Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators
Abstract
:1. Introduction
2. Exposure to Toxic Chemicals
2.1. Plant Defense Compounds
2.2. Synthetic Pesticides
3. Mechanisms of Insect Resistance to Xenobiotics
4. Microbial Symbionts
4.1. Bacterial Symbiont Degradation of Phytotoxins
Insect Species | Symbiont | Role of Symbiont | References |
---|---|---|---|
Coleoptera | |||
Callosobruchus maculatus | Gut bacteria | Dichlorvos degradation | [145] |
Curculio chinensis | Gut community, Acinetobacter spp. | Triterpene saponin degradation | [141] |
Dendroctonus ponderosae | Gut community | Genes for terpene degradation | [143] |
Hylobius abietis | Gut community | Diterpene degradation | [144] |
Hypothenemus hampei | Pseudomonadales fulva | Caffeine degradation | [53] |
Leptinotarsa decemlineata | Salivary bacteria | Induction of salicylic-acid-based defense in host plant | [146] |
Psylliodes chrysocephala | Pantoea spp. | Isothiocyanate degradation | [140] |
Tenebrio molitor | Gut community | Saligenin degradation, weight gain | [126] |
Diptera | |||
Aedes aegypti | Gut community | Lambda-cyhalothrin resistance | [147] |
Anopheles albimanus | Bacillus cereus, other gut bacteria | Organophosphate degradation | [148] |
Bactrocera dorsalis | Citrobacter sp. (CF-BD) | Organophosphate degradation | [149] |
Bactrocera oleae | Erwinia dacicola | Possible oleuropein degradation | [142] |
Drosophila melanogaster | Gut community | Nitro-reduced imidacloprid metabolism | [113] |
Rhagoletis pomonella | Pseudomonas melophthora | Organophosphate degradation | [150] |
Hemiptera | |||
Nilaparvata lugens | Wolbachia, Arsenophonus, Acinetobacter, and Staphylococcus spp. | Induction of planthopper degradation enzymes CncC pathway, imidacloprid degradation | [116,151] |
Riptortus pedestris | Burkholderia spp. | Fenitrothion degradation | [138] |
Hymenoptera | |||
Apis mellifera | Gut microbiome | Induction of bee degradation enzymes | [115] |
Bombus impatiens | Snodgrassella alvi, Lactobacillus bombicola | Selenate degradation | [152] |
Nasonia vitripennis | Serratia marcescens, Pseudomonas pretegens | Atrazine degradation | [137] |
Lepidoptera | |||
Lymantria dispar | Acinetobacter sp. (R7-1), other gut microbes | Salicortin and tremulacin degradation | [153] |
Plutella xylostella | Enterococcus sp, Enterobacter sp, and Serratia sp. Enterobacter asburiae, Bacillus cereus, and Pantoea agglomerans | Chlorpyrifos degradation Acephate degradation | [154,155] |
Spodoptera frugiperda | Laclercia adecarboxylata, other gut bacteria | Degradation of chlorpyrifos ethyl, other insecticides | [156] |
4.2. Bacterial Symbiont Degradation of Synthetic Toxic Chemicals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mora, C.; Tittensor, D.; Adl, S.; Simpson, A.; Worm, B. How Many Species Are There on Earth and in the Ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef]
- Stork, N.E. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? | Annual Review of Entomology. Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef]
- Stork, N.E.; McBroom, J.; Gely, C.; Hamilton, A.J. New Approaches Narrow Global Species Estimates for Beetles, Insects, and Terrestrial Arthropods. Proc. Natl. Acad. Sci. USA 2015, 112, 7519–7523. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Elnitsky, M.A.; Rinehart, J.P.; Hayward, S.A.L.; Sandro, L.H.; Denlinger, D.L. Rapid Cold-Hardening Increases the Freezing Tolerance of the Antarctic Midge Belgica Antarctica. J. Exp. Biol. 2006, 209, 399–406. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.E. Insect Pollination of Cultivated Crop Plants; U.S. Department of Agriculture: Washington, DC, USA, 1976. [Google Scholar]
- Blaauw, B.R.; Isaacs, R. Wildflower Plantings Enhance the Abundance of Natural Enemies and Their Services in Adjacent Blueberry Fields. Biol. Control 2015, 91, 94–103. [Google Scholar] [CrossRef]
- Yamada, D.; Imura, O.; Shi, K.; Shibuya, T. Effect of Tunneler Dung Beetles on Cattle Dung Decomposition, Soil Nutrients and Herbage Growth. Grassl. Sci. 2007, 53, 121–129. [Google Scholar] [CrossRef]
- Gabet, E.J.; Reichman, O.J.; Seabloom, E.W. The Effects of Bioturbation on Soil Processes and Sediment Transport. Annu. Rev. Earth Planet. Sci. 2003, 31, 249–273. [Google Scholar] [CrossRef]
