Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Microorganisms
2.2. Identification of BsNLG8
2.3. Mycostatic Ability Test
2.4. Assessment of Siderophore Production
2.5. Test of Nicotine Degradation by BsNLG8
2.6. Effect of BsNLG8 on Nicotine Sensitivity of BPHs
2.7. Statistical Analysis
3. Results
3.1. Identification of Bacteria
3.2. Inhibitory Effect of BsNLG8 on Fungi
3.2.1. Inhibitory Effect of Bacteria on Fungal Growth
3.2.2. Mycostatic Effect of BsNLG8 Volatiles
3.2.3. Mycostatic Effect of BsNLG8 Sterile Solution
3.3. BsNLG8 Can Secrete Siderophore
3.4. Role of BsNLG8 in Degrading Nicotine
3.5. The Sensitivity of BPHs to Nicotine Is Affected by Bacterial BsNLG8
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, T. The Mechanism of Detoxification Metabolism Mediated by Symbionts in Nilaparvata lugens; Huazhong Agricultural University: Wuhan, China, 2019. [Google Scholar]
- Li, W. Mechanism of Resistance to Nitenpyram Mediated by Symbionts in Nilaparvata lugens; Huazhong Agricultural University: Wuhan, China, 2020. [Google Scholar]
- Gong, G.; Zhang, Y.; Zhang, Z.; Wu, W. Alternately Rearing with Susceptible Variety Can Delay the Virulence Development of Insect Pests to Resistant Varieties. Agriculture 2022, 12, 991. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, C.; Yang, X.B.; Long, G.Y.; Jin, D.C. Effects of Insecticide Stress on Expression of NlABCG Transporter Gene in the Brown Planthopper, Nilaparvata lugens. Insects 2019, 10, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lao, S.; Huang, X.; Huang, H.; Liu, C.; Zhang, C.; Bao, Y. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens. Genomics 2015, 106, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Li, B.; Liu, Z.; Xue, J.; Zhu, Z.; Cheng, J.; Zhang, C. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens. Insect Physiol. 2010, 56, 1087–1094. [Google Scholar] [CrossRef]
- Cohen, E. Pesticide-mediated homeostatic modulation in arthropods. Pestic. Biochem. Phys. 2006, 85, 21–27. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, Z.; Bao, H.; Han, Z. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens Stål in China. Pestic. Biochem. Phys. 2009, 94, 36–42. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Phys. 2015, 121, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Nauen, R.; Denholm, I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Arch. Insect Biochem. 2005, 58, 200–215. [Google Scholar] [CrossRef]
- Pang, R.; Chen, M.; Yue, L.; Xing, K.; Li, T.; Kang, K.; Liang, Z.; Yuan, L.; Zhang, W. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 2018, 14, e1007725. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, Y.; Liu, Y.; Deng, X.; He, S.; Li, J.; Wan, H. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 2021, 28, 355–362. [Google Scholar] [CrossRef]
- Engel, P.; Martinson, V.G.; Moran, N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. USA 2013, 109, 11002–11007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Zheng, X.; Zhu, Y.; Long, Y.; Xia, X. Bacillus symbiont drives alterations in intestinal microbiota and circulating metabolites of lepidopteran host. Environ. Microbiol. 2022, 24, 4049–4064. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, J.; Zheng, J.; Pan, Y.; Dong, Y.; Chen, Z.; Gao, S.; Xiao, Y.; Jiang, P.; Wang, X.; et al. Exploiting the gut microbiota to predict the origins and quality traits of cultured sea cucumbers. Environ. Microbiol. 2022, 24, 3882–3897. [Google Scholar] [CrossRef] [PubMed]
