Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,064)

Search Parameters:
Keywords = information support system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 (registering DOI) - 1 Aug 2025
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 513 KiB  
Article
Dismantling the Myths of Urban Informality for the Inclusion of the Climate Displaced in Cities of the Global South
by Susana Herrero Olarte and Angela María Díaz-Márquez
World 2025, 6(3), 109; https://doi.org/10.3390/world6030109 (registering DOI) - 1 Aug 2025
Abstract
By 2050, it is estimated that approximately 200 million people will be displaced due to the impacts of climate change. Vulnerability to climate change is shaped not only by environmental factors but fundamentally by systemic power relations and structural conditions present at both [...] Read more.
By 2050, it is estimated that approximately 200 million people will be displaced due to the impacts of climate change. Vulnerability to climate change is shaped not only by environmental factors but fundamentally by systemic power relations and structural conditions present at both the places of origin and destination. In Latin America, climate-displaced persons predominantly settle in marginalised neighbourhoods, where widely accepted informality facilitates their rapid arrival but obstructs genuine progress and full integration as urban citizens. This paper critically examines the prevailing myths that justify the persistence of informality, revealing the socioeconomic challenges faced by climate migrants in the region. These four dominant myths are (1) Latin America’s inherently low productivity levels; (2) concessions by the ruling class enabling excluded groups to merely survive; (3) the perceived privilege of marginalised neighbourhoods to generate income outside formal legal frameworks, which supports their social capital; and (4) the limited benefits associated with formalisation. Debunking these myths is essential for developing effective public policies aimed at reducing informality and promoting inclusive urban integration, ultimately benefiting both climate migrants and host communities. Full article
Show Figures

Figure 1

23 pages, 798 KiB  
Article
Aligning with SDGs in Construction: The Foreman as a Key Lever for Reducing Worker Risk-Taking
by Jing Feng, Kongling Liu and Qinge Wang
Sustainability 2025, 17(15), 7000; https://doi.org/10.3390/su17157000 (registering DOI) - 1 Aug 2025
Abstract
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent [...] Read more.
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent challenge. Drawing on Social Cognitive Theory and Social Information Processing Theory, this study develops and tests a social influence model to examine how foremen’s safety attitudes (SAs) shape workers’ RTBs. Drawing on survey data from 301 construction workers in China, structural equation modeling reveals that foremen’s SAs significantly and negatively predict workers’ RTBs. However, the three dimensions of SAs—cognitive, affective, and behavioral—exert their influence through different pathways. Risk perception (RP) plays a key mediating role, particularly for the cognitive and behavioral dimensions. Furthermore, interpersonal trust (IPT) functions as a significant moderator in some of these relationships. By identifying the micro-social pathways that link foremen’s attitudes to workers’ safety behaviors, this study offers a testable theoretical framework for implementing the Sustainable Development Goals (particularly Goals 3 and 8) at the frontline workplace level. The findings provide empirical support for organizations to move beyond rule-based management and instead build more resilient OHS governance systems by systematically cultivating the multidimensional attitudes of frontline leaders. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

35 pages, 1049 KiB  
Article
Strategic Human Resource Development for Industry 4.0 Readiness: A Sustainable Transformation Framework for Emerging Economies
by Kwanchanok Chumnumporn Vong, Kalaya Udomvitid, Yasushi Ueki, Nuchjarin Intalar, Akkaranan Pongsathornwiwat, Warut Pannakkong, Somrote Komolavanij and Chawalit Jeenanunta
Sustainability 2025, 17(15), 6988; https://doi.org/10.3390/su17156988 (registering DOI) - 1 Aug 2025
Abstract
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) [...] Read more.
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) contributes to sustainable transformation, defined as the enduring alignment between workforce capabilities and technological advancement. The qualitative phase involved case studies of five Thai manufacturing firms at varying levels of Industry 4.0 adoption, utilizing semi-structured interviews with executives and HR leaders. Thematic findings informed the development of a structured survey, distributed to 144 firms. Partial Least Squares Structural Equation Modeling (PLS SEM) was used to test the hypothesized relationships among business pressures, leadership support, HRD preparedness, and technological readiness. The analysis reveals that business pressures significantly influence leadership and HRD, which in turn facilitate technological readiness. However, business pressures alone do not directly enhance readiness without the support of intermediaries. These results underscore the critical role of integrated HRD and leadership frameworks in enabling sustainable digital transformation. This study contributes to theoretical perspectives by integrating HRD, leadership, and technological readiness, offering practical guidance for firms aiming to navigate the complexities of Industry 4.0. Full article
Show Figures