- Chagnon, M.; Kreutzweiser, D.; Mitchell, E.A.D.; Morrissey, C.A.; Noome, D.A.; Van der Sluijs, J.P. Risks of Large-Scale Use of Systemic Insecticides to Ecosystem Functioning and Services. Environ. Sci. Pollut. Res. 2015, 22, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, L.A.; Carvalheiro, L.G.; Leonhardt, S.D.; Aizen, M.A.; Blaauw, B.R.; Isaacs, R.; Kuhlmann, M.; Kleijn, D.; Klein, A.M.; Kremen, C.; et al. From Research to Action: Enhancing Crop Yield through Wild Pollinators. Front. Ecol. Environ. 2014, 12, 439–447. [Google Scholar] [CrossRef]
- Joshi, N.; Biddinger, D.; Rajotte, E. A Survey of Apple Pollination Practices, Knowledge and Attitudes of Fruit Growers in Pennsylvania. In Proceedings of the 10th International Pollination Symposium, Puebla, Mexico, 27–29 June 2011. [Google Scholar]
- Blaauw, B.R.; Isaacs, R. Flower Plantings Increase Wild Bee Abundance and the Pollination Services Provided to a Pollination-Dependent Crop. J. Appl. Ecol. 2014, 51, 890–898. [Google Scholar] [CrossRef]
- Bohnenblust, E.W.; Vaudo, A.D.; Egan, J.F.; Mortensen, D.A.; Tooker, J.F. Effects of the Herbicide Dicamba on Nontarget Plants and Pollinator Visitation. Environ. Toxicol. Chem. 2016, 35, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Losey, J.E.; Vaughan, M. The Economic Value of Ecological Services Provided by Insects. BioScience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Eilers, E.J.; Kremen, C.; Greenleaf, S.S.; Garber, A.K.; Klein, A.-M. Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. PLoS ONE 2011, 6, e21363. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The Global Hidden Hunger Indices and Maps: An Advocacy Tool for Action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, H.M.T. Biological Control Methods of Pest Insects in Oilseed Rape. EPPO Bull. 2008, 38, 104–109. [Google Scholar] [CrossRef]
- Horgan, F.G.; Myers, J.H. Interactions between Predatory Ground Beetles, the Winter Moth and an Introduced Parasitoid on the Lower Mainland of British Columbia. Pedobiologia 2004, 48, 23–35. [Google Scholar] [CrossRef]
- Symondson, W.O.C.; Sunderland, K.D.; Greenstone, M.H. Can Generalist Predators Be Effective Biocontrol Agents? Annu. Rev. Entomol. 2002, 47, 561–594. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Keddie, A.B.; Dosdall, L.M. Biological Control of the Diamondback Moth, Plutella xylostella: A Review. Biocontrol Sci. Technol. 2005, 15, 763–789. [Google Scholar] [CrossRef]
- Wagner, D.; Jones, J.B.; Gordon, D.M. Development of Harvester Ant Colonies Alters Soil Chemistry. Soil. Biol. Biochem. 2004, 36, 797–804. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Sharma, S.; Kooner, R.; Arora, R. Insect Pests and Crop Losses. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017; pp. 45–66. ISBN 978-981-10-6056-4. [Google Scholar]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the Future: The Sterile Insect Technique against Mosquito Disease Vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef] [PubMed]
- WHO Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 19 December 2019).
- World Malaria Report 2015—Summary. Available online: https://www.who.int/publications-detail-redirect/WHO-HTM-GMP-2016.2 (accessed on 29 May 2024).
- Mithöfer, A.; Maffei, M.E. General Mechanisms of Plant Defense and Plant Toxins. In Plant Toxins; Carlini, C.R., Ligabue-Braun, R., Eds.; Toxinology; Springer: Dordrecht, The Netherlands, 2017; pp. 3–24. ISBN 978-94-007-6464-4. [Google Scholar]
- Petschenka, G.; Agrawal, A.A. Milkweed Butterfly Resistance to Plant Toxins Is Linked to Sequestration, Not Coping with a Toxic Diet. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151865. [Google Scholar] [CrossRef] [PubMed]
- Escoubas, P.; Diochot, S.; Corzo, G. Structure and Pharmacology of Spider Venom Neurotoxins. Biochimie 2000, 82, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Samson-Robert, O.; Labrie, G.; Chagnon, M.; Fournier, V. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. PLoS ONE 2014, 9, e108443. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; vanEngelsdorp, D.; Pettis, J.S. High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Somani, J.; Roy, S.; Babu, A.; Pandey, A.K. Insect Microbial Symbionts: Ecology, Interactions, and Biological Significance. Microorganisms 2023, 11, 2665. [Google Scholar] [CrossRef]
- Rupawate, P.S.; Roylawar, P.; Khandagale, K.; Gawande, S.; Ade, A.B.; Jaiswal, D.K.; Borgave, S. Role of Gut Symbionts of Insect Pests: A Novel Target for Insect-Pest Control. Front. Microbiol. 2023, 14, 1146390. [Google Scholar] [CrossRef]
