Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,023)

Search Parameters:
Keywords = innovator behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5389 KiB  
Article
Novel Method of Estimating Iron Loss Equivalent Resistance of Laminated Core Winding at Various Frequencies
by Maxime Colin, Thierry Boileau, Noureddine Takorabet and Stéphane Charmoille
Energies 2025, 18(15), 4099; https://doi.org/10.3390/en18154099 (registering DOI) - 1 Aug 2025
Abstract
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying [...] Read more.
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying model-specific parameters, which depend on frequency, is crucial. This article focuses on a specific frequency range where a circuit model with series resistance and inductance, along with a parallel resistance to account for iron losses (Riron), is applicable. While the determination of series elements is well documented, the determination of Riron remains complex and debated, with traditional methods neglecting operating conditions such as magnetic saturation. To address these limitations, an innovative experimental method is proposed, comprising two main steps: determining the complex impedance of the magnetic device and extracting Riron from the model. This method aims to provide a more precise and representative estimation of Riron, improving the reliability and accuracy of electromagnetic and magnetic device simulations and designs. The obtained values of the iron loss equivalent resistance are different by at least 300% than those obtained by an impedance analyzer. The proposed method is expected to advance the understanding and modeling of losses in electromagnetic and magnetic devices, offering more robust tools for engineers and researchers in optimizing device performance and efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 2860 KiB  
Review
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges
by Liangyue Yu, Yao Ge, Shuja Ansari, Muhammad Imran and Wasim Ahmad
Sensors 2025, 25(15), 4763; https://doi.org/10.3390/s25154763 (registering DOI) - 1 Aug 2025
Abstract
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal [...] Read more.
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

31 pages, 711 KiB  
Review
Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments
by Alexandra Ban-Cucerzan, Kálmán Imre, Adriana Morar, Adela Marcu, Ionela Hotea, Sebastian-Alexandru Popa, Răzvan-Tudor Pătrînjan, Iulia-Maria Bucur, Cristina Gașpar, Ana-Maria Plotuna and Sergiu-Constantin Ban
Microorganisms 2025, 13(8), 1805; https://doi.org/10.3390/microorganisms13081805 (registering DOI) - 1 Aug 2025
Abstract
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current [...] Read more.
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current knowledge on biofilm formation mechanisms, genetic regulation, and the unique behavior of multi-species biofilms. The review evaluates modern detection and monitoring technologies, including PCR, biosensors, and advanced microscopy, and compares their effectiveness in industrial contexts. Real-world outbreak data and a global economic impact analysis underscore the urgency for more effective regulatory frameworks and sanitation innovations. The findings highlight the critical need for integrated, proactive biofilm management approaches to safeguard food safety, reduce public health risks, and minimize economic losses across global food sectors. Full article
26 pages, 5263 KiB  
Article
A System Dynamics-Based Hybrid Digital Twin Model for Driving Green Manufacturing
by Sucheng Fan, Huagang Tong and Song Wang
Systems 2025, 13(8), 651; https://doi.org/10.3390/systems13080651 (registering DOI) - 1 Aug 2025
Abstract
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of [...] Read more.
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of soft systems, including human behavior, decision-making, and operational strategies. To address this limitation, the present study introduces an innovative hybrid digital twin model that integrates both physical and soft systems to support green manufacturing initiatives comprehensively. The primary contributions of this work are threefold. First, a novel hybrid architecture is developed by coupling real-time physical data with virtual soft system components that simulate factory operations. Second, lean production principles are systematically incorporated into the soft system, thereby facilitating reduced energy consumption and minimizing environmental impact. Third, a parameter-driven programming model is formulated to correlate critical variables with green performance metrics, and a genetic algorithm is utilized to optimize these variables, ultimately enhancing sustainability outcomes. This integrated approach not only expands the applicability of digital twin technology but also offers a data-driven decision-support tool for the advancement of green manufacturing practices. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

