–plant–microbe interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 384
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

15 pages, 1148 KiB  
Article
Influence of Plant Growth-Promoting Rhizobacteria (PGPR) Inoculation on Phenolic Content and Key Biosynthesis-Related Processes in Ocimum basilicum Under Spodoptera frugiperda Herbivory
by Jimena Sofía Palermo, Tamara Belén Palermo, Lorena del Rosario Cappellari, Gerd Ulrich Balcke, Alain Tissier, Walter Giordano and Erika Banchio
Plants 2025, 14(6), 857; https://doi.org/10.3390/plants14060857 - 10 Mar 2025
Cited by 3 | Viewed by 1167
Abstract
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress [...] Read more.
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress because it triggers a systemic resistance response in plants similar to that caused by insect herbivory. However, these interactions have typically been studied independently, which has limited the understanding of their combined effects. This study examines the effects of Bacillus amyloliquefaciens GB03 inoculation and Spodoptera frugiperda herbivory on the total phenolic contents of Ocimum basilicum. We also analyze the levels of endogenous phytohormones and the activity of phenylalanine ammonia-lyase (PAL), a crucial enzyme involved in the biosynthesis of phenolic defense-related metabolites. The results indicate that the total phenolic content significantly increased only in plants that were both inoculated by GB03 and damaged by larvae. Additionally, PAL activity showed an increase in plants that were damaged by larvae and in those subjected to the combined treatment of larval damage and inoculation with GB03. Regarding phytohormones, in plants damaged by insects, the levels of salicylic acid (SA) increased, regardless of whether they were inoculated or not, while the levels of jasmonic acid–isoleucine (JA-ile) rose in all treatments compared to the control. This study highlights the intricate relationships among beneficial microbes, herbivores, and plant defense mechanisms, emphasizing their potential impact on improving plant resilience and the production of secondary metabolites. Furthermore, understanding the independent effects of PGPR inoculation, beyond its interaction with herbivory, could provide valuable insights into its role as a sustainable alternative for enhancing plant defense responses and promoting crop productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 2303 KiB  
Article
Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants
by Garrett Price, Audrey Simard and Benjamin A. McGraw
Insects 2025, 16(2), 114; https://doi.org/10.3390/insects16020114 - 24 Jan 2025
Viewed by 831
Abstract
The annual bluegrass weevil (Listronotus maculicollis Kirby) is a devastating insect pest of annual bluegrass (Poa annua L.) and, to a lesser extent, creeping bentgrass (Agrostis stolonifera L.) on golf courses. Listronotus maculicollis-reared A. stolonifera, a comparatively tolerant [...] Read more.
The annual bluegrass weevil (Listronotus maculicollis Kirby) is a devastating insect pest of annual bluegrass (Poa annua L.) and, to a lesser extent, creeping bentgrass (Agrostis stolonifera L.) on golf courses. Listronotus maculicollis-reared A. stolonifera, a comparatively tolerant host, incurs fitness costs, including longer developmental periods and reduced larval survivorship. This study sought to characterize microbiota diversity in L. maculicollis adults and larvae reared on P. annua and A. stolonifera cultivars (Penncross & A4) to explore whether intrinsic factors, such as microbial community composition, vary across host plants and developmental stages, potentially influencing host suitability. Alpha diversity analyses showed adults feeding on A4 exhibited higher bacterial species richness than their offspring reared on the same cultivar. Beta diversity analysis revealed significant dissimilarities between L. maculicollis adults and offspring regardless of host. Pseudomonas sp. was consistently abundant in larvae across all turfgrasses, indicating a potential association with larval development. Elevated levels of Wolbachia sp., known for insect reproductive manipulation, were observed in adults, but appear to be unrelated to host plant effects. The most prevalent bacterium detected was Candidatus Nardonella, a conserved endosymbiont essential for cuticular hardening in weevils. Given the role of cuticular integrity in insecticide resistance, further investigations into insect–microbe–plant interactions could guide the development of targeted pest management strategies, reducing resistance and improving control measures for L. maculicollis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 734 KiB  
Review
Integrative Omics Strategies for Understanding and Combating Brown Planthopper Virulence in Rice Production: A Review
by Xinfeng Wang, Yaxuan Wang, Houhong Yang, Fang Liu, Yubiao Cai, Jing Xiao, Qiang Fu and Pinjun Wan
Int. J. Mol. Sci. 2024, 25(20), 10981; https://doi.org/10.3390/ijms252010981 - 12 Oct 2024
Cited by 1 | Viewed by 2331
Abstract
The brown planthopper (Nilaparvata lugens, BPH) is a serious insect pest responsible for causing immense economic losses to rice growers around the globe. The development of high-throughput sequencing technologies has significantly improved the research on this pest, and its genome structure, [...] Read more.
