Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (210)

Search Parameters:
Keywords = injection molding and extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7087 KiB  
Article
Production of Anisotropic NdFeB Permanent Magnets with In Situ Magnetic Particle Alignment Using Powder Extrusion
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer, Dieter Suess and Carlo Burkhardt
Materials 2025, 18(15), 3668; https://doi.org/10.3390/ma18153668 - 4 Aug 2025
Abstract
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations [...] Read more.
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations were conducted to design and optimize alignment tool geometries and magnetic field parameters. A key challenge in the PEM process is achieving effective particle alignment while the continuous strand moves through the magnetic field during extrusion. To address this, extrusion experiments were performed using three different alignment tool geometries and varying magnetic field strengths to determine the optimal configuration for particle alignment. The experimental results demonstrate a high degree of alignment (Br/Js = 0.95), exceeding the values obtained with PEM without an external magnetic field (0.78). The study confirms that optimizing the alignment tool geometry and applying sufficiently strong magnetic fields during extrusion enable the production of anisotropic NdFeB permanent magnets without post-machining, providing a scalable route for permanent magnet recycling and manufacturing. Moreover, PEM with in situ magnetic particle alignment allows for the continuous fabrication of near-net-shape strands with customizable cross-sections, making it a scalable approach for permanent magnet recycling and industrial manufacturing. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

23 pages, 5204 KiB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 285
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 3330 KiB  
Article
Impact of Multiple Mechanical Recycling Cycles via Semi-Industrial Twin-Screw Extrusion on the Properties of Polybutylene Succinate (PBS)
by Vito Gigante, Laura Aliotta, Luigi Botta, Irene Bavasso, Alessandro Guzzini, Serena Gabrielli, Fabrizio Sarasini, Jacopo Tirillò and Andrea Lazzeri
Polymers 2025, 17(14), 1918; https://doi.org/10.3390/polym17141918 - 11 Jul 2025
Viewed by 541
Abstract
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding [...] Read more.
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding followed by injection molding to simulate realistic mechanical reprocessing conditions. Melt mass-flow rate (MFR) analysis revealed a progressive increase in melt fluidity. Initially, the trend of viscosity followed the melt flow rate; however, increasing the reprocessing number (up to 5) resulted in a partial recovery of viscosity, which was caused by chain branching mechanisms. The phenomenon was also confirmed by data of molecular weight evaluation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the polymer, with minimal shifts in glass transition, crystallization, and degradation temperatures during the reprocessing cycles. Tensile tests revealed a slight reduction in strength and stiffness, but an increase in elongation at break, indicating improved ductility. Impact resistance declined moderately from 8.7 to 7.3 kJ/m2 upon reprocessing; however, it exhibited a pronounced reduction to 1.8 kJ/m2 at −50 °C, reflecting brittle behavior under sub-ambient conditions. Despite these variations, PBS maintained excellent color stability (ΔE < 1), ensuring aesthetic consistency while retaining good mechanical and thermal properties. Full article
Show Figures

Figure 1

20 pages, 4236 KiB  
Article
Valorisation of Red Gypsum Waste in Polypropylene Composites for Agricultural Applications
by Chiara Pedrotti, Damiano Rossi, Marco Sandroni, Irene Anguillesi, Chiara Riccardi, Pietro Leandri, Miriam Cappello, Sara Filippi, Patrizia Cinelli, Massimo Losa and Maurizia Seggiani
Polymers 2025, 17(13), 1821; https://doi.org/10.3390/polym17131821 - 30 Jun 2025
Viewed by 357
Abstract
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately [...] Read more.
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately 200 °C to remove residual moisture and chemically bound water, resulting in its anhydrous form (CaSO4). PP/RG composites were then formulated with RG loadings up to 20 wt.%, employing stearic acid (SA) as a compatibilizer. The resulting materials were thoroughly characterized and successfully processed through industrial-scale injection molding up to 250 °C. Morphological and FTIR analyses confirmed the role of SA in enhancing both filler dispersion and interfacial adhesion between RG and the PP matrix. SEM images revealed finer and more uniformly distributed RG particles, resulting in a reduced loss of ductility and elongation at break typically associated with filler addition. Specifically, the Young’s Modulus increased from 1.62 GPa (neat PP) up to 3.21 GPa with 20 wt.% RG and 0.6 wt.% SA. The addition of 0.6 wt.% SA also helped limit the reduction in stress at break from 46.68 MPa (neat PP) to 34.05 MPa and similarly mitigated the decrease in Charpy impact energy, which declined slightly from 2.66 kJ/m2 (neat PP) to 2.24 kJ/m2 for composites containing 20 wt.% RG. Preliminary phytotoxicity was assessed using germination tests on Lepidium sativum L. seeds. Eluates from both untreated and SA-treated RG powders resulted in germination indices below 80%, indicating phytotoxicity likely due to high sulfate ion concentrations. In contrast, eluates from composite pellets exhibited germination indices equal to or exceeding 100%, demonstrating the absence of phytotoxic effects. These results highlight the suitability of the developed composites for applications in floriculture and horticulture. The optimized composite pellets were successfully processed via injection molding to manufacture plant pots, which exhibited a dark brown coloration, confirming the effective pigmenting function of RG. These results demonstrate the potential of red gypsum to serve both as a functional filler and pigment in PP composites, providing a sustainable alternative to iron oxide pigments and promoting the valorization of industrial waste through resource recovery. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