34 pages, 434 KiB  
Article
Mobile Banking Adoption: A Multi-Factorial Study on Social Influence, Compatibility, Digital Self-Efficacy, and Perceived Cost Among Generation Z Consumers in the United States
by Santosh Reddy Addula
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 192; https://doi.org/10.3390/jtaer20030192 (registering DOI) - 1 Aug 2025
Abstract
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies [...] Read more.
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies have explored general adoption behaviors, limited research has examined how individual factors such as social influence, lifestyle compatibility, financial technology self-efficacy, and perceived usage cost affect mobile banking adoption among specific generational cohorts. This study addresses that gap by offering insights into these variables, contributing to the growing literature on mobile banking adoption, and presenting actionable recommendations for financial institutions targeting younger market segments. Using a structured questionnaire survey, data were collected from both users and non-users of mobile banking among the Gen Z population in the United States. The regression model significantly predicts mobile banking adoption, with an intercept of 0.548 (p < 0.001). Among the independent variables, perceived cost of usage has the strongest positive effect on adoption (B=0.857, β=0.722, p < 0.001), suggesting that adoption increases when mobile banking is perceived as more affordable. Social influence also has a significant positive impact (B=0.642, β=0.643, p < 0.001), indicating that peer influence is a central driver of adoption decisions. However, self-efficacy shows a significant negative relationship (B=0.343, β=0.339, p < 0.001), and lifestyle compatibility was found to be statistically insignificant (p=0.615). These findings suggest that reducing perceived costs, through lower fees, data bundling, or clearer communication about affordability, can directly enhance adoption among Gen Z consumers. Furthermore, leveraging peer influence via referral rewards, Partnerships with influencers, and in-app social features can increase user adoption. Since digital self-efficacy presents a barrier for some, banks should prioritize simplifying user interfaces and offering guided assistance, such as tutorials or chat-based support. Future research may employ longitudinal designs or analyze real-life transaction data for a more objective understanding of behavior. Additional variables like trust, perceived risk, and regulatory policies, not included in this study, should be integrated into future models to offer a more comprehensive analysis. Full article
20 pages, 3027 KiB  
Article
Evolutionary Game Analysis of Multi-Agent Synergistic Incentives Driving Green Energy Market Expansion
by Yanping Yang, Xuan Yu and Bojun Wang
Sustainability 2025, 17(15), 7002; https://doi.org/10.3390/su17157002 (registering DOI) - 1 Aug 2025
Abstract
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback [...] Read more.
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback from energy suppliers; and underexplored behavioral evolution of building owners. This study establishes a government–suppliers–owners evolutionary game framework with dynamically calibrated policies, simulated using MATLAB multi-scenario analysis. Novel findings demonstrate: (1) A dual-threshold penalty effect where excessive fines diminish policy returns due to regulatory costs, requiring dynamic calibration distinct from fixed-penalty approaches; (2) Market-maturity-phased subsidies increasing owner adoption probability by 30% through staged progression; (3) Energy suppliers’ cost-reducing innovations as pivotal feedback drivers resolving coordination failures, overlooked in prior tripartite models; (4) Owners’ adoption motivation shifts from short-term economic incentives to environmentally driven decisions under policy guidance. The framework resolves these gaps through integrated dynamic mechanisms, providing policymakers with evidence-based regulatory thresholds, energy suppliers with cost-reduction targets, and academia with replicable modeling tools. Full article
Show Figures

Figure 1

19 pages, 481 KiB  
Article
Trust the Machine or Trust Yourself: How AI Usage Reshapes Employee Self-Efficacy and Willingness to Take Risks
by Zhiyong Han, Guoqing Song, Yanlong Zhang and Bo Li
Behav. Sci. 2025, 15(8), 1046; https://doi.org/10.3390/bs15081046 (registering DOI) - 1 Aug 2025
Abstract
As artificial intelligence (AI) technology becomes increasingly widespread in organizations, its impact on individual employees’ psychology and behavior has garnered growing attention. Existing research primarily focuses on AI’s effects on organizational performance and job design, with limited exploration of its mechanisms influencing individual [...] Read more.
As artificial intelligence (AI) technology becomes increasingly widespread in organizations, its impact on individual employees’ psychology and behavior has garnered growing attention. Existing research primarily focuses on AI’s effects on organizational performance and job design, with limited exploration of its mechanisms influencing individual employees, particularly in the critical area of risk-taking behavior, which is essential to organizational innovation. This research develops a moderated mediation model grounded in social cognitive theory (SCT) to explore how AI usage affects the willingness to take risks. A three-wave longitudinal study collected and statistically analyzed data from 442 participants. The findings reveal that (1) AI usage significantly enhances employees’ willingness to take risks; (2) self-efficacy serves as a partial mediator in the connection between AI usage and the willingness to take risks; and (3) learning goal orientation moderates both the relationship between AI usage and self-efficacy, as well as the mediating effect. This research enhances our understanding of AI’s impact on organizational behavior and provides valuable insights for human resource management in the AI era. Full article
Show Figures