The brown planthopper (Nilaparvata lugens, BPH) is a serious insect pest responsible for causing immense economic losses to rice growers around the globe. The development of high-throughput sequencing technologies has significantly improved the research on this pest, and its genome structure, gene expression profiles, and host–plant interactions are being unveiled. The integration of genomic sequencing, transcriptomics, proteomics, and metabolomics has greatly increased our understanding of the biological characteristics of planthoppers, which will benefit the identification of resistant rice varieties and strategies for their control. Strategies like more optimal genome assembly and single-cell RNA-seq help to update our knowledge of gene control structure and cell type-specific usage, shedding light on how planthoppers adjust as well. However, to date, a comprehensive genome-wide investigation of the genetic interactions and population dynamics of BPHs has yet to be exhaustively performed using these next-generation omics technologies. This review summarizes the recent advances and new perspectives regarding the use of omics data for the BPH, with specific emphasis on the integration of both fields to help develop more sustainable pest management strategies. These findings, in combination with those of post-transcriptional and translational modifications involving non-coding RNAs as well as epigenetic variations, further detail intricate host–brown planthopper interaction dynamics, especially regarding resistant rice varieties. Finally, the symbiogenesis of the symbiotic microbial community in a planthopper can be characterized through metagenomic approaches, and its importance in enhancing virulence traits would offer novel opportunities for plant protection by manipulating host–microbe interactions. The concerted diverse omics approaches collectively identified the holistic and complex mechanisms of virulence variation in BPHs, which enables efficient deployment into rice resistance breeding as well as sustainable pest management. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 281 KiB  
Review
Integrated Benefits to Agriculture with Trichoderma and Other Endophytic or Root-Associated Microbes
by Gary E. Harman
Microorganisms 2024, 12(7), 1409; https://doi.org/10.3390/microorganisms12071409 - 12 Jul 2024
Cited by 1 | Viewed by 2502
Abstract
The use of endophytic microbes is increasing in commercial agriculture. This review will begin with a strain selection. Most strains will not function well, so only a few provide adequate performance. It will also describe the endophyte–plant relationship and the fungi and bacteria [...] Read more.
The use of endophytic microbes is increasing in commercial agriculture. This review will begin with a strain selection. Most strains will not function well, so only a few provide adequate performance. It will also describe the endophyte–plant relationship and the fungi and bacteria involved. Their abilities to alleviate biotic (diseases and pests) and abiotic stresses (drought, salt, and flooding) to remediate pollution and increase photosynthetic capabilities will be described. Their mechanisms of action will be elucidated. These frequently result in increased plant yields. Finally, methods and practices for formulation and commercial use will be described. Full article
19 pages, 353 KiB  
Review
Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators
by Olivia Kline and Neelendra K. Joshi
J. Xenobiot. 2024, 14(2), 753-771; https://doi.org/10.3390/jox14020043 - 4 Jun 2024
Cited by 5 | Viewed by 2810
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural [...] Read more.
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators. Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
22 pages, 1816 KiB  
Review
Soil Microbes and Plant-Associated Microbes in Response to Radioactive Pollution May Indirectly Affect Plants and Insect Herbivores: Evidence for Indirect Field Effects from Chernobyl and Fukushima
by Ko Sakauchi and Joji M. Otaki
Microorganisms 2024, 12(2), 364; https://doi.org/10.3390/microorganisms12020364 - 10 Feb 2024
Cited by 4 | Viewed by 3968
Abstract
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific [...] Read more.
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific effects among species, which are difficult to evaluate under dosimetric laboratory conditions. From the viewpoint that microbes play a fundamental role in ecosystem function as decomposers and symbionts for plants, we reviewed studies on microbes inhabiting soil and plants in Chernobyl and Fukushima in an attempt to find supporting evidence for indirect field-specific effects on plants and insect herbivores. Compositional changes in soil microbes associated with decreases in abundance and species diversity were reported, especially in heavily contaminated areas of both Chernobyl and Fukushima, which may accompany explosions of radioresistant species. In Chernobyl, the population size of soil microbes remained low for at least 20 years after the accident, and the abundance of plant-associated microbes, which are related to the growth and defense systems of plants, possibly decreased. These reported changes in microbes likely affect soil conditions and alter plant physiology. These microbe-mediated effects may then indirectly affect insect herbivores through food-mass-mediated, pollen-mediated, and metabolite-mediated interactions. Metabolite-mediated interactions may be a major pathway for ecological impacts at low pollution levels and could explain the decreases in insect herbivores in Fukushima. The present review highlights the importance of the indirect field effects of long-term low-dose radiation exposure under complex field circumstances. Full article
(This article belongs to the Special Issue The Role of Microbes in Contaminated Environments)
Show Figures