- Peterson, B.F. Microbiome Toxicology—Bacterial Activation and Detoxification of Insecticidal Compounds. Curr. Opin. Insect Sci. 2024, 63, 101192. [Google Scholar] [CrossRef]
- Xia, X.-J.; Wu, W.; Chen, J.-P.; Shan, H.-W. The Gut Bacterium Serratia Marcescens Mediates Detoxification of Organophosphate Pesticide in Riptortus Pedestris by Microbial Degradation. J. Appl. Entomol. 2023, 147, 406–415. [Google Scholar] [CrossRef]
- Lv, N.; Li, R.; Cheng, S.; Zhang, L.; Liang, P.; Gao, X. The Gut Symbiont Sphingomonas Mediates Imidacloprid Resistance in the Important Agricultural Insect Pest Aphis Gossypii Glover. BMC Biol. 2023, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Zhang, F.; Liu, Y.-T.; Wu, S.-F.; Bass, C.; Gao, C.-F. Symbiotic Bacteria Confer Insecticide Resistance by Metabolizing Buprofezin in the Brown Planthopper, Nilaparvata Lugens (Stål). PLoS Pathog. 2023, 19, e1011828. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.-T.; Gong, X.; Liu, H.-H.; Wu, B.-X.; Peng, C.-W.; Hong, X.-Y.; Bing, X.-L. The Symbiont Wolbachia Alleviates Pesticide Susceptibility in the Two-Spotted Spider Mite Tetranychus urticae through Enhanced Host Detoxification Pathways. Insect Sci. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Yong, H.; Liu, Z.; Wang, W.; Lu, Y. The Contribution of Gut Bacteria to Pesticide Resistance of Tribolium castaneum (Herbst). J. Stored Prod. Res. 2023, 103, 102160. [Google Scholar] [CrossRef]
- Isman, M. Insect Antifeedants. Pestic. Outlook 2002, 13, 152–157. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Chai, X.; Yuan, G.; Fu, G.; Wang, Y.; Guo, X.; Luo, M. Antifeedant Activity of Numb and Salty Taste Compounds against the Larvae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Acta Ecol. Sin. 2013, 33, 7–11. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, P.; Zhou, Y.; Liu, B.; Xiao, C.; Chen, W.; Zhang, Z. Antifeeding Effects of Azadirachtin on the Fifth Instar Spodoptera litura Larvae and the Analysis of Azadirachtin on Target Sensilla around Mouthparts. Arch. Insect Biochem. Physiol. 2020, 103, e21646. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Ren, L.; Chen, F.; Feng, Y.; Luo, Y. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications. PLoS ONE 2016, 11, e0155682. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.; Fazili, K. Plant Protease Inhibitors: A Defense Strategy in Plants. Biotechnol. Mol. Biol. Rev. 2007, 2, 68–85. [Google Scholar]
- Divekar, P.A.; Rani, V.; Majumder, S.; Karkute, S.G.; Molla, K.A.; Pandey, K.K.; Behera, T.K.; Govindharaj, G.-P.-P. Protease Inhibitors: An Induced Plant Defense Mechanism Against Herbivores. J. Plant Growth Regul. 2023, 42, 6057–6073. [Google Scholar] [CrossRef]
- Caballero, C.; López-Olguin, J.F.; Ruíz, M.A.; Ortego, F.; Castañera, P. Antifeedant Activity and Effects of Terpenoids on Detoxication Enzymes of the Beet Armyworm, Spodoptera Exigua (Hubner). Span. J. Agric. Res. 2008, 6, 177–184. [Google Scholar] [CrossRef]
- Sengottayan, S.-N. Physiological and Biochemical Effect of Neem and Other Meliaceae Plants Secondary Metabolites against Lepidopteran Insects. Front. Physiol. 2013, 4, 359. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, Y.; Isman, M.B. Comparative Growth Inhibitory and Antifeedant Effects of Plant Extracts and Pure Allelochemicals on Four Phytophagous Insect Species. J. Appl. Entomol. 2004, 128, 32–38. [Google Scholar] [CrossRef]
- Teik Ng, L.; Mun Yuen, P.; Hong Loke, W.; Abdul Kadir, A. Effects of Azadirachta excelsa on Feeding Behaviour, Body Weight and Mortality of Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). J. Sci. Food Agric. 2003, 83, 1327–1330. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary Metabolites in Plant Defence Mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Ceja-Navarro, J.A.; Vega, F.E.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H.C.; Kosina, P.; Infante, F.; Northen, T.R.; Brodie, E.L. Gut Microbiota Mediate Caffeine Detoxification in the Primary Insect Pest of Coffee. Nat. Commun. 2015, 6, 7618. [Google Scholar] [CrossRef]
- Brattsten, L.B.; Samuelian, J.H.; Long, K.Y.; Kincaid, S.A.; Evans, C.K. Cyanide as a Feeding Stimulant for the Southern Army Worm, Spodoptera Eridania. Trans. R. Entomol. Soc. Lond. 1983, 8, 125–132. [Google Scholar] [CrossRef]
- Malik, R.S.; Anand, I.J.; Srinvasachar, S. Effect of Glucosinolates in Relation to Aphid (Lipaphis Erysimi Kalt.) Fecundity in Crucifers. Int. J. Trop. Agric. 1983, 4, 273–278. [Google Scholar]
