Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,461)

Search Parameters:
Keywords = inorganic-organic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 1701 KB  
Proceeding Paper
Treatment of Raw Mixed Dairy Wastewater Using an Attached-Growth Biological Filter
by Stefania Patsialou, Iliana Pla, Dimitris V. Vayenas and Athanasia G. Tekerlekopoulou
Environ. Earth Sci. Proc. 2026, 40(1), 2; https://doi.org/10.3390/eesp2026040002 (registering DOI) - 28 Jan 2026
Abstract
This study investigates the implementation of an attached-growth pilot-scale biofilter for the biological treatment of mixed dairy wastewater derived from real industrial effluents, consisting of equal proportions of raw second cheese whey (SCW) and pudding dessert wastewater (PDW). The biofilter was inoculated with [...] Read more.
This study investigates the implementation of an attached-growth pilot-scale biofilter for the biological treatment of mixed dairy wastewater derived from real industrial effluents, consisting of equal proportions of raw second cheese whey (SCW) and pudding dessert wastewater (PDW). The biofilter was inoculated with indigenous microorganisms derived from the mixed wastewater stream with initial dissolved Chemical Oxygen Demand (d-COD) concentrations ranged from 1000 to 12,500 mg/L. The removal performance of organic and inorganic components was evaluated at a recirculation rate of 1.0 L/min, resulting in d-COD reductions of up to 92.3% and removal rates reaching 194.6 mg/(L·h). High removal rates were recorded for ammonium (up to 99.9%) and TKN (92.2–98.7%), while nitrate removal varied (29.4–89.3%) and solids removal exceeded 92%. d-COD concentrations of treated effluent consistently met discharge or municipal disposal legislation values, demonstrating the system’s efficiency and stability and proposing it as an ideal solution for wastewater treatment in dairy facilities. Full article
(This article belongs to the Proceedings of The 9th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

30 pages, 2973 KB  
Review
Additive Manufacturing of Ceramic Materials via Direct Ink Writing (DIW): A Review
by Edwin Francis Cárdenas Correa, Edgar Absalón Torres Barahona and Juan Bautista Carda Castelló
Ceramics 2026, 9(2), 16; https://doi.org/10.3390/ceramics9020016 (registering DOI) - 28 Jan 2026
Abstract
In additive manufacturing technologies, the use of pastes and inks based on materials such as clay to create three-dimensional objects layer by layer has opened new possibilities in fields such as engineering and biomedicine. This review article aims to provide a comprehensive understanding [...] Read more.
In additive manufacturing technologies, the use of pastes and inks based on materials such as clay to create three-dimensional objects layer by layer has opened new possibilities in fields such as engineering and biomedicine. This review article aims to provide a comprehensive understanding of 3D printing of ceramic pastes through Direct Ink Writing (DIW), also referred to as Robocasting. DIW offers specific advantages for ceramic 3D printing, including the ability to extrude highly loaded pastes with customized rheological properties to accommodate a broad spectrum of ceramic compositions, varying from conventional clays to advanced ceramics. It is characterized by filament deposition control, which facilitates the fabrication of complex, porous, or customized architectures while simultaneously minimizing material waste. Through a bibliometric analysis of the literature published between 2020 and 2024, the most relevant studies regarding printing system architectures, ceramic paste formulations, and adjustment of parameters to obtain high-quality parts were identified. This work presents relevant and accurate explanations of the DIW technology, supporting researchers and industry professionals seeking to initiate or improve ceramic 3D printing processes for a wide range of applications. Full article
Show Figures