48 pages, 7715 KiB  
Review
Next-Generation Bioplastics for Food Packaging: Sustainable Materials and Applications
by Xiaokun Shi, Lijuan Cui, Chao Xu and Shuping Wu
Materials 2025, 18(12), 2919; https://doi.org/10.3390/ma18122919 - 19 Jun 2025
Viewed by 1644
Abstract
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new [...] Read more.
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new generation bioplastics in the field of food packaging. Bioplastics are categorized into three main groups according to their sources and degradability: biobased biodegradable materials (e.g., polylactic acid PLA, polyhydroxy fatty acid ester PHA, chitosan, and cellulose-based materials); biobased non-biodegradable materials (e.g., Bio-PE, Bio-PET); and non-biobased biodegradable materials (e.g., PBAT, PCL, PBS). Different processing technologies, such as thermoforming, injection molding, extrusion molding and coating technologies, can optimize the mechanical properties, barrier properties and freshness retention of bioplastics and promote their application in scenarios such as food containers, films and smart packaging. Although bioplastics still face challenges in terms of cost, degradation conditions and industrial support, promising future directions are found in the development of the large-scale utilization of non-food raw materials (e.g., agricultural waste, algae), nano-composite technology to enhance the performance, and the development of intelligent packaging functions. Through technological innovation and industry chain integration, bioplastics are expected to transform from an environmentally friendly alternative to a mainstream packaging material, helping to realize the goal of global carbon neutrality. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

23 pages, 6564 KiB  
Article
Reusing Kaolin Residue from the Mining Industry to Produce PCL-Based Composites: Accelerating the Crystallization Process and Improving Mechanical Properties
by Carlos Bruno Barreto Luna, Jessika Andrade dos Santos Nogueira, José Vinícius Melo Barreto, Elieber Barros Bezerra, Fabiano Santana da Silva, Lorena Vanessa Medeiros Dantas, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Int. J. Mol. Sci. 2025, 26(10), 4632; https://doi.org/10.3390/ijms26104632 - 13 May 2025
Viewed by 444
Abstract
The impact of adding 1%, 3%, and 5% by mass of kaolin residue (KR) was investigated regarding the mechanical, thermomechanical, and morphological properties, as well as the non-isothermal crystallization and melting kinetics of poly(ε-caprolactone) (PCL). The processing to obtain the PCL/KR composites was [...] Read more.
The impact of adding 1%, 3%, and 5% by mass of kaolin residue (KR) was investigated regarding the mechanical, thermomechanical, and morphological properties, as well as the non-isothermal crystallization and melting kinetics of poly(ε-caprolactone) (PCL). The processing to obtain the PCL/KR composites was carried out through extrusion in a twin-screw extruder, followed by injection molding. This study investigated the events of first melting, fusion crystallization, and second melting using differential scanning calorimetry (DSC), with heating rates ranging from 5 to 25 °C/min. Additionally, models for the expanded Prout–Tompkins equation (BNA), the nth-order reaction with m-power autocatalysis by product (Cnm), and the Sestak and Berggren equation (SB) were tested. The PCL/KR composites exhibited an increase in the elastic modulus and the heat deflection temperature (HDT) compared to the pure PCL. Furthermore, high ductility was observed, as evidenced by the impact strength and elongation at break. The good distribution of KR in the PCL matrix was confirmed by scanning electron microscopy (SEM), which contributed to a more efficient crystallization process. The increase in KR content in the PCL matrix shifted the crystallization sigmoids to higher temperatures, acting as a nucleating agent, which reduced the energy barriers and increased the crystallization temperature by up to 5 °C. The melting events did not show significant changes with the addition of the KR. The results are important for the plastics processing industry, mainly due to the opportunity to add value to the waste and use it as an additive. Full article
Show Figures