- Shentu, X.; Shi, J.; Song, X.; Yu, Y. Research advances in the diversity of symbionts in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Acta Entomol. Sin. 2021, 64, 998–1008. [Google Scholar] [CrossRef]
- Wu, C.; Jing, K.; Xia, L.; Cheng, Q.; Pan, Y. Research progress of piercing and aspirating insect symbiotic bacteria. South China Agric. 2021, 15, 173–175. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceja-Navarro, J.; Vega, F.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H.; Kosina, P.; Infante, F.; Northen, T.; Brodie, E. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015, 6, 7618. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.J.; Couture, J.J.; Raffa, K.F. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 2014, 175, 901–910. [Google Scholar] [CrossRef]
- Yu, H. Study on the Mechanism Responsible for the Virulence Variation of the Rice Brown Planthopper, Nilaparvata lugens(Stal); Zhejiang University: Hangzhou, China, 2013. [Google Scholar]
- Li, X. Analysis of Gut Bacteria Diversity from Rice Planthoppers; Nanjing Agricultural University: Nanjing, China, 2010. [Google Scholar]
- Guo, J. Diversity and Influencing Factors of Gut Microbiota in Honey Bees; Agriculture Type; Chinese Academy of Agricultural Sciences: Beijing, China, 2015. [Google Scholar]
- Fang, X.; Liu, X.; Ding, P. Research on Drug Resistance Mechanism of Burkholderia cepacia. Med. Innov. China 2021, 18, 185–188. [Google Scholar] [CrossRef]
- Ye, J.; Hong, R.; Li, H.; Qin, W. Application and its prospect analysis for Burkholderia cepacia in forest disease control. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2013, 37, 149–155. [Google Scholar]
- Zhang, L.; Ting, S.; Xie, G. Inhibition of Burkholderia cepacia Complex against Several Phythopathogens and Their Potential Pathogenicity. Chin. J. Biol. Control 2009, 25, 25–29. [Google Scholar] [CrossRef]
- Yu, X.; Chi, L.; Liu, Y.; Li, G.; Lan, Y.; Zhu, X.; Li, X. Physio-biochemical characterization and molecular identification of Burkholderia cepacia isolate Lyc2 as a PGPR. Acta Phytopathol. Sin. 2007, 37, 426–432. [Google Scholar] [CrossRef]
- Quan, C.; Zheng, W.; Zhi, M.; Wang, J.; Fan, S. Purification and properties of anitibiotic from Burkholderia cepacia CF-66. Acta Microbiol. Sin. 2005, 45, 707–710. [Google Scholar] [CrossRef]
- Li, B.; Liu, B.; Yu, R.; Lou, M.; Wang, Y.; Xie, G.; Li, H.; Sun, G. Phenotypic and molecular characterization of rhizobacterium Burkholderia sp. strain R456 antagonistic to Rhizoctonia solani, sheath blight of rice. World J. Microbiol. Biotechnol. 2011, 27, 2305–2313. [Google Scholar] [CrossRef]
- Jung, B.K.; Hong, S.; Park, G.; Kim, M.; Shin, J. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl. Biol. Chem. 2018, 61, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Li, J.; Xie, Y.; Sun, C.; Zhang, L.; Wang, C. Inhibitory Effect of Burkholderia contaminans B-1 on Diseases of the Post Harvest Grape. J. Chin. Inst. Food Sci. Technol. 2018, 18, 211–218. [Google Scholar] [CrossRef]
- Yamanaka, K. Reviews for Gram stain. Rinsho byori. Jpn. J. Clin. Pathol. 2002, 50, 449–454. [Google Scholar]
- Khashim, Z.; Fitzgerald, S.; Kadirvel, R.; Dai, D.; Doyle, K.M.; Brinjikji, W.; Kallmes, D.F. Clots retrieved by mechanical thrombectomy from acute ischemic stroke patients show no evidence of bacteria. Interv. Neuroradiol. 2019, 25, 502–507. [Google Scholar] [CrossRef]
- Haegeman, A.; Vanholme, B.; Jacob, O.; Tom, T.M.V.; Claeys, M.; Borgonie, G.; Gheysen, G. An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. Int. J. Parasitol. 2009, 39, 1045–1054. [Google Scholar] [CrossRef]