Graphical abstract

42 pages, 2400 KB  
Review
Advancing Greenhouse Air Filtration: Biodegradable Nanofiber Filters with Sustained Antimicrobial Performance
by Amirali Bajgholi, Reza Jafari and Alireza Saidi
Textiles 2026, 6(1), 15; https://doi.org/10.3390/textiles6010015 - 27 Jan 2026
Abstract
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which [...] Read more.
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which can compromise crop productivity and pose health risks to workers. This review explores recent advancements in air filtration technologies for controlled environments such as greenhouses, where airborne particulate matter, bioaerosols, and volatile organic compounds (VOCs) present ongoing challenges. Special focus is given to the development of filtration media based on electrospun nanofibers, which offer high surface area, tunable porosity, and low airflow resistance. The use of biodegradable polymers in these systems to support environmental sustainability is examined, along with electrospinning techniques that enable precise control over fiber morphology and functionalization. Antimicrobial enhancements are discussed, including inorganic agents such as metal nanoparticles and bio-based options like essential oils. Essential oils, known for their broad-spectrum antimicrobial properties, are assessed for their potential in long-term, controlled-release applications through nanofiber encapsulation. Overall, this paper highlights the potential of integrating sustainable materials, innovative fiber fabrication techniques, and nature-derived antimicrobials to advance air filtration performance while meeting ecological and health-related standards. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

21 pages, 26913 KB  
Article
Regional Assessment of Arsenic Accumulation in Rice (Oryza sativa L.) Agroecosystems of the Tejo, Almansor and Sorraia Valleys, Portugal
by Manuela Simões, David Ferreira, Ana Coelho Marques and Ana Rita F. Coelho
Sci 2026, 8(2), 26; https://doi.org/10.3390/sci8020026 - 27 Jan 2026
Abstract
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia [...] Read more.
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia valleys. As such, this study evaluates As pathways across 5000 ha of rice fields in the Tagus, Sorraia, and Almansor alluvial plains by combining soil, water, and plant analyses with a geostatistical approach. The soils exhibited consistently elevated As concentrations (mean of 18.9 mg/kg), exceeding national reference values for agricultural soils (11 mg/kg) and forming a marked east–west gradient with the highest levels in the Tagus alluvium. Geochemical analysis showed that As is strongly correlated with Fe (r = 0.686), indicating an influence of Fe-oxyhydroxides under oxidizing conditions. The irrigation waters showed low As (mean of 2.84 μg/L for surface water and 3.51 μg/L for groundwater) and predominantly low sodicity facies, suggesting that irrigation water is not the main contamination vector. In rice plants, As accumulation follows the characteristic organ hierarchy roots > stems/leaves > grains, with root concentrations reaching up to 518 mg/kg and accumulating progressively in the maturity phase. Arsenic content in harvested rice grains was 266 μg/kg (with a maximum of 413.9 μg/kg), being close to EU maximum limits when considering typical inorganic As proportions, assuming 60 to 90% inorganic fraction. Together, the findings highlight that a combined approach is essential, and identify soil geochemistry (and not irrigation water) as the primary source of As transfer in those agroecosystems, due to the flooded conditions that trigger the reductive dissolution of Fe oxides, releasing As. Additionally, the results also identified the need for targeted monitoring in areas of elevated As content in soils and support future mitigation through As speciation analysis, cultivar selection, improved fertilization strategies, and water-management practices such as Alternate Wetting and Drying (AWD), to ensure the long-term food safety. Full article
Show Figures