- Nielsen, J.K. The Effect of Glucosinolates on Responses of Young Phyllotreta Nemorum Larvae to Non-Host Plants. Entomol. Exp. Appl. 1989, 51, 249–259. [Google Scholar] [CrossRef]
- Sporer, T.; Körnig, J.; Wielsch, N.; Gebauer-Jung, S.; Reichelt, M.; Hupfer, Y.; Beran, F. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes with Plant Myrosinases. Front. Plant Sci. 2021, 12, 831. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.G.; Ellis, C.; Devoto, A. The Jasmonate Signal Pathway. Plant Cell 2002, 14, S153–S164. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.J.; Idrovo, M.E.P.; Arias, L.J.L.; Belmain, S.R.; Stevenson, P.C. Herbivore Defence Compounds Occur in Pollen and Reduce Bumblebee Colony Fitness. J. Chem. Ecol. 2014, 40, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.E.; Cook, D.; Richardson, L.L.; Manson, J.S.; Gardner, D.R. Secondary Compounds in Floral Rewards of Toxic Rangeland Plants: Impacts on Pollinators. J. Agric. Food Chem. 2014, 62, 7335–7344. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.C.; Nicolson, S.W.; Wright, G.A. Plant Secondary Metabolites in Nectar: Impacts on Pollinators and Ecological Functions. Funct. Ecol. 2017, 31, 65–75. [Google Scholar] [CrossRef]
- Cane, J.; Weber, M.; Yost, M.; Gardner, D. Alkaloids and Old Lace: Pollen Toxins Exclude Generalist Pollinators from Death Camus (Toxicoscordion [=Zigadenus] Paniculatum) (Melanthiaceae); Utah State University Libraries: Salt Lake City, UT, USA, 2004. [Google Scholar]
- Cane, J.H. Co-Dependency between a Specialist Andrena Bee and Its Death Camas Host, Toxicoscordion Paniculatum. Arthropod-Plant Interact. 2018, 12, 657–662. [Google Scholar] [CrossRef]
- Habermannová, J.; Bogusch, P.; Straka, J. Flexible Host Choice and Common Host Switches in the Evolution of Generalist and Specialist Cuckoo Bees (Anthophila: Sphecodes). PLoS ONE 2013, 8, e64537. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.S. The Ecological Significance of Toxic Nectar. Oikos 2000, 91, 409–420. [Google Scholar] [CrossRef]
- Barberis, M.; Calabrese, D.; Galloni, M.; Nepi, M. Secondary Metabolites in Nectar-Mediated Plant-Pollinator Relationships. Plants 2023, 12, 550. [Google Scholar] [CrossRef]
- Wright, G.A.; Baker, D.D.; Palmer, M.J.; Stabler, D.; Mustard, J.A.; Power, E.F.; Borland, A.M.; Stevenson, P.C. Caffeine in Floral Nectar Enhances a Pollinator’s Memory of Reward. Science 2013, 339, 1202–1204. [Google Scholar] [CrossRef]
- Manson, J.S.; Cook, D.; Gardner, D.R.; Irwin, R.E. Dose-Dependent Effects of Nectar Alkaloids in a Montane Plant–Pollinator Community. J. Anim. Ecol. 2014, 101, 1604–1612. [Google Scholar] [CrossRef]
- Cook, D.; Manson, J.S.; Gardner, D.R.; Welch, K.D.; Irwin, R.E. Norditerpene Alkaloid Concentrations in Tissues and Floral Rewards of Larkspurs and Impacts on Pollinators. Biochem. Syst. Ecol. 2013, 48, 123–131. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Al Toufailia, H.; Butterfield, T.M.; Schrell, F.; Ratnieks, F.L.W.; Schürch, R. Caffeinated Forage Tricks Honeybees into Increasing Foraging and Recruitment Behaviors. Curr. Biol. 2015, 25, 2815–2818. [Google Scholar] [CrossRef]
- Mustard, J.A.; Dews, L.; Brugato, A.; Dey, K.; Wright, G.A. Consumption of an Acute Dose of Caffeine Reduces Acquisition but Not Memory in the Honey Bee. Behav. Brain Res. 2012, 232, 217–224. [Google Scholar] [CrossRef]
- Adler, L.S.; Seifert, M.G.; Wink, M.; Morse, G.E. Reliance on Pollinators Predicts Defensive Chemistry across Tobacco Species. Ecol. Lett. 2012, 15, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Morton, H.L.; Moffett, J.O.; Macdonald, R.H. Toxicity of Herbicides to Newly Emerged Honey Bees. Environ. Entomol. 1972, 1, 102–104. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate Perturbs the Gut Microbiota of Honey Bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef]
- Belsky, J.; Joshi, N.K. Effects of Fungicide and Herbicide Chemical Exposure on Apis and Non-Apis Bees in Agricultural Landscape. Front. Environ. Sci. 2020, 8, 81. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 2013, 8, e54092. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the Differential Toxicity of Neonicotinoid Insecticides in the Honey Bee, Apis mellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- IRAC Modes of Action Classification Scheme (Version 11.1). 2024. Available online: https://irac-online.org/documents/moa-classification/ (accessed on 5 February 2024).