Figure 1

24 pages, 7153 KiB  
Article
A Comparative Study on the Compatibilization of Thermoplastic Starch/Polybutylene Succinate Blends by Chain Extender and Epoxidized Linseed Oil
by Ke Gong, Yinshi Lu, Alexandre Portela, Soheil Farshbaf Taghinezhad, David Lawlor, Shane Connolly, Mengli Hu, Yuanyuan Chen and Maurice N. Collins
Macromol 2025, 5(2), 24; https://doi.org/10.3390/macromol5020024 - 12 May 2025
Cited by 1 | Viewed by 1316
Abstract
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization [...] Read more.
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization of biobased TPS/PBS blends. A total of 13 batches, varying in compatibilizer and blend composition, were processed via hot melt extrusion and injection molding to produce pellets. Blends were analyzed using tensile and impact testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings suggest that both compatibilizers can improve the compatibility of these blends, as evidenced by higher glass transition temperatures (Tg) compared to the reference batch (100-0-N/A). Joncryl® ADR 4468 batches exhibit superior tensile strength and Young’s moduli, while ELO batches demonstrate greater elongation at break. The enhanced processability observed in Joncryl® ADR 4468 is attributed to the increased polymer chain entanglement and molecular weight, whereas ELO facilitates greater chain mobility due to its plasticizing effect. These differences arise from the distinct mechanisms of action: Joncryl® ADR 4468 promotes chain extension and crosslinking, whereas ELO mainly enhances flexibility through plasticization. Overall, this study provides a comparative assessment of these compatibilizers in TPS/PBS blends, laying the groundwork for future investigations into optimizing compatibilizer concentration and blend composition. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 1034 KiB  
Review
Technologies of Production of Materials Based on WPC: A Short Review
by Zuzana Mitaľová, Juliána Litecká, Marek Kočiško and Khrystyna Berladir
Polymers 2025, 17(8), 1025; https://doi.org/10.3390/polym17081025 - 10 Apr 2025
Viewed by 695
Abstract
This paper review deals with frequent technologies of the production of materials based on Wood Plastic Composite, their brief definition, and description of components. The choice of processing technology depends on the polymer applied and the shape required of the part or the [...] Read more.
This paper review deals with frequent technologies of the production of materials based on Wood Plastic Composite, their brief definition, and description of components. The choice of processing technology depends on the polymer applied and the shape required of the part or the component. In the case of thermoplastic matrices, the dominant are extrusion and injection molding. In the case of thermosets application, the following technologies can be used: Resin Transfer Molding and Sheet Molding Compound. Currently, the research is also widely focused on composites with a matrix made of biodegradable thermoplastics—polylactide, which also brings to the forefront 3D printing technology of Fused Deposition Modeling. Each of these technologies is—to a certain extent—limited and impacts on the final characteristics of the composite material and its use. Full article
(This article belongs to the Special Issue Additive Manufacturing Based on Polymer Materials)
Show Figures