Figure 1

36 pages, 4837 KB  
Article
Design, Synthesis, Spectral, Structural Analysis, and Biological Evaluation of Novel Pyrazole Derivatives as Anti-Tumor, Antimicrobial, and Anti-Biofilm Agents
by Christina Zalaru, Florea Dumitrascu, Constantin Draghici, Marilena Ferbinteanu, Isabela Tarcomnicu, Maria Marinescu, Zenovia Moldovan, George Mihai Nitulescu, Rodica Tatia and Marcela Popa
Antibiotics 2026, 15(2), 127; https://doi.org/10.3390/antibiotics15020127 - 27 Jan 2026
Abstract
Objective: Based on our previous findings, we designed new molecules by extending functionalized pyrazole derivatives containing iodine atoms, which are linked via an amino bond to halogen-substituted phenyl groups. In addition, these newly developed pyrazole compounds exhibit anti-tumor, antibacterial, and anti-biofilm activities. Methods: [...] Read more.
Objective: Based on our previous findings, we designed new molecules by extending functionalized pyrazole derivatives containing iodine atoms, which are linked via an amino bond to halogen-substituted phenyl groups. In addition, these newly developed pyrazole compounds exhibit anti-tumor, antibacterial, and anti-biofilm activities. Methods: Three new series of pyrazole compounds were designed. Fifteen novel pyrazole derivatives, distributed across three series (4ad, 5ad, and 6ag), were synthesized and structurally characterized by 1H-NMR, 13C-NMR, FTIR, UV-Vis spectroscopy, and elemental analysis. Results: Among them, compound 4c, which exhibited notable anti-tumor activity, crystallized in a monoclinic system and was further analyzed via single-crystal X-ray diffraction. All synthesized compounds were evaluated in vitro on NCTC normal fibroblast cells and HEp-2 tumor epithelial cells. Compound 4c demonstrated significant anti-tumor activity while displaying no cytotoxic effects on normal cells. The antibacterial and anti-biofilm activities of the compounds were also assessed against four bacterial strains. Compounds 5a and 5c exhibited the highest antibacterial activity against Staphylococcus aureus ATCC 25923, both with a minimum inhibitory concentration (MIC) of 0.023 μg/mL. Additionally, compounds 4a, 5a, 6a, 6e, and 6f showed the strongest anti-biofilm effects, each presenting a minimum biofilm inhibition concentration (MBIC) of 0.023 μg/mL. ADME and ADMET in silico predictions indicated that all compounds exhibit generally favorable, drug-like physicochemical properties. Conclusions: The study reinforces the applicability of these compounds as promising anticancer, antibacterial, and anti-biofilm drugs. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Antibiotics, 2nd Edition)
Show Figures

Figure 1

13 pages, 2834 KB  
Article
Synthesis and Structure of Pregelatinized Starch-Modified SiO2 Gels for Strength Enhancement of Portland Cement
by Yuehua Si and Jingjing Li
Buildings 2026, 16(3), 510; https://doi.org/10.3390/buildings16030510 - 27 Jan 2026
Abstract
Here, we introduce novel pregelatinized starch-modified silica gels for Portland cement enhancement. The modified SiO2 gels demonstrate superior mechanical properties compared to pure silica, with optimal starch modification increasing the modulus by 244.8%. Structural characterization reveals that starch alters Si-O bond configurations [...] Read more.
Here, we introduce novel pregelatinized starch-modified silica gels for Portland cement enhancement. The modified SiO2 gels demonstrate superior mechanical properties compared to pure silica, with optimal starch modification increasing the modulus by 244.8%. Structural characterization reveals that starch alters Si-O bond configurations without covalent bond formation. Applied to Portland cement, the modified gels significantly enhance compressive strength through method-dependent mechanisms. Casting applications show measurable strength improvements, while pressing methods achieve a 42.3% compressive strength increase with superior packing efficiency under confined conditions. The enhancement primarily stems from accelerated C3S hydration facilitated by the modified silica gels. These findings establish an innovative approach for high-performance cement materials via organic–inorganic composite modification, providing practical formulation guidance across diverse application scenarios. Full article
Show Figures