Figure 1

19 pages, 4759 KiB  
Article
Research on User Experience and Continuous Usage Mechanism of Digital Interactive Installations in Museums from the Perspective of Distributed Cognition
by Aili Zhang, Yanling Sun, Shaowen Wang and Mengjuan Zhang
Appl. Sci. 2025, 15(15), 8558; https://doi.org/10.3390/app15158558 (registering DOI) - 1 Aug 2025
Abstract
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study [...] Read more.
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study investigates key factors influencing users’ continuous usage of digital interactive installations using the Capital Museum in Beijing as a case study. A theoretical model was constructed and empirically validated through Bayesian Structural Equation Modeling (Bayesian-SEM) with 352 valid samples. The findings reveal that perceived ease of use plays a critical direct predictive role in continuous usage intention. Environmental factors and peer interaction indirectly influence user behavior through learner engagement, while user satisfaction serves as a core mediator between perceived ease of use and continuous usage intention. Notably, perceived usefulness and entertainment showed no direct effects, indicating that convenience and social experience outweigh functional benefits in this context. These findings emphasize the importance of optimizing interface design, fostering collaborative environments, and enhancing user satisfaction to promote sustained participation. This study provides practical insights for aligning digital innovation with audience needs in museums, thereby supporting the sustainable integration of technology in cultural heritage education and preservation. Full article
Show Figures

Figure 1

15 pages, 554 KiB  
Article
The Relationship Between Kindness and Transgressive Behaviors in Adolescence: The Moderating Role of Self-Importance of Moral Identity
by Claudia Russo, Ioana Zagrean, Lucrezia Cavagnis, Sara Cristalli, Valentina Valtulini, Francesca Danioni and Daniela Barni
Adolescents 2025, 5(3), 40; https://doi.org/10.3390/adolescents5030040 (registering DOI) - 1 Aug 2025
Abstract
Adolescence is marked by identity formation and moral development, often accompanied by increased transgressive behaviors. While existing research highlights the interplay between moral constructs and transgression in adolescence, the role of kindness remains underexamined. This study conceptualizes kindness as a multidimensional moral construct [...] Read more.
Adolescence is marked by identity formation and moral development, often accompanied by increased transgressive behaviors. While existing research highlights the interplay between moral constructs and transgression in adolescence, the role of kindness remains underexamined. This study conceptualizes kindness as a multidimensional moral construct and investigates the relationship between different stages of kindness (i.e., egocentric, social/normative, extrinsically motivated, authentic) and transgressive behaviors among adolescents, also considering the moderating role of self-importance of moral identity. The participants were 215 Italian adolescents (aged 15–19) who completed a self-report questionnaire. The results showed that egocentric and authentic kindness were positively and negatively associated with transgression, respectively. Moreover, moral identity significantly enhanced the protective role of authentic kindness. These findings suggest that the relationship between kindness and transgression varies based on the stage of kindness and the importance adolescents attribute to their moral identity. They contribute to extending the understanding of kindness during adolescence, offering implications for reducing transgressive behaviors through targeted and innovative interventions. Full article
Show Figures

Figure 1

20 pages, 980 KiB  
Article
Dynamic Decoding of VR Immersive Experience in User’s Technology-Privacy Game
by Shugang Li, Zulei Qin, Meitong Liu, Ziyi Li, Jiayi Zhang and Yanfang Wei
Systems 2025, 13(8), 638; https://doi.org/10.3390/systems13080638 (registering DOI) - 1 Aug 2025
Abstract
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), [...] Read more.
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), and the applicability of Loss Aversion Theory. To achieve this, we analyzed approximately 30,000 user reviews from Amazon using Latent Semantic Analysis (LSA) and regression analysis. The findings reveal that user attention’s impact on VRIE is non-linear, suggesting an optimal threshold, and confirm PIF as a central influencing mechanism; furthermore, CWTI significantly moderates users’ privacy calculus, thereby affecting VRIE, while Loss Aversion Theory showed limited explanatory power in the VR context. These results provide a deeper understanding of VR user behavior, offering significant theoretical guidance and practical implications for future VR system design, particularly in strategically balancing user cognition, PIF, privacy concerns, and individual willingness. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 (registering DOI) - 31 Jul 2025
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