- Jin, F.; Ding, Y.; Ding, W.; Reddy, M.S.; Fernando, W.G.D.; Du, B. Genetic Diversity and Phylogeny of Antagonistic Bacteria against Phytophthora nicotianae Isolated from Tobacco Rhizosphere. Int. J. Mol. Sci. 2011, 12, 3055–3071. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Z. Bicontrol Mechanism of Trichoderma viride GY20 against Fusarium oxysporum f. sp. vasinfectum F12. Acta Agric. Boreali-Occident. Sin. 2012, 21, 193–197. [Google Scholar]
- Wang, R.; Chen, S.; Xiao, X.; Liu, P.; Shi, M.; Chen, Q.; Weng, Q. Antagonistic Activity and Related Biocontrol Factors Detection of Bacillus subtilis BS193 on Phytophthora capsici. J. Agric. Biotechnol. 2022, 30, 772–782. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.; Xiao, Y.; Wass, T.J.; Schenk, P.M. Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth. Front. Plant Sci. 2018, 9, 1502. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophorest. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Chen, J.; Zou, X.; Zhang, Y.; Zhu, L. Study on drug sensitivity against Comamonas testosteroni by Kirby-Bauer disk diffusion method. J. Cent. South Univ. Med. Sci. 2016, 41, 856–859. [Google Scholar] [CrossRef]
- Wari, D.; Kabir, M.A.; Mujiono, K.; Hojo, Y.; Shinya, T.; Tani, A.; Nakatani, H.; Galis, I. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 2019, 70, 1683–1696. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.; McSweeney, C. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Moran, N.A.; Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl. Acad. Sci. USA 2015, 112, 2093–2096. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Y.; Wang, Z.; Yu, X. Cloning, identification and functional analysis of the peroxidase gene NlPOD1 in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Acta Entomol. Sin. 2021, 65, 958–966. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Ma, T.; Chen, T.; Gong, C.; Li, Y.; Li, X. Isolation and Degradation Characteristics of A Nicotine-degradation Bacterium SCUEC2 Strain. Hubei Agric. Sci. 2015, 54, 1586–1589. [Google Scholar] [CrossRef]
- Ravi, S.; Sevugapperumal, N.; Nallusamy, S.; Shanmugam, H.; Mathiyazhagan, K.; Rangasamy, A.; Akkanna Subbiah, K.; Varagur Ganesan, M. Differential bacterial endophytome in Foc-resistant banana cultivar displays enhanced antagonistic activity against Fusarium oxysporum f.sp. cubense (Foc). Environ. Microbiol. 2022, 24, 2701–2715. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Y.; Luo, Y.; Li, B.; Xie, G. Comparison of Burkholderia cepacia Complex Genomovars from Rice Rhizosphere and Clinic. Chin. J. Rice Sci. 2007, 21, 431–435. [Google Scholar] [CrossRef]
- Liang, J.; Hao, Z.; Wang, L.; Tao, R.; Zheng, J. Research Progress on the Function of Siderophore. Chin. Agric. Sci. Bull. 2011, 27, 284–287. [Google Scholar]
- Duijff, B.J.; Meijer, J.W.; Bakker, P.; Schippers, B. Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Eur. J. Plant Pathol. 1993, 99, 277–289. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.; Wang, F.; Ye, J.; Ren, J. Cloning and Conditions Optimization of the Siderophore Producing Gene for Burkholderia pyrrocinia JK-SH007. Chin. J. Biol. Control 2019, 35, 630–641. [Google Scholar] [CrossRef]
- Liu, J.; Ma, G.; Chen, T.; Hou, Y.; Yang, S.; Zhang, K.; Yang, J. Nicotine-degrading microorganisms and their potential applications. Appl. Microbiol. Biot. 2015, 99, 3775–3785. [Google Scholar] [CrossRef]