Figure 1

21 pages, 2081 KiB  
Article
Translation of COVID-19 Serology Test on Foil-Based Lateral Flow Chips: A Journey from Injection Molding to Scalable Roll-to-Roll Nanoimprint Lithography
by Pakapreud Khumwan, Stephan Ruttloff, Johannes Götz, Dieter Nees, Conor O’Sullivan, Alvaro Conde, Mirko Lohse, Christian Wolf, Nastasia Okulova, Janine Brommert, Richard Benauer, Ingo Katzmayr, Nikolaus Ladenhauf, Wilfried Weigel, Maciej Skolimowski, Max Sonnleitner, Martin Smolka, Anja Haase, Barbara Stadlober and Jan Hesse
Biosensors 2025, 15(4), 229; https://doi.org/10.3390/bios15040229 - 4 Apr 2025
Viewed by 797
Abstract
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions [...] Read more.
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions of devices has already been extensively demonstrated. Nevertheless, the assay option in an LFT format is largely restricted to qualitative detection of the target antigens. In this research, we surveyed the potential of UV nanoimprint lithography (UV-NIL) and extrusion coating (EC) for the high-throughput production of disposable capillary-driven, foil-based tests that allow multistep assays to be implemented for quantitative readout to address the inherent lack of on-demand fluid control and sensitivity of paper-based devices. Both manufacturing technologies operate on the principle of imprinting that enables high-volume, continuous structuring of microfluidic patterns in a roll-to-roll (R2R) production scheme. To demonstrate the feasibility of R2R-fabricated foil chips in a point-of-care biosensing application, we adapted a commercial chemiluminescence multiplex test for COVID-19 antibody detection originally developed for a capillary-driven microfluidic chip manufactured with injection molding (IM). In an effort to build a complete ecosystem for the R2R manufacturing of foil chips, we also recruited additional processes to streamline chip production: R2R biofunctionalization and R2R lamination. Compared to conventional fabrication techniques for microfluidic devices, the R2R techniques highlighted in this work offer unparalleled advantages concerning improved scalability, dexterity of seamless handling, and significant cost reduction. Our preliminary evaluation indicated that the foil chips exhibited comparable performance characteristics to the original IM-fabricated devices. This early success in assay translation highlights the promise of implementing biochemical assays on R2R-manufactured foil chips. Most importantly, it underscores the potential utilization of UV-NIL and EC as an alternative to conventional technologies for the future development in vitro diagnostics (IVD) in response to emerging point-of-care testing demands. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Graphical abstract

20 pages, 5836 KiB  
Article
Biodegradable Polymer Composites Based on Polypropylene and Hybrid Fillers for Applications in the Automotive Industry
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Delia Pătroi, Beatrice Gabriela Sbârcea, Virgil Emanuel Marinescu and Doina Constantinescu
Processes 2025, 13(4), 1078; https://doi.org/10.3390/pr13041078 - 3 Apr 2025
Viewed by 787
Abstract
This study focuses on the development and characterization of biodegradable polymer composites consisting of a polypropylene (PP) matrix, carbon black pigment, and hybrid fillers. The fillers incorporated into these composites consisted of a blend of fibers and particles derived from natural, biodegradable materials, [...] Read more.
This study focuses on the development and characterization of biodegradable polymer composites consisting of a polypropylene (PP) matrix, carbon black pigment, and hybrid fillers. The fillers incorporated into these composites consisted of a blend of fibers and particles derived from natural, biodegradable materials, such as flax fibers (FFs) and wood flour (WF) particles. The compositions of polymer material were expressed as PP/FF/WF weight ratios of 100/0/0, 70/5/25, and 70/10/20. The polymer materials were prepared using conventional plastic processing methods like extrusion to produce composite mixtures, followed by melt injection to manufacture the samples needed for characterization. The structural characterization of the polymer materials was conducted using optical microscopy and X-ray diffraction (XRD) analyses, while thermal, mechanical, and dielectric properties were also evaluated. Additionally, their biodegradation behavior under mold exposure was assessed over six months. The results were analyzed comparatively, and the optimal composition was identified as the polymer composite containing the highest flax fiber content, namely PP + 10 wt.% flax fiber + 20 wt.% wood flour. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

20 pages, 8727 KiB  
Article
Effect of Sugarcane Bagasse Content and Modification on the Properties of Sugarcane Bagasse/Poly(lactic Acid) Biocomposites
by Youxue Peng, Wen Lei, Wangwang Yu and Yong Chen
Molecules 2025, 30(7), 1583; https://doi.org/10.3390/molecules30071583 - 2 Apr 2025
Viewed by 1032
Abstract
In this study, poly(lactic acid) biocomposites were prepared from sugarcane bagasse (SB) via extrusion and injection molding. The effects of the content and inorganic salt modification of SB on the properties of the biocomposites were investigated. The results showed that the incorporation of [...] Read more.
In this study, poly(lactic acid) biocomposites were prepared from sugarcane bagasse (SB) via extrusion and injection molding. The effects of the content and inorganic salt modification of SB on the properties of the biocomposites were investigated. The results showed that the incorporation of SB reduced the biocomposites’ mechanical strength and modulus as well as thermal stability but increased their crystallinity, hydrophobicity, and water absorption compared with neat PLA. Among all the biocomposites, the sample containing 30 wt % SB(SB-30/PLA) had the best comprehensive performances, with tensile strength, tensile modulus, flexural strength, and crystallinity values of 31.78 MPa, 219.49 MPa, 53.25 MPa, and 16.8%, respectively. After SB modification with Na2SO4 and MgSO4, the increased interfacial adhesion led to a considerable improvement in reinforcement and increases in the flexural strength, flexural modulus, impact strength, and crystallinity of SB-30/PLA; furthermore, the biocomposite became more thermally stable and hydrophobic and contained much less water. In conclusion, SB-30/PLA, especially after MgSO4 modification, is an ideal degradable biocomposite for applications in packaging, decoration, and other areas. Full article
Show Figures