Figure 1

16 pages, 1942 KB  
Review
The Pharmaceutical Industry in 2025: An Analysis of FDA Drug Approvals from the Perspective of Molecules
by Beatriz G. de la Torre and Fernando Albericio
Molecules 2026, 31(3), 419; https://doi.org/10.3390/molecules31030419 - 26 Jan 2026
Viewed by 56
Abstract
In 2025, the U.S. Food and Drug Administration (FDA) approved 44 new drugs, reflecting a slight decrease compared to previous years but maintaining the overall trends in pharmaceutical innovation. Biologics accounted for 25% of approvals, including nine monoclonal antibodies (mAbs), two antibody–drug conjugates [...] Read more.
In 2025, the U.S. Food and Drug Administration (FDA) approved 44 new drugs, reflecting a slight decrease compared to previous years but maintaining the overall trends in pharmaceutical innovation. Biologics accounted for 25% of approvals, including nine monoclonal antibodies (mAbs), two antibody–drug conjugates (ADCs), and one fusion protein, with cancer remaining the primary therapeutic focus. TIDES, comprising three oligonucleotides and one peptide, continued to consolidate their presence in the market, with the three oligonucleotides featuring N-acetylgalactosamine (GalNAc) for liver-targeted delivery. Small molecules dominate the remainder, with a high prevalence of N-aromatic moieties and fluorine atoms present in most of the molecules. Peptide manufacturing and sustainability concerns, including PFAS usage, remain key challenges. Despite these advances, the high cost of innovative therapies limits access, particularly in low- and middle-income countries. This report provides a structural and chemical analysis of the newly approved drugs, highlighting trends in molecular design, therapeutic areas, and technological innovations shaping modern drug discovery. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 2003 KB  
Article
Synthesis of Vinyl-Containing MQ Copolymers in Active Medium
by Alina Khmelnitskaia, Aleksandra Kalinina, Ivan Meshkov, Ekaterina Ivanova, Sergey G. Vasil’ev, Alexander Buzin, Gagik Ghazaryan, Sergey Ponomarenko and Aziz Muzafarov
Polymers 2026, 18(3), 315; https://doi.org/10.3390/polym18030315 - 24 Jan 2026
Viewed by 229
Abstract
MQ copolymers, consisting of monofunctional (M) and tetrafunctional (Q) siloxane units, are versatile materials used as additives, adhesives, and in composite materials. Functional groups, such as vinyl substituents, in M-units allow for the tailoring of properties for specific applications. This study aimed to [...] Read more.
MQ copolymers, consisting of monofunctional (M) and tetrafunctional (Q) siloxane units, are versatile materials used as additives, adhesives, and in composite materials. Functional groups, such as vinyl substituents, in M-units allow for the tailoring of properties for specific applications. This study aimed to synthesize vinyl-containing MQ copolymers (MVinMQ) via a controlled, chlorine-free method to explore the regulation of their composition and properties. The results demonstrated precise control over the copolymer architecture, with hydroxyl content and molecular weight increasing alongside the Q-unit fraction. All obtained copolymers exhibited high thermal stability, with 5% mass loss occurring above 295 °C in air and 365 °C in argon. Fractionation data supported a molecular composite model consisting of an inorganic core and an organic shell. Polycondensation in an active medium is an effective method for the directed synthesis of structurally tunable MVinMQ copolymers, offering a versatile platform for developing functional hybrid materials, modifiers, and cross-linking agents. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

32 pages, 7306 KB  
Review
From Porphyrinic MOFs and COFs to Hybrid Architectures: Design Principles for Photocatalytic H2 Evolution
by Maria-Chrysanthi Kafentzi, Grigorios Papageorgiou and Kalliopi Ladomenou
Inorganics 2026, 14(2), 32; https://doi.org/10.3390/inorganics14020032 - 23 Jan 2026
Viewed by 278
Abstract
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light [...] Read more.
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light absorption, tunable electronic structures, permanent porosity, and well-defined catalytic architectures. In these systems, porphyrins function as versatile photosensitizers whose photophysical properties can be precisely tailored through metalation, peripheral functionalization, and integration into ordered frameworks. This review provides a comprehensive, design-oriented overview of recent advances in PMOFs, PCOFs, and hybrid porphyrinic architectures for photocatalytic H2 evolution. We discuss key structure–activity relationships governing light harvesting, charge separation, and hydrogen evolution kinetics, with particular emphasis on the roles of porphyrin metal centers, secondary building units, linker functionalization, framework morphology, and cocatalyst integration. Furthermore, we highlight how heterojunction engineering through coupling porphyrinic frameworks with inorganic semiconductors, metal sulfides, or single-atom catalytic sites can overcome intrinsic limitations related to charge recombination and limited spectral response. Current challenges, including long-term stability, reliance on noble metals, and scalability, are critically assessed. Finally, future perspectives are outlined, emphasizing rational molecular design, earth-abundant catalytic motifs, advanced hybrid architectures, and data-driven approaches as key directions for translating porphyrinic frameworks into practical photocatalytic hydrogen-generation technologies. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