Figure 1

23 pages, 1178 KiB  
Article
A Qualitative Analysis and Discussion of a New Model for Optimizing Obesity and Associated Comorbidities
by Mohamed I. Youssef, Robert M. Maina, Duncan K. Gathungu and Amr Radwan
Symmetry 2025, 17(8), 1216; https://doi.org/10.3390/sym17081216 - 1 Aug 2025
Abstract
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of [...] Read more.
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of weight over time with embedded control parameters to optimize the number of obese, overweight, and comorbidity populations. The mathematical formulation of the model is developed under certain sufficient conditions that guarantee the positivity and boundedness of solutions over time. The model structure exhibits inherent symmetry in population group transitions, particularly around the equilibrium state, which allows the application of analytical tools such as the Routh–Hurwitz and Metzler criteria. Then, the analysis of local and global stability of the obesity-free equilibrium state is discussed based on these criteria. Based on the Pontryagin maximum principle (PMP), the deviation from the obesity-free equilibrium state is controlled. The model’s effectiveness is demonstrated through simulation using the Forward–Backward Sweeping algorithm with parameters derived from recent research in human health. Incorporating symmetry considerations in the model enhances the understanding of system behavior and supports balanced intervention strategies. Results suggest that the model can effectively inform strategies to mitigate obesity prevalence and associated health risks. Full article
(This article belongs to the Special Issue Mathematical Modeling of the Infectious Diseases and Their Controls)
Show Figures

Figure 1

18 pages, 255 KiB  
Article
Making the Invisible Visible: Addressing the Sexuality Education Needs of Persons with Disabilities Who Identify as Queer in Kenya
by Amani Karisa, Mchungwani Rashid, Zakayo Wanjihia, Fridah Kiambati, Lydia Namatende-Sakwa, Emmy Kageha Igonya, Anthony Idowu Ajayi, Benta Abuya, Caroline W. Kabiru and Moses Ngware
Disabilities 2025, 5(3), 69; https://doi.org/10.3390/disabilities5030069 (registering DOI) - 31 Jul 2025
Abstract
Persons with disabilities face barriers to accessing sexuality education. For those who identify as queer, these challenges are compounded by stigma, ableism, and heteronormativity, resulting in distinct and overlooked experiences. This study explored the sexuality education needs of persons with disabilities who identify [...] Read more.
Persons with disabilities face barriers to accessing sexuality education. For those who identify as queer, these challenges are compounded by stigma, ableism, and heteronormativity, resulting in distinct and overlooked experiences. This study explored the sexuality education needs of persons with disabilities who identify as queer in Kenya—a neglected demographic—using a phenomenological approach. Data were collected through a focus group discussion with six participants and analyzed thematically. Three themes emerged: invisibility and erasure; unprepared institutions and constrained support networks; and agency and everyday resistance. Educational institutions often overlook the intersectional needs of persons with disabilities who identify as queer, leaving them without adequate tools to navigate relationships, sexuality, and rights. Support systems are often unprepared or unwilling to address these needs. Societal attitudes that desexualize disability and marginalize queerness intersect to produce compounded exclusion. Despite these challenges, participants demonstrated agency by using digital spaces and informal networks to resist exclusion. This calls for policy reforms that move beyond tokenism to address the lived realities of multiply marginalized groups. Policy reform means not only a legal or governmental shift but also a broader cultural and institutional process that creates space for recognition, protection, and participation. Full article
24 pages, 5286 KiB  
Article
Graph Neural Network-Enhanced Multi-Agent Reinforcement Learning for Intelligent UAV Confrontation
by Kunhao Hu, Hao Pan, Chunlei Han, Jianjun Sun, Dou An and Shuanglin Li
Aerospace 2025, 12(8), 687; https://doi.org/10.3390/aerospace12080687 (registering DOI) - 31 Jul 2025
Abstract
Unmanned aerial vehicles (UAVs) are widely used in surveillance and combat for their efficiency and autonomy, whilst complex, dynamic environments challenge the modeling of inter-agent relations and information transmission. This research proposes a novel UAV tactical choice-making algorithm utilizing graph neural networks to [...] Read more.
Unmanned aerial vehicles (UAVs) are widely used in surveillance and combat for their efficiency and autonomy, whilst complex, dynamic environments challenge the modeling of inter-agent relations and information transmission. This research proposes a novel UAV tactical choice-making algorithm utilizing graph neural networks to tackle these challenges. The proposed algorithm employs a graph neural network to process the observed state information, the convolved output of which is then fed into a reconstructed critic network incorporating a Laplacian convolution kernel. This research first enhances the accuracy of obtaining unstable state information in hostile environments. The proposed algorithm uses this information to train a more precise critic network. In turn, this improved critic network guides the actor network to make decisions that better meet the needs of the battlefield. Coupled with a policy transfer mechanism, this architecture significantly enhances the decision-making efficiency and environmental adaptability within the multi-agent system. Results from the experiments show that the average effectiveness of the proposed algorithm across the six planned scenarios is 97.4%, surpassing the baseline by 23.4%. In addition, the integration of transfer learning makes the network convergence speed three times faster than that of the baseline algorithm. This algorithm effectively improves the information transmission efficiency between the environment and the UAV and provides strong support for UAV formation combat. Full article
(This article belongs to the Special Issue New Perspective on Flight Guidance, Control and Dynamics)
Show Figures