Figure 1

24 pages, 6049 KiB  
Article
Effect of Coffee Grounds Content on Properties of PHBV Biocomposites Compared to Similar Composites with Other Fillers
by Grzegorz Janowski, Wiesław Frącz, Łukasz Bąk, Janusz W. Sikora, Adam Tomczyk, Grażyna Mrówka-Nowotnik and Beata Mossety-Leszczak
Polymers 2025, 17(6), 764; https://doi.org/10.3390/polym17060764 - 14 Mar 2025
Cited by 1 | Viewed by 1280
Abstract
Spent coffee grounds (SCG) have potential as a sustainable bio-filler in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites, offering an environmentally friendly approach to waste utilization. This study investigated the effect of SCG content on the mechanical, thermal, and morphological properties of PHBV biocomposites and compared them [...] Read more.
Spent coffee grounds (SCG) have potential as a sustainable bio-filler in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites, offering an environmentally friendly approach to waste utilization. This study investigated the effect of SCG content on the mechanical, thermal, and morphological properties of PHBV biocomposites and compared them with those of composites containing wood flour and hemp fibers. The biocomposites were fabricated via extrusion and injection molding, followed by the characterization of their mechanical performance, thermal behavior, and microstructure. The results indicated that SCG increased the stiffness of PHBV but did not enhance its tensile strength due to the weak interfacial adhesion between the filler and matrix. Unlike other lignocellulosic fillers, SCG requires lower processing temperatures, which is advantageous for thermally sensitive applications. SEM analysis revealed well-dispersed SCG particles at low concentrations, but visible aggregation and interfacial voids at higher loadings. While SCG serves as an effective and cost-efficient filler for improving the stiffness of PHBV, it does not reinforce the material in the conventional sense. Full article
Show Figures

Figure 1

20 pages, 5854 KiB  
Article
Recycling Textiles: From Post-Consumer Polyester Garments to Materials for Injection Molding
by Sabrina Bianchi, Michele Pinna, Flavia Bartoli, Pierpaolo Minei, Daniele Filidei and Maria-Beatrice Coltelli
Polymers 2025, 17(6), 748; https://doi.org/10.3390/polym17060748 - 12 Mar 2025
Cited by 1 | Viewed by 1422
Abstract
The significant waste generated by the fashion industry necessitates sustainable textile recycling strategies. Polyester, made from poly(ethylene terephthalate) (PET), is abundant in post-consumer textiles. Technologies have been developed to convert low-density garment waste into flakes, but the role of color sorting in achieving [...] Read more.
The significant waste generated by the fashion industry necessitates sustainable textile recycling strategies. Polyester, made from poly(ethylene terephthalate) (PET), is abundant in post-consumer textiles. Technologies have been developed to convert low-density garment waste into flakes, but the role of color sorting in achieving uniform aesthetics in injection-moldable plastics remains underexplored. This study compares materials extruded from dark color-sorted polyester garment flakes with those from light-color flakes in terms of processability in extrusion and injection molding. The properties examined include melt fluidity, injection molding shrinkage, and mechanical and thermal properties. Commercial chain extenders with anhydride, oxazoline, or epoxide reactive groups were added during extrusion. Interestingly, only dark-colored extruded pellets showed significant degradation, but all the chain extenders allowed melt fluidity to be controlled during reprocessing. The bisoxazoline-based additive was the most promising, due to the highly improved ductility of the samples, regardless of whether they were dark-colored or light-colored. The results indicate significant potential for the industrial recycling of post-consumer textiles and highlight the industrial feasibility of repurposing post-consumer polyester garments. This approach not only supports initiatives of circular economy but also offers a viable solution for managing textile waste, particularly in the fashion industry. Additionally, the suggested recycling route combats the production of microplastics. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