29 pages, 3859 KB  
Article
Depositional Environments and Carbonaceous Sources of the Cheng-Gang Crystalline Graphite Deposit Revealed by Elemental and Isotopic Evidence
by Feng Liu, Wenbo Rao, Yangyang Zhang, Jianjun Cui and Weijun Yao
Minerals 2026, 16(2), 120; https://doi.org/10.3390/min16020120 - 23 Jan 2026
Viewed by 101
Abstract
The Cheng-gang crystalline graphite deposit is a recently discovered medium-to-large-sized deposit within the Tan-Lu Fault Zone (TLFZ), East China. However, the knowledge on this deposit remains limited, resulting in a poor understanding of its genesis. In this study, this deposit is chosen to [...] Read more.
The Cheng-gang crystalline graphite deposit is a recently discovered medium-to-large-sized deposit within the Tan-Lu Fault Zone (TLFZ), East China. However, the knowledge on this deposit remains limited, resulting in a poor understanding of its genesis. In this study, this deposit is chosen to elucidate the degree of graphite mineralization, the nature and depositional environments of the protoliths, and the carbon source of graphite through geochemical and stable isotope investigations, and mineralogical analysis. The fixed carbon contents in the graphite-ore-bearing layers range from 2% to 3%. X-ray diffraction analyses reveal a high degree of graphitization. Analyses of elemental ratios indicate that the protoliths of metamorphic rocks predominantly consist of felsic rocks derived from the upper crust and deposited in brackish-water and reducing environments (anoxic to dysoxic). Stable carbon isotope analyses show that CH4 with lighter carbon isotopes released from the decomposition of pristine organic matter was trapped into adjacent inorganic reservoirs and the residual fraction with heavy carbon isotopes evolved to become graphite under metamorphism. Assuming the existence of isotope exchange between carbonate minerals and graphite, the temperature of peak metamorphism is estimated to be 580–860 °C, corresponding to amphibolite–granulite facies during regional metamorphism. The direct mixing of organic fluids and adjacent inorganic reservoirs may have contributed to graphite ore formation and needs to be further explored in future studies. The findings shed light on the genesis of the TLFZ graphite deposits, providing practical implications for local mineral exploration. Full article
Show Figures

Figure 1

16 pages, 1456 KB  
Article
Cell Density-Dependent Suppression of Perlecan and Biglycan Expression by Gold Nanocluster in Vascular Endothelial Cells
by Takato Hara, Misato Saeki, Misaki Shirai, Yuichi Negishi, Chika Yamamoto and Toshiyuki Kaji
Cells 2026, 15(2), 209; https://doi.org/10.3390/cells15020209 - 22 Jan 2026
Viewed by 193
Abstract
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and [...] Read more.
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and that organic–inorganic hybrid molecules, such as metal complexes and organometallic compounds, serve as useful tools to analyze proteoglycan synthesis mechanisms. However, the effects of metal compounds lacking electrophilicity on proteoglycan synthesis remain unclear. Au25(SG)18, a nanoscale gold cluster consisting of a metal core protected by gold–glutathione complexes, exhibits extremely low intramolecular polarity. In this study, we investigated the effect of Au25(SG)18 on proteoglycan synthesis in vascular endothelial cells. Au25(SG)18 accumulated significantly in vascular endothelial cells at low cell density and suppressed the expression of perlecan, a major heparan sulfate proteoglycan in cells, by inactivating ADP-ribosylation factor 6 (Arf6). Additionally, Au25(SG)18 reduced the expression of biglycan, a small dermatan sulfate proteoglycan, in vascular endothelial cells at low cell density; however, the underlying mechanisms remain unclear. Overall, our findings suggest that organic–inorganic hybrid molecules regulate the activity of Arf6-mediated protein transport to the extracellular space and that perlecan is regulated through this mechanism, highlighting the importance of Arf6-mediated extracellular transport for maintaining vascular homeostasis. Full article
(This article belongs to the Special Issue Molecular Signaling and Mechanism on Vascular Remodeling)
Show Figures