- Bailey, J.; Scott-Dupree, C.; Harris, R.; Tolman, J.; Harris, B. Contact and Oral Toxicity to Honey Bees (Apis mellifera) of Agents Registered for Use for Sweet Corn Insect Control in Ontario, Canada. Apidologie 2005, 36, 623–633. [Google Scholar] [CrossRef]
- Di Prisco, G.; Cavaliere, V.; Annoscia, D.; Varricchio, P.; Caprio, E.; Nazzi, F.; Gargiulo, G.; Pennacchio, F. Neonicotinoid Clothianidin Adversely Affects Insect Immunity and Promotes Replication of a Viral Pathogen in Honey Bees. Proc. Natl. Acad. Sci. USA 2013, 110, 18466–18471. [Google Scholar] [CrossRef] [PubMed]
- Hayward, A.; Beadle, K.; Singh, K.S.; Exeler, N.; Zaworra, M.; Almanza, M.-T.; Nikolakis, A.; Garside, C.; Glaubitz, J.; Bass, C.; et al. The Leafcutter Bee, Megachile Rotundata, Is More Sensitive to N -Cyanoamidine Neonicotinoid and Butenolide Insecticides than Other Managed Bees. Nat. Ecol. Evol. 2019, 3, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Sandrock, C.; Tanadini, L.G.; Pettis, J.S.; Biesmeijer, J.C.; Potts, S.G.; Neumann, P. Sublethal Neonicotinoid Insecticide Exposure Reduces Solitary Bee Reproductive Success. Agric. For. Entomol. 2014, 16, 119–128. [Google Scholar] [CrossRef]
- Dively, G.P.; Kamel, A. Insecticide Residues in Pollen and Nectar of a Cucurbit Crop and Their Potential Exposure to Pollinators. J. Agric. Food Chem. 2012, 60, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Limay-Rios, V.; Smith, J.; Baute, T.; Forero, L.G.; Schaafsma, A. Quantifying Neonicotinoid Insecticide Residues Escaping during Maize Planting with Vacuum Planters. Environ. Sci. Technol. 2015, 49, 13003–13011. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.D.; Pettis, J.S. A Survey of Imidacloprid Levels in Water Sources Potentially Frequented by Honeybees (Apis mellifera) in the Eastern USA. Water Air Soil. Pollut. 2014, 225, 2127. [Google Scholar] [CrossRef]
- Cimino Andria, M.; Boyles Abee, L.; Thayer Kristina, A.; Perry Melissa, J. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ. Health Perspect. 2017, 125, 155–162. [Google Scholar] [CrossRef]
- Bromilow, R.H.; Chamberlain, K.; Evans, A.A. Physicochemical Aspects of Phloem Translocation of Herbicides. Weed Sci. 1990, 38, 305–314. [Google Scholar] [CrossRef]
- Pettis, J.S.; Lichtenberg, E.M.; Andree, M.; Stitzinger, J.; Rose, R.; vanEngelsdorp, D. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema Ceranae. PLoS ONE 2013, 8, e70182. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Quistad, G.B. Why Insecticides Are More Toxic to Insects than People: The Unique Toxicology of Insects. J. Pestic. Sci. 2004, 29, 81–86. [Google Scholar] [CrossRef]
- Oakeshott, J.G.; Home, I.; Sutherland, T.D.; Russell, R.J. The Genomics of Insecticide Resistance. Genome Biol. 2003, 4, 202. [Google Scholar] [CrossRef] [PubMed]
- Pietri, J.E.; Liang, D. The Links Between Insect Symbionts and Insecticide Resistance: Causal Relationships and Physiological Tradeoffs. Ann. Entomol. Soc. Am. 2018, 111, 92–97. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The Global Status of Insect Resistance to Neonicotinoid Insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Denholm, I. Resistance of Insect Pests to Neonicotinoid Insecticides: Current Status and Future Prospects. Arch. Insect Biochem. Physiol. 2005, 58, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Lummis, S.C.R.; Leicht, W.; Breer, H.; Sattelle, D.B. Actions of Imidacloprid and a Related Nitromethylene on Cholinergic Receptors of an Identified Insect Motor Neurone. Pestic. Sci. 1991, 33, 197–204. [Google Scholar] [CrossRef]
- Denholm, I.; Devine, G.; Gorman, K.; Nauen, R. Incidence and Management of Insecticide Resistance to Neonicotinoids. Proc. Brighton Crop Prot. Conf. Pests Dis. 2002, 1, 161–168. [Google Scholar]
- Cahill, M.; Gorman, K.; Day, S.; Denholm, I.; Elbert, A.; Nauen, R. Baseline Determination and Detection of Resistance to Imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res. 1996, 86, 343–349. [Google Scholar] [CrossRef]
- ffrench-Constant, R.H.; Daborn, P.J.; Goff, G.L. The Genetics and Genomics of Insecticide Resistance. Trends Genet. 2004, 20, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Field, L.; Vontas, J. An Overview of Insecticide Resistance. Science 2002, 298, 96–97. [Google Scholar] [CrossRef] [PubMed]
- Asparch, Y.; Pontes, G.; Masagué, S.; Minoli, S.; Barrozo, R.B. Kissing Bugs Can Generalize and Discriminate between Different Bitter Compounds. J. Physiol. Paris. 2016, 110, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Tomé, H.V.V.; Martins, J.C.; Corrêa, A.S.; Galdino, T.V.S.; Picanço, M.C.; Guedes, R.N.C. Azadirachtin Avoidance by Larvae and Adult Females of the Tomato Leafminer Tuta Absoluta. Crop Prot. 2013, 46, 63–69. [Google Scholar] [CrossRef]