Figure 1

13 pages, 1428 KiB  
Review
Trichothecenes and Fumonisins: Key Players in Fusarium–Cereal Ecosystem Interactions
by Alexandre Perochon and Fiona M. Doohan
Toxins 2024, 16(2), 90; https://doi.org/10.3390/toxins16020090 - 6 Feb 2024
Cited by 10 | Viewed by 3737
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth [...] Read more.
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal–plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops. Full article
Show Figures

Figure 1

12 pages, 622 KiB  
Review
Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato
by Alice K. Zelman and Gerald Alan Berkowitz
Plants 2023, 12(15), 2856; https://doi.org/10.3390/plants12152856 - 3 Aug 2023
Cited by 18 | Viewed by 4437
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, [...] Read more.
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes. Full article
(This article belongs to the Special Issue Plant-Microbe Interactions)
Show Figures

Figure 1

26 pages, 3018 KiB  
Review
A Comprehensive Review on the Roles of Metals Mediating Insect–Microbial Pathogen Interactions
by Subhanullah Khan and Minglin Lang
Metabolites 2023, 13(7), 839; https://doi.org/10.3390/metabo13070839 - 11 Jul 2023
Cited by 8 | Viewed by 2573
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other’s presence. Metals are crucial in [...] Read more.
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other’s presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect–microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis. Full article
(This article belongs to the Special Issue Trace Metal Element Metabolism in Biological Systems)
Show Figures

Figure 1

27 pages, 2635 KiB  
Review
Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production
by Gareth Thomas, Quint Rusman, William R. Morrison, Diego M. Magalhães, Jordan A. Dowell, Esther Ngumbi, Jonathan Osei-Owusu, Jessica Kansman, Alexander Gaffke, Kamala Jayanthi Pagadala Damodaram, Seong Jong Kim and Nurhayat Tabanca
Biomolecules 2023, 13(6), 997; https://doi.org/10.3390/biom13060997 - 15 Jun 2023
Cited by 21 | Viewed by 10354
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides [...] Read more.
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides. Full article
(This article belongs to the Topic Advances in Chemical Ecology)
Show Figures