Graphical abstract

16 pages, 2002 KB  
Review
A Dual Soil Carbon Framework for Enhanced Silicate Rock Weathering: Integrating Organic and Inorganic Carbon Pathways Across Forest and Cropland Ecosystems
by Yang Ding, Zhongao Yan, Hao Wang, Yifei Mao, Zeding Liu, Jordi Sardans, Chao Fang and Zhaozhong Feng
Forests 2026, 17(1), 144; https://doi.org/10.3390/f17010144 - 22 Jan 2026
Viewed by 49
Abstract
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics [...] Read more.
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics across forest and cropland ecosystems using a unified SOC–SIC dual-pool framework. Across both systems, ESRW operates through shared geochemical processes, including proton consumption during silicate dissolution and base cation release, which promote atmospheric CO2 uptake. However, carbon fate diverges markedly among ecosystems. Forest systems, characterized by high biomass production, deep rooting, and strong hydrological connectivity, primarily favor biologically mediated pathways, enhancing net primary productivity and mineral-associated organic carbon (MAOC) formation, while facilitating downstream export of dissolved inorganic carbon (DIC). In contrast, intensively managed croplands more readily accumulate measurable soil inorganic carbon (SIC) and soil DIC over short to medium timescales, particularly under evapotranspiration-dominated or calcium-rich conditions, although SOC responses are often moderate and variable. Importantly, only a subset of ESRW-driven pathways—such as MAOC formation and secondary carbonate precipitation—represent durable carbon storage on decadal to centennial timescales. By explicitly distinguishing carbon storage from carbon transport, this synthesis clarifies the conditions under which ESRW can contribute to climate change mitigation and highlights the need for ecosystem-specific deployment and monitoring strategies. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

20 pages, 2241 KB  
Article
InterSeA: An Unmanned Surface Vehicle (USV) for Monitoring the Marine Surface Microlayer (SML) in Coastal Areas
by Nikolaos Katsikatsos, Aikaterini Sakellari, Theodora Paramana, Georgios Katsouras, Konstantinos Koukoulakis, Evangelos Bakeas, Nikolaos Mavromatis, Theodoros Xenakis, Angeliki Ntourntoureka and Sotirios Karavoltsos
J. Mar. Sci. Eng. 2026, 14(2), 233; https://doi.org/10.3390/jmse14020233 - 22 Jan 2026
Viewed by 71
Abstract
The sea surface microlayer (SML) is a critical biogeochemical boundary, playing a key role in air–sea exchange processes, yet its sampling remains challenging due to potential dilution from subsurface water layers, susceptibility to contamination and labor- and time-consuming procedures. The design, development and [...] Read more.
The sea surface microlayer (SML) is a critical biogeochemical boundary, playing a key role in air–sea exchange processes, yet its sampling remains challenging due to potential dilution from subsurface water layers, susceptibility to contamination and labor- and time-consuming procedures. The design, development and operational verification of a research unmanned surface vehicle (USV), equipped with samplers for collecting both sea surface microlayer and subsurface water samples (SSW), are described in this study. The InterSeA autonomous vessel is of the catamaran type, equipped with an SML sampler consisting of rotating glass discs and a peristaltic pump for collecting SSW samples. Verification analysis with traditional manual sampling techniques (glass plate and mesh screen) revealed that the InterSeA achieved comparable results in terms of reproducibility and contamination control for both the inorganic and organic analytes examined. The results obtained highlight the effectiveness of autonomous platforms in achieving reliable, low-contamination SML sampling, emphasizing their suitability for broader use in marine biogeochemical research demanding high resolution and minimally disturbed interface measurements. InterSeA is one of the smallest and lightest USVs using rotating glass discs for SML sampling. Full article
(This article belongs to the Special Issue Assessment and Monitoring of Coastal Water Quality)
Show Figures