- Itoh, H.; Tago, K.; Hayatsu, M.; Kikuchi, Y. Detoxifying Symbiosis: Microbe-Mediated Detoxification of Phytotoxins and Pesticides in Insects. Nat. Prod. Rep. 2018, 35, 434–454. [Google Scholar] [CrossRef] [PubMed]
- Després, L.; David, J.-P.; Gallet, C. The Evolutionary Ecology of Insect Resistance to Plant Chemicals. Trends Ecol. Evol. 2007, 22, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Douris, V.; Papapostolou, K.-M.; Ilias, A.; Roditakis, E.; Kounadi, S.; Riga, M.; Nauen, R.; Vontas, J. Investigation of the Contribution of RyR Target-Site Mutations in Diamide Resistance by CRISPR/Cas9 Genome Modification in Drosophila. Insect Biochem. Mol. Biol. 2017, 87, 127–135. [Google Scholar] [CrossRef]
- Robert, C.A.; Zhang, X.; Machado, R.A.; Schirmer, S.; Lori, M.; Mateo, P.; Erb, M.; Gershenzon, J. Sequestration and Activation of Plant Toxins Protect the Western Corn Rootworm from Enemies at Multiple Trophic Levels. eLife 2017, 6, e29307. [Google Scholar] [CrossRef]
- Züst, T.; Mou, S.; Agrawal, A.A. What Doesn’t Kill You Makes You Stronger: The Burdens and Benefits of Toxin Sequestration in a Milkweed Aphid. Funct. Ecol. 2018, 32, 1972–1981. [Google Scholar] [CrossRef]
- Amezian, D.; Nauen, R.; Le Goff, G. Transcriptional Regulation of Xenobiotic Detoxification Genes in Insects—An Overview. Pestic. Biochem. Physiol. 2021, 174, 104822. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Qiao, H.; Wei, P.; Moussian, B.; Wang, Y. Xenobiotic Responses in Insects. Arch. Insect Biochem. Physiol. 2022, 109, e21869. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R.; Johnson, R.M. Xenobiotic Detoxification Pathways in Honey Bees. Curr. Opin. Insect Sci. 2015, 10, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Walker, A. Microbial Degradation of Organophosphorus Compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [PubMed]
- Fusetto, R.; Denecke, S.; Perry, T.; O’Hair, R.A.J.; Batterham, P. Partitioning the Roles of CYP6G1 and Gut Microbes in the Metabolism of the Insecticide Imidacloprid in Drosophila melanogaster. Sci. Rep. 2017, 7, 11339. [Google Scholar] [CrossRef] [PubMed]
- Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of Esterase and Laccase in Bacillus Subtilis Facilitates Biodegradation and Detoxification of Cypermethrin. Sci. Rep. 2018, 8, 12755. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zheng, Y.; Chen, Y.; Wang, S.; Chen, Y.; Hu, F.; Zheng, H. Honey Bee (Apis mellifera) Gut Microbiota Promotes Host Endogenous Detoxification Capability via Regulation of P450 Gene Expression in the Digestive Tract. Microb. Biotechnol. 2020, 13, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Zhang, Y.; Cai, T.; Deng, X.; Liu, C.; Li, J.; He, S.; Li, J.; Wan, H. Antibiotics Increased Host Insecticide Susceptibility via Collapsed Bacterial Symbionts Reducing Detoxification Metabolism in the Brown Planthopper, Nilaparvata Lugens. J. Pest. Sci. 2021, 94, 757–767. [Google Scholar] [CrossRef]
- Dale, C.; Moran, N.A. Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell 2006, 126, 453–465. [Google Scholar] [CrossRef]
- van den Bosch, T.J.M.; Welte, C.U. Detoxifying Symbionts in Agriculturally Important Pest Insects. Microb. Biotechnol. 2017, 10, 531–540. [Google Scholar] [CrossRef]
- Flórez, L.V.; Biedermann, P.H.W.; Engl, T.; Kaltenpoth, M. Defensive Symbioses of Animals with Prokaryotic and Eukaryotic Microorganisms. Nat. Product. Rep. 2015, 32, 904–936. [Google Scholar] [CrossRef] [PubMed]
- Rosengaus, R.B.; Zecher, C.N.; Schultheis, K.F.; Brucker, R.M.; Bordenstein, S.R. Disruption of the Termite Gut Microbiota and Its Prolonged Consequences for Fitness. Appl. Environ. Microbiol. 2011, 77, 4303–4312. [Google Scholar] [CrossRef]
- Werren, J.H. Symbionts Provide Pesticide Detoxification. Proc. Natl. Acad. Sci. USA 2012, 109, 8364–8365. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Multiorganismal Insects: Diversity and Function of Resident Microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Marceau, T.; Archer, C.R.; Bulson, L.; Wilfert, L. Dose-Dependent Effects of Antibiotic Intake on Bombus terrestris (Linnaeus, 1758) Dietary Intake, Survival and Parasite Infection Prevalence. J. Invertebr. Pathol. 2021, 182, 107580. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; Mommaerts, V.; Billiet, A.; Mosallanejad, H.; Van de Wiele, T.; Wäckers, F.; Smagghe, G. Assessment of Mutualism between Bombus Terrestris and Its Microbiota by Use of Microcolonies. Apidologie 2013, 44, 708–719. [Google Scholar] [CrossRef]