31 pages, 26260 KiB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 (registering DOI) - 31 Jul 2025
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

23 pages, 854 KiB  
Article
Adopting Generative AI in Future Classrooms: A Study of Preservice Teachers’ Intentions and Influencing Factors
by Yang Liu, Qiu Wang and Jing Lei
Behav. Sci. 2025, 15(8), 1040; https://doi.org/10.3390/bs15081040 - 31 Jul 2025
Abstract
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity [...] Read more.
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity using Khanmigo, a domain-specific AI platform for K-12 education, PTs explored AI-supported instructional tasks. Post-activity data were analyzed using PLS-SEM. The results showed that perceived usefulness (PU), perceived ease-of-use (PEU), and self-efficacy (SE) significantly predicted behavioral intention (BI) to adopt GenAI, with SE also influencing both PU and PEU. Conversely, personal innovativeness in IT and perceived cyber risk showed insignificant effects on BI or PU. The findings underscored the evolving dynamics of TAM constructs in GenAI contexts and highlighted the need to reconceptualize ease-of-use and risk within AI-mediated environments. Practically, the study emphasized the importance of preparing PTs not only to operate AI tools but also to critically interpret and co-design them. These insights inform both theoretical models and teacher education strategies, supporting the ethical and pedagogically meaningful integration of GenAI in K-12 education. Theoretical and practical implications are discussed. Full article
(This article belongs to the Special Issue Artificial Intelligence and Educational Psychology)
Show Figures

Figure 1

18 pages, 616 KiB  
Review
Reinforcing Gaps? A Rapid Review of Innovation in Borderline Personality Disorder (BPD) Treatment
by Lionel Cailhol, Samuel St-Amour, Marie Désilets, Nadine Larivière, Jillian Mills and Rémy Klein
Brain Sci. 2025, 15(8), 827; https://doi.org/10.3390/brainsci15080827 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Borderline Personality Disorder (BPD) involves emotional dysregulation, interpersonal instability and impulsivity. Although treatments have advanced, evaluating the latest innovations remains essential. This rapid review aimed to (1) identify and classify recent therapeutic innovations for BPD, (2) assess their effects on clinical [...] Read more.
Background/Objectives: Borderline Personality Disorder (BPD) involves emotional dysregulation, interpersonal instability and impulsivity. Although treatments have advanced, evaluating the latest innovations remains essential. This rapid review aimed to (1) identify and classify recent therapeutic innovations for BPD, (2) assess their effects on clinical and functional outcomes, and (3) highlight research gaps to inform future priorities. Methods: Employing a rapid review design, we searched PubMed/MEDLINE, PsycINFO, and Embase for publications from 1 January 2019 to 28 March 2025. Eligible studies addressed adult or adolescent BPD populations and novel interventions—psychotherapies, pharmacological agents, digital tools, and neuromodulation. Two independent reviewers conducted screening, full-text review, and data extraction using a standardised form. Results: Sixty-nine studies—predominantly from Europe and North America—were included. Psychotherapeutic programmes dominated, ranging from entirely novel models to adaptations of established treatments (for example, extended or modified Dialectical Behavior Therapy). Pharmacological research offered fresh insights, particularly into ketamine, while holistic approaches such as adventure therapy and digital interventions also emerged. Most investigations centred on symptom reduction; far fewer examined psychosocial functioning, mortality, or social inclusion. Conclusions: Recent innovations show promise in BPD treatment but underserve the needs of mortality and societal-level outcomes. Future research should adopt inclusive, equity-focused agendas that align with patient-centred and recovery-oriented goals, supported by a coordinated, integrated research strategy. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

Back to TopTop