Figure 1

14 pages, 487 KB  
Article
A Life Cycle Costing of a Composting Facility for Agricultural Waste of Plant and Animal Origin in Southeastern Spain
by José García García, Begoña García Castellanos, Raúl Moral Herrero, Francisco Javier Andreu-Rodríguez and Ana García-Rández
Agriculture 2026, 16(2), 273; https://doi.org/10.3390/agriculture16020273 - 21 Jan 2026
Viewed by 94
Abstract
This study is an economic evaluation of a composting facility in southeastern Spain (applying Life Cycle Costing), a key region in European horticulture with a significant availability of agricultural biomass. Composting helps reduce dependence on inorganic fertilizers, aligning with European policies that promote [...] Read more.
This study is an economic evaluation of a composting facility in southeastern Spain (applying Life Cycle Costing), a key region in European horticulture with a significant availability of agricultural biomass. Composting helps reduce dependence on inorganic fertilizers, aligning with European policies that promote the transition toward organic fertilization practices. In addition, compost enhances soil health, increases soil organic carbon, and supports climate change mitigation. Despite its agronomic and environmental benefits, and the large availability of biomass in this region, there is a notable lack of literature addressing the economic costs of composting, which is the first step in assessing the sustainability of a production process. The proposed facility (production: 9000 tonnes of compost per year) utilizes pruning residues and manure to produce high-quality organic amendments. The analysis includes infrastructure, equipment, and every operational input. Likewise, the analysis also provides socio-economic indicators such as employment generation and contribution to the regional economy. Three scenarios were evaluated based on the pruning–shredding location: at the plant, at the farm with mobile equipment, and at the farm with conventional machinery. The most cost-effective option was shredding at the farm using mobile equipment, reducing the unit cost to EUR 65.19 per tonne due to the transport of a smaller volume of prunings and, therefore, lower fuel consumption. The plant also demonstrates high productivity per square metre and generates stable employment in rural areas. Overall, the findings highlight composting as a viable and competitive strategy within circular and low-carbon agricultural systems. Full article
Show Figures

Figure 1

17 pages, 1209 KB  
Article
Evaluation of Operating Parameters for Real Landfill Leachate Treatment via Electrocoagulation
by Joana Duarte, Diogo Correia, João Gomes and Eva Domingues
Environments 2026, 13(1), 58; https://doi.org/10.3390/environments13010058 - 21 Jan 2026
Viewed by 148
Abstract
Landfill leachate (LL) is a complex wastewater characterized by high concentrations of organic matter and heavy metals, posing significant challenges to conventional treatment technologies. Electrochemical methods, particularly electrocoagulation (ECG), have shown promise for LL treatment; however, issues related to operational optimization and electrode [...] Read more.
Landfill leachate (LL) is a complex wastewater characterized by high concentrations of organic matter and heavy metals, posing significant challenges to conventional treatment technologies. Electrochemical methods, particularly electrocoagulation (ECG), have shown promise for LL treatment; however, issues related to operational optimization and electrode durability remain insufficiently addressed. In this study, a novel electrocoagulation-based approach is proposed that systematically integrates process optimization with an explicit assessment of iron electrode reusability, which is an aspect that has been rarely explored in previous ECG studies on LL. Key operational parameters—current density, pH, inter-electrode distance, electrode surface area, and electrode material—were optimized to enhance treatment performance. Optimal conditions were achieved using iron electrodes at a current density of 256 A/m2, pH 8, an inter-electrode distance of 1 cm, and an effective electrode surface area of 19.5 cm2/L. Under these conditions, removal efficiencies of 100% for zinc, 94.9% for copper, and 54.5% for total organic carbon (TOC) were obtained, demonstrating effective simultaneous removal of inorganic and organic contaminants. The electrode reusability tests showed stable removal efficiencies over ten consecutive operational cycles, highlighting the potential for reduced operational costs and improved process sustainability. Additionally, the treated effluent exhibited reduced phytotoxicity, as evidenced by lower germination inhibition (GI), reduced root growth inhibition (RGI), and enhanced removal of humic substances. Overall, the results demonstrate that the proposed ECG approach is a robust, flexible, and environmentally sustainable solution for LL treatment, with clear advantages over conventional EC systems in terms of long-term performance and resource efficiency. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment, 3rd Edition)
Show Figures

Figure 1

Back to TopTop