- Zheng, H.; Powell, J.E.; Steele, M.I.; Dietrich, C.; Moran, N.A. Honeybee Gut Microbiota Promotes Host Weight Gain via Bacterial Metabolism and Hormonal Signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 4775–4780. [Google Scholar] [CrossRef]
- Genta, F.A.; Dillon, R.J.; Terra, W.R.; Ferreira, C. Potential Role for Gut Microbiota in Cell Wall Digestion and Glucoside Detoxification in Tenebrio Molitor Larvae. J. Insect Physiol. 2006, 52, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yang, S.; Zhao, H.; Luo, J.; Yang, W.; Hou, C. Antibiotics-Induced Changes in Intestinal Bacteria Result in the Sensitivity of Honey Bee to Virus. Environ. Pollut. 2022, 314, 120278. [Google Scholar] [CrossRef]
- Degnan, P.H.; Moran, N.A. Diverse Phage-Encoded Toxins in a Protective Insect Endosymbiont. Appl. Environ. Microbiol. 2008, 74, 6782–6791. [Google Scholar] [CrossRef]
- Zhou, S.; Lu, Y.; Chen, J.; Pan, Z.; Pang, L.; Wang, Y.; Zhang, Q.; Strand, M.R.; Chen, X.-X.; Huang, J. Parasite Reliance on Its Host Gut Microbiota for Nutrition and Survival. ISME J. 2022, 16, 2574–2586. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune System Stimulation by the Native Gut Microbiota of Honey Bees. R. Soc. Open Sci. 2017, 4, 170003. [Google Scholar] [CrossRef] [PubMed]
- Horak, R.D.; Leonard, S.P.; Moran, N.A. Symbionts Shape Host Innate Immunity in Honeybees. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201184. [Google Scholar] [CrossRef] [PubMed]
- Tchioffo, M.T.; Boissière, A.; Churcher, T.S.; Abate, L.; Gimonneau, G.; Nsango, S.E.; Awono-Ambéné, P.H.; Christen, R.; Berry, A.; Morlais, I. Modulation of Malaria Infection in Anopheles Gambiae Mosquitoes Exposed to Natural Midgut Bacteria. PLoS ONE 2013, 8, e81663. [Google Scholar] [CrossRef] [PubMed]
- Guégan, M.; Zouache, K.; Démichel, C.; Minard, G.; Tran Van, V.; Potier, P.; Mavingui, P.; Valiente Moro, C. The Mosquito Holobiont: Fresh Insight into Mosquito-Microbiota Interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- McFrederick, Q.S.; Rehan, S.M. Characterization of Pollen and Bacterial Community Composition in Brood Provisions of a Small Carpenter Bee. Mol. Ecol. 2016, 25, 2302–2311. [Google Scholar] [CrossRef] [PubMed]
- Martinson, V.G.; Danforth, B.N.; Minckley, R.L.; Rueppell, O.; Tingek, S.; Moran, N.A. A Simple and Distinctive Microbiota Associated with Honey Bees and Bumble Bees. Mol. Ecol. 2011, 20, 619–628. [Google Scholar] [CrossRef]
- Powell, E.; Ratnayeke, N.; Moran, N.A. Strain Diversity and Host Specificity in a Specialized Gut Symbiont of Honeybees and Bumblebees. Mol. Ecol. 2016, 25, 4461–4471. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-H.; Berdy, B.M.; Velasquez, O.; Jovanovic, N.; Alkhalifa, S.; Minbiole, K.P.C.; Brucker, R.M. Changes in Microbiome Confer Multigenerational Host Resistance after Sub-Toxic Pesticide Exposure. Cell Host Microbe 2020, 27, 213–224.e7. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-Mediated Insecticide Resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef]
- Gomes, A.F.F.; Omoto, C.; Cônsoli, F.L. Gut Bacteria of Field-Collected Larvae of Spodoptera Frugiperda Undergo Selection and Are More Diverse and Active in Metabolizing Multiple Insecticides than Laboratory-Selected Resistant Strains. J. Pest. Sci. 2020, 93, 833–851. [Google Scholar] [CrossRef]
- Shukla, S.P.; Beran, F. Gut Microbiota Degrades Toxic Isothiocyanates in a Flea Beetle Pest. Mol. Ecol. 2020, 29, 4692–4705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shu, J.; Xue, H.; Zhang, W.; Zhang, Y.; Liu, Y.; Fang, L.; Wang, Y.; Wang, H. The Gut Microbiota in Camellia Weevils Are Influenced by Plant Secondary Metabolites and Contribute to Saponin Degradation. mSystems 2020, 5, e00692-19. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic Bacteria Enable Olive Fly Larvae to Overcome Host Defences. R. Soc. Open Sci. 2015, 2, 150170. [Google Scholar] [CrossRef]
- Adams, A.S.; Aylward, F.O.; Adams, S.M.; Erbilgin, N.; Aukema, B.H.; Currie, C.R.; Suen, G.; Raffa, K.F. Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism. Appl. Environ. Microbiol. 2013, 79, 3468–3475. [Google Scholar] [CrossRef] [PubMed]
- Berasategui, A.; Salem, H.; Paetz, C.; Santoro, M.; Gershenzon, J.; Kaltenpoth, M.; Schmidt, A. Gut Microbiota of the Pine Weevil Degrades Conifer Diterpenes and Increases Insect Fitness. Mol. Ecol. 2017, 26, 4099–4110. [Google Scholar] [CrossRef]
- Akami, M.; Njintang, N.Y.; Gbaye, O.A.; Andongma, A.A.; Rashid, M.A.; Niu, C.-Y.; Nukenine, E.N. Gut Bacteria of the Cowpea Beetle Mediate Its Resistance to Dichlorvos and Susceptibility to Lippia Adoensis Essential Oil. Sci. Rep. 2019, 9, 6435. [Google Scholar] [CrossRef]