- Fang, C.; Ruan, A. Isolation and Characterization of a Nicotine Degradation Bacterium. Environ. Sci. Technol. 2017, 30, 17–22. [Google Scholar]
- Bertoldi, M.C.C.D. Nicotine Decontamination of Tobacco Agro-Industrial Waste and Its Degradation by Micro-Organisms. Waste Manag. Res. 1997, 15, 349–358. [Google Scholar] [CrossRef]
- Qi, D.; Ren, L.; Lu, D.; Liu, Y. Progress and Development Direction of Bioremediation for Quinclorac contaminated Soil. Environ. Sci. Technol. 2016, 29, 74–78. [Google Scholar]
- Tiandong, Z.; Geng, L.; Danyu, T. Studies on Reducing the Contents of Nicotin and Nitrite in Tobacco Leaves by the Metabolite of Endophytic Fungi (Neurospru sp.). Food Ind. 2011, 32, 6–8. [Google Scholar]
- Liping, Z.; Xia, Z.; Lei, L.; Ji, G.; Chen, Z.; Zhou, L. Isolation and Nicotine Degrading Characterization of Strain 11L140. J. Yunnan Agric. Univ. 2013, 28, 366–371. [Google Scholar] [CrossRef]
- Yan, J. The Role of Symbiotic Bacteria in the Nutritional Physiology of Predatory Mites; Anhui Agricultural University: Hefei, China, 2021. [Google Scholar]
- Lian, Q.; Liu, J.; Yang, M.; Zhou, X.; Wu, G.; Luo, T.; Cen, Y. Effect of three antibiotics on the removal of endosymbionts of Cicadella viridis (Hemiptera: Cicadellidae). J. Environ. Entomol. 2019, 41, 650–656. [Google Scholar]
No. | Reactant | Result | No. | Reactant | Result |
---|---|---|---|---|---|
1 | catalase | + | 11 | Urease test | - |
2 | oxidase | + | 12 | Qiyeling | + |
3 | Anaerobic growth | - | 13 | Growth at 37 °C | + |
4 | Nitrate reduction | - | 14 | Growth at 42 °C | + |
5 | Starch hydrolysis | - | 15 | Lysine decarboxylase | + |
6 | D-glucose fermentation | + | 16 | Ornithine decarboxylase | - |
7 | maltose fermentation | + | 17 | arginine dihydrolase | - |
8 | lactose fermentation | + | 18 | β- Galactosidase test | + |
9 | D-xylose fermentation | - | 19 | Gelatin liquefaction | + |
10 | Sucrose fermentation | - |
Pathogenic Fungi | Cultivation Time (d) | Colony Diameter (mm) | p Value | Inhibition Rate % | |
---|---|---|---|---|---|
Control | Treatment | ||||
M. oryzae | 7 | 853.33 ± 8.66 | 135.56 ± 8.82 | p < 0.001 | 84.11 |
F. oxysporum | 6 | 854.44 ± 7.26 | 167.78 ± 9.72 | p < 0.001 | 80.36 |
C. higginsianum | 7 | 627.78 ± 9.72 | 110.00 ± 6.67 | p < 0.001 | 82.48 |
S. curtisii | 7 | 722.22 ± 6.67 | 144.44 ± 8.82 | p < 0.001 | 80.00 |
G. candidum | 7 | 834.44 ± 11.30 | 127.78 ± 8.33 | p < 0.001 | 84.69 |
B. dothidea | 10 | 858.89 ± 3.33 | 171.11 ± 6.01 | p < 0.001 | 80.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, R.; Zafar, J.; Peng, C.; Zhang, X.; Hong, Y.; Mandal, S.D.; Zhang, W.; Jin, F.; Xu, X. Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal). Agriculture 2022, 12, 2106. https://doi.org/10.3390/agriculture12122106
Wang X, Yang R, Zafar J, Peng C, Zhang X, Hong Y, Mandal SD, Zhang W, Jin F, Xu X. Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal). Agriculture. 2022; 12(12):2106. https://doi.org/10.3390/agriculture12122106
Chicago/Turabian StyleWang, Xuemei, Rongrong Yang, Junaid Zafar, Chen Peng, Xuewei Zhang, Yingying Hong, Surajit De Mandal, Wenqing Zhang, Fengliang Jin, and Xiaoxia Xu. 2022. "Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal)" Agriculture 12, no. 12: 2106. https://doi.org/10.3390/agriculture12122106
APA StyleWang, X., Yang, R., Zafar, J., Peng, C., Zhang, X., Hong, Y., Mandal, S. D., Zhang, W., Jin, F., & Xu, X. (2022). Symbiotic and Antagonistic Functions of the Bacterium Burkholderia cepacia BsNLG8, from the Nilaparvata lugens (Stal). Agriculture, 12(12), 2106. https://doi.org/10.3390/agriculture12122106