Figure 1

13 pages, 2468 KiB  
Article
Diet Induced Variation in Gut Microbiota Is Linked to the Growth Performance of an Agricultural Pest Chilo suppressalis
by Peipei Zhu, Beshoy Mamdouh, Mahmoud Magdy, Jingnan Chen, Weihua Ma and Letian Xu
Agronomy 2023, 13(2), 304; https://doi.org/10.3390/agronomy13020304 - 19 Jan 2023
Cited by 6 | Viewed by 2188
Abstract
Chilo suppressalis is a major global host-specific pest of rice and water oat crops, having caused severe yield damage and great economic loss. The pest occasionally feeds on other plants, preventing them from completing a full life cycle. Dietary differences may shape the [...] Read more.
Chilo suppressalis is a major global host-specific pest of rice and water oat crops, having caused severe yield damage and great economic loss. The pest occasionally feeds on other plants, preventing them from completing a full life cycle. Dietary differences may shape the gut microbiota of the pest and may further influence its performance. In order to test this hypothesis, an assembly of the gut bacterial community of C. suppressalis larvae reared on rice, water oat, corn, and an artificial diet were investigated using an amplicon-based next-generation sequencing approach. The larval body size and feeding rate on each diet type were analyzed in parallel. We found that the size and feeding rate of C. suppressalis varied among the different dietary regimes, as a low feeding rate was found for rice and corn diets, whereas rice-fed larvae had the biggest body size and corn-fed larvae had the lowest body size. Further high-throughput sequencing results showed that the artificial-diet-fed larvae had the lowest bacterial diversity among all the samples, and the corn-fed larvae presented the most diversified microbial community. Further analysis revealed that the bacterial genera Enterococcus, Sphingobacterium, Klebsiella, Gluconobacter, Serratia, and Lactococcus possessed high abundance in C. suppressalis larvae, and the varied abundances contributed to the differences in community structure. The microbial function classification suggested that metabolic function categories significantly increased while the larvae were feeding on their preferred diet (rice and water oat) and decreased when on an artificial diet. This study expands our understanding of the microbe–insect interaction of C. suppressalis larvae in response to changes in diet, and is an essential step towards the future development of potential microbial-based pest management strategies. Full article
Show Figures