- Chung, S.H.; Rosa, C.; Scully, E.D.; Peiffer, M.; Tooker, J.F.; Hoover, K.; Luthe, D.S.; Felton, G.W. Herbivore Exploits Orally Secreted Bacteria to Suppress Plant Defenses. Proc. Natl. Acad. Sci. USA 2013, 110, 15728–15733. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Cortés, A.; Mejia-Jaramillo, A.M.; Granada, Y.; Coatsworth, H.; Lowenberger, C.; Triana-Chavez, O. The Midgut Microbiota of Colombian Aedes Aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-Cyhalothrin. Insects 2020, 11, 584. [Google Scholar] [CrossRef]
- Dada, N.; Sheth, M.; Liebman, K.; Pinto, J.; Lenhart, A. Whole Metagenome Sequencing Reveals Links between Mosquito Microbiota and Insecticide Resistance in Malaria Vectors. Sci. Rep. 2018, 8, 2084. [Google Scholar] [CrossRef]
- Cheng, D.; Guo, Z.; Riegler, M.; Xi, Z.; Liang, G.; Xu, Y. Gut Symbiont Enhances Insecticide Resistance in a Significant Pest, the Oriental Fruit Fly Bactrocera Dorsalis (Hendel). Microbiome 2017, 5, 13. [Google Scholar] [CrossRef]
- Boush, M.G.; Matsumura, F. Insecticidal Degradation by Pseudomonas Melophthora, the Bacterial Symbiote of the Apple Maggot1. J. Econ. Entomol. 1967, 60, 918–920. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, T.; Ren, Z.; Liu, Y.; Yuan, M.; Cai, Y.; Yu, C.; Shu, R.; He, S.; Li, J.; et al. Decline in Symbiont-Dependent Host Detoxification Metabolism Contributes to Increased Insecticide Susceptibility of Insects under High Temperature. ISME J. 2021, 15, 3693–3703. [Google Scholar] [CrossRef]
- Rothman, J.A.; Leger, L.; Graystock, P.; Russell, K.; McFrederick, Q.S. The Bumble Bee Microbiome Increases Survival of Bees Exposed to Selenate Toxicity. Environ. Microbiol. 2019, 21, 3417–3429. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.J.; Couture, J.J.; Raffa, K.F. Plant-Associated Bacteria Degrade Defense Chemicals and Reduce Their Adverse Effects on an Insect Defoliator. Oecologia 2014, 175, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Sun, B.; Gurr, G.M.; Vasseur, L.; Xue, M.; You, M. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.). Front. Microbiol. 2018, 9, 25. [Google Scholar] [CrossRef]
- Ramya, S.L.; Venkatesan, T.; Murthy, K.S.; Jalali, S.K.; Varghese, A. Degradation of Acephate by Enterobacter Asburiae, Bacillus Cereus and Pantoea Agglomerans Isolated from Diamondback Moth Plutella xylostella (L.), a Pest of Cruciferous Crops. J. Environ. Biol. 2016, 37, 611–618. [Google Scholar]
- de Almeida, L.G.; de Moraes, L.A.B.; Trigo, J.R.; Omoto, C.; Cônsoli, F.L. The Gut Microbiota of Insecticide-Resistant Insects Houses Insecticide-Degrading Bacteria: A Potential Source for Biotechnological Exploitation. PLoS ONE 2017, 12, e0174754. [Google Scholar] [CrossRef] [PubMed]
- Tago, K.; Kikuchi, Y.; Nakaoka, S.; Katsuyama, C.; Hayatsu, M. Insecticide Applications to Soil Contribute to the Development of Burkholderia Mediating Insecticide Resistance in Stinkbugs. Mol. Ecol. 2015, 24, 3766–3778. [Google Scholar] [CrossRef]
- Vickerman, D.B.; Trumble, J.T.; George, G.N.; Pickering, I.J.; Nichol, H. Selenium Biotransformations in an Insect Ecosystem: Effects of Insects on Phytoremediation. Environ. Sci. Technol. 2004, 38, 3581–3586. [Google Scholar] [CrossRef]
- Daisley, B.A.; Trinder, M.; McDowell, T.W.; Collins, S.L.; Sumarah, M.W.; Reid, G. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model. Appl. Environ. Microbiol. 2018, 84, e02820-17. [Google Scholar] [CrossRef] [PubMed]
- Paddock, K.J.; Robert, C.A.M.; Erb, M.; Hibbard, B.E. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. Insects 2021, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Biddinger, D.; Rajotte, E.G.; Joshi, N.K. Integrating pollinator health into tree fruit IPM—A case study of Pennsylvania apple production. In The Pollination of Cultivated Plants: A Compendium for Practitioners, 2nd ed.; FAO: Rome, Italy, 2018; Volume 1, pp. 69–83. [Google Scholar]
- Pecenka, J.R.; Ingwell, L.L.; Krupke, C.H.; Kaplan, I. Implementing IPM in crop management simultaneously improves the health of managed bees and enhances the diversity of wild pollinator communities. Sci. Rep. 2023, 13, 11033. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kline, O.; Joshi, N.K. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J. Xenobiot. 2024, 14, 753-771. https://doi.org/10.3390/jox14020043
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. Journal of Xenobiotics. 2024; 14(2):753-771. https://doi.org/10.3390/jox14020043
Chicago/Turabian StyleKline, Olivia, and Neelendra K. Joshi. 2024. "Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators" Journal of Xenobiotics 14, no. 2: 753-771. https://doi.org/10.3390/jox14020043
APA StyleKline, O., & Joshi, N. K. (2024). Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. Journal of Xenobiotics, 14(2), 753-771. https://doi.org/10.3390/jox14020043