17 pages, 2395 KiB  
Article
Enhancing Polypropylene Biodegradability Through Additive Integration for Sustainable and Reusable Laboratory Applications
by Kanittika Samneingjam, Juthamas Mahajaroensiri, Maysinee Kanathananun, Cristina Velasco Aranda, Mario Muñoz and Somchoke Limwongsaree
Polymers 2025, 17(5), 639; https://doi.org/10.3390/polym17050639 - 27 Feb 2025
Cited by 1 | Viewed by 2187
Abstract
The environmental challenges posed by laboratory plastic waste, particularly single-use items, underscore the urgent need for sustainable alternatives. This study investigated the development of reusable and biodegradable labware, addressing both functional and environmental demands. The content of the biodegradable additive in the polypropylene [...] Read more.
The environmental challenges posed by laboratory plastic waste, particularly single-use items, underscore the urgent need for sustainable alternatives. This study investigated the development of reusable and biodegradable labware, addressing both functional and environmental demands. The content of the biodegradable additive in the polypropylene (PP) varied from 1% to 2% by weight via twin-screw extrusion, followed by injection molding to fabricate test specimens. Three different grades of PP were also compared. Optical, mechanical, and thermal properties were systematically assessed before and after repetitive autoclave sterilization for up to 10 cycles (121 °C, 15 min, 0.11 MPa). Additionally, cytotoxicity following electron beam irradiation (E-Beam 25 and 50 kGy) was evaluated in compliance with ISO 10993-5, alongside biodegradability studies conducted under ASTM D5511 conditions. The results demonstrate that the biodegradable additive stabilized the appearance and enhanced the flexural and impact strengths of PP without compromising thermal stability, particularly after five autoclave cycles. Cytotoxicity assays confirmed the biocompatibility of the additive-modified PP, while biodegradability tests indicated moderate degradation, with 12% biodegradation achieved over 6 months compared to negligible degradation in the negative control. These findings highlight the potential of additive-modified PP as a sustainable solution for reusable labware, balancing durability with improved environmental performance and providing a viable step toward more sustainable laboratory practices. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

31 pages, 1754 KiB  
Review
Advancing Sustainability in Modern Polymer Processing: Strategies for Waste Resource Recovery and Circular Economy Integration
by Ionut-Cristian Radu, Andreea-Mihaela Vadureanu, Derniza-Elena Cozorici, Erika Blanzeanu and Catalin Zaharia
Polymers 2025, 17(4), 522; https://doi.org/10.3390/polym17040522 - 17 Feb 2025
Cited by 4 | Viewed by 1644
Abstract
By the late 1970s, plastics had emerged as the most widely used materials globally. The discovery, development, and processing of diverse polymeric materials have profoundly shaped modern life and driven the expansion of numerous industries. Given the widespread interest in the utilization of [...] Read more.
By the late 1970s, plastics had emerged as the most widely used materials globally. The discovery, development, and processing of diverse polymeric materials have profoundly shaped modern life and driven the expansion of numerous industries. Given the widespread interest in the utilization of these materials, it has become increasingly imperative to design their life cycles from the outset. This approach aims to maximize their utility while minimizing their environmental footprint. This review aims to identify and analyze the key challenges in polymer processing applicable to both additive and formative manufacturing methods, emphasizing the relationship between processing and recycling within the framework of sustainability. Modern polymer processing techniques play a crucial role in enhancing the sustainability of polymer products by improving recycling potential (with consideration of polymer type, source, and additives), cost-effectiveness, carbon footprint, and key properties such as durability, lifespan, performance, and environmental impact. It will also explore the concept of the circular economy and its integration into modern processing methods, including extrusion, injection molding, and 3D printing. Additionally, current polymer recycling methods are analyzed with respect to their effectiveness, sustainability, and compatibility with the original materials. Moreover, the discussion emphasizes the benefits of a circular economy compared to a linear one by exploring the concepts of closed-loop and open-loop systems, along with their diverse applications depending on the material and the initial processing method employed. To ensure that humanity continues to benefit from polymer materials while striving for a waste-free environment, it is essential to integrate the principles of sustainable development from the very beginning. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

Back to TopTop