Figure 1

16 pages, 2102 KiB  
Article
Residual Effects of Transgenic Cotton on the Intestinal Microbiota of Dysdercus concinnus
by Javier Pérez-López, Valeria Alavez, René Cerritos, Guadalupe Andraca-Gómez, Juan Fornoni and Ana Wegier
Microorganisms 2023, 11(2), 261; https://doi.org/10.3390/microorganisms11020261 - 19 Jan 2023
Cited by 3 | Viewed by 2621
Abstract
The interaction among plants, insects, and microbes (PIM) is a determinant factor for the assembly and functioning of natural and anthropic ecosystems. In agroecosystems, the relationships among PIM are based on the interacting taxa, environmental conditions, and agricultural management, including genetically modified (GM) [...] Read more.
The interaction among plants, insects, and microbes (PIM) is a determinant factor for the assembly and functioning of natural and anthropic ecosystems. In agroecosystems, the relationships among PIM are based on the interacting taxa, environmental conditions, and agricultural management, including genetically modified (GM) organisms. Although evidence for the unintended effects of GM plants on non-target insects is increasingly robust, our knowledge remains limited regarding their impact on gut microbes and their repercussions on the host’s ecology, especially in the wild. In this study, we compared the gut microbial community of Dysdercus concinnus bugs collected on wild cotton (Gossypium hirsutum), with and without insecticidal transgenes (cry1ab/ac), in its center of origin and diversity. By sequencing the V4–V5 region of 16S rRNA, we show differences in the diversity, structure, and topology of D. concinnus gut microbial interactions between specimens foraging cotton plants with and without transgenes. Identifying unintended residual effects of genetic engineering in natural ecosystems will provide first-line knowledge for informed decision-making to manage genetic, ecological, and evolutionary resources. Thus, determining which organisms interact with GM plants and how is the first step toward conserving natural ecosystems with evidence of transgenic introgression. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal)
by Xuemei Wang, Rongrong Yang, Junaid Zafar, Chen Peng, Xuewei Zhang, Yingying Hong, Surajit De Mandal, Wenqing Zhang, Fengliang Jin and Xiaoxia Xu
Agriculture 2022, 12(12), 2106; https://doi.org/10.3390/agriculture12122106 - 8 Dec 2022
Cited by 2 | Viewed by 2210
Abstract
Bacterial symbionts are widespread in insects and other animals. These microbes play crucial roles in many aspects of insect physiology and biology, including immunity, nutrition and confronting plant defenses. In the present study, we isolated and identified the bacterium Burkholderia cepacia BsNLG8 from [...] Read more.
Bacterial symbionts are widespread in insects and other animals. These microbes play crucial roles in many aspects of insect physiology and biology, including immunity, nutrition and confronting plant defenses. In the present study, we isolated and identified the bacterium Burkholderia cepacia BsNLG8 from the brown planthopper (BPHs), Nilaparvata lugens, a devastating pest of rice crops worldwide. Plate confrontation assay indicated that BsNLG8 significantly inhibited the growth of phytopathogenic fungi. In addition, the BsNLG8 strain demonstrated the ability to produce siderophores, which explains its antagonistic mechanism. Lastly, we explored the nicotine degradation ability of BsNLG8 using in vitro and in vivo methods. In vitro, HPLC analysis results showed that BsNLG8 could significantly reduce the concentration of nicotine in the medium at 36 h. Moreover, microinjection of BsNLG8 in axenic BPHs increased the survival rate of the host on nicotine-containing rice seedlings. These findings could serve as the basis of future research in deciphering the interaction between host and symbionts. Full article
(This article belongs to the Special Issue Insect Ecology and Pest Management in Agriculture)
Show Figures

Figure 1

12 pages, 349 KiB  
Article
The Lesser Chestnut Weevil (Curculio sayi): Damage and Management with Biological Control Using Entomopathogenic Fungi and Entomopathogenic Nematodes
by Camila C. Filgueiras and Denis S. Willett
Insects 2022, 13(12), 1097; https://doi.org/10.3390/insects13121097 - 29 Nov 2022
Cited by 3 | Viewed by 2878
Abstract
The lesser chestnut weevil, Curculio sayi (Gyllenhal), can cause irreparable damage to chestnuts through direct consumption and/or introduction of secondary pathogens. With the resurgence of blight resistant American Chestnut plantings both for commercial production and for habitat restoration, C. sayi has become a [...] Read more.
The lesser chestnut weevil, Curculio sayi (Gyllenhal), can cause irreparable damage to chestnuts through direct consumption and/or introduction of secondary pathogens. With the resurgence of blight resistant American Chestnut plantings both for commercial production and for habitat restoration, C. sayi has become a similarly resurgence pest. Here, we investigated the nature and extent of C. sayi larval damage on individual nuts and collected harvests with an eye toward the quantifying impacts. Next, we explored management options using biological control including entomopathogenic fungi and entomopathogenic nematodes. Nut damage from C. sayi can be extensive with individual nuts hosting several larvae, larvae emerging from nuts several weeks post harvest, and nut weight loss even after C. sayi have emerged from the nut. Applications of entomopathogenic fungi reduced chances of chestnut infestation, while certain strains of entomopathogenic nematodes increased the probability of C. sayi larval mortality. Understanding C. sayi damage and exploring biological control management options could be a useful tool in the effective management of this resurgent pest. Full article
(This article belongs to the Special Issue Insects Ecology and Biocontrol Applications)
Show Figures

Figure 1

Back to TopTop