Figure 1

21 pages, 12997 KiB  
Article
Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline
by Linzhi Shang, Chen Min, Juan Wang, Liang Xiao, Dawei Zhao and Yiming Nie
Remote Sens. 2025, 17(15), 2653; https://doi.org/10.3390/rs17152653 (registering DOI) - 31 Jul 2025
Abstract
Vehicle re-identification (Re-ID) is a critical computer vision task that aims to match the same vehicle across spatially distributed cameras, especially in the context of remote sensing imagery. While prior research has primarily focused on Re-ID using remote sensing images captured from similar, [...] Read more.
Vehicle re-identification (Re-ID) is a critical computer vision task that aims to match the same vehicle across spatially distributed cameras, especially in the context of remote sensing imagery. While prior research has primarily focused on Re-ID using remote sensing images captured from similar, typically elevated viewpoints, these settings do not fully reflect complex aerial-ground collaborative remote sensing scenarios. In this work, we introduce a novel and challenging task: aerial-ground cross-view vehicle Re-ID, which involves retrieving vehicles in ground-view image galleries using query images captured from aerial (top-down) perspectives. This task is increasingly relevant due to the integration of drone-based surveillance and ground-level monitoring in multi-source remote sensing systems, yet it poses substantial challenges due to significant appearance variations between aerial and ground views. To support this task, we present AGID (Aerial-Ground Vehicle Re-Identification), the first benchmark dataset specifically designed for aerial-ground cross-view vehicle Re-ID. AGID comprises 20,785 remote sensing images of 834 vehicle identities, collected using drones and fixed ground cameras. We further propose a novel method, Enhanced Self-Correlation Feature Computation (ESFC), which enhances spatial relationships between semantically similar regions and incorporates shape information to improve feature discrimination. Extensive experiments on the AGID dataset and three widely used vehicle Re-ID benchmarks validate the effectiveness of our method, which achieves a Rank-1 accuracy of 69.0% on AGID, surpassing state-of-the-art approaches by 2.1%. Full article
Show Figures

Figure 1

21 pages, 570 KiB  
Review
Healthcare Complexities in Neurodegenerative Proteinopathies: A Narrative Review
by Seyed-Mohammad Fereshtehnejad and Johan Lökk
Healthcare 2025, 13(15), 1873; https://doi.org/10.3390/healthcare13151873 - 31 Jul 2025
Abstract
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences [...] Read more.
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences for patients, caregivers, and healthcare systems. This review aims to synthesize evidence on the healthcare complexities of major neurodegenerative proteinopathies to highlight current knowledge gaps, and to inform future care models, policies, and research directions. Methods: We conducted a comprehensive literature search in PubMed/MEDLINE using combinations of MeSH terms and keywords related to neurodegenerative diseases, proteinopathies, diagnosis, sex, management, treatment, caregiver burden, and healthcare delivery. Studies were included if they addressed the clinical, pathophysiological, economic, or care-related complexities of aging-related neurodegenerative proteinopathies. Results: Key themes identified include the following: (1) multifactorial and unclear etiologies with frequent co-pathologies; (2) long prodromal phases with emerging biomarkers; (3) lack of effective disease-modifying therapies; (4) progressive nature requiring ongoing and individualized care; (5) high caregiver burden; (6) escalating healthcare and societal costs; and (7) the critical role of multidisciplinary and multi-domain care models involving specialists, primary care, and allied health professionals. Conclusions: The complexity and cost of neurodegenerative proteinopathies highlight the urgent need for prevention-focused strategies, innovative care models, early interventions, and integrated policies that support patients and caregivers. Prevention through the early identification of risk factors and prodromal signs is critical. Investing in research to develop effective disease-modifying therapies and improve early detection will be essential to reducing the long-term burden of these disorders. Full article
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
Recognition of Japanese Finger-Spelled Characters Based on Finger Angle Features and Their Continuous Motion Analysis
by Tamon Kondo, Ryota Murai, Zixun He, Duk Shin and Yousun Kang
Electronics 2025, 14(15), 3052; https://doi.org/10.3390/electronics14153052 - 30 Jul 2025
Abstract
To improve the accuracy of Japanese finger-spelled character recognition using an RGB camera, we focused on feature design and refinement of the recognition method. By leveraging angular features extracted via MediaPipe, we proposed a method that effectively captures subtle motion differences while minimizing [...] Read more.
To improve the accuracy of Japanese finger-spelled character recognition using an RGB camera, we focused on feature design and refinement of the recognition method. By leveraging angular features extracted via MediaPipe, we proposed a method that effectively captures subtle motion differences while minimizing the influence of background and surrounding individuals. We constructed a large-scale dataset that includes not only the basic 50 Japanese syllables but also those with diacritical marks, such as voiced sounds (e.g., “ga”, “za”, “da”) and semi-voiced sounds (e.g., “pa”, “pi”, “pu”), to enhance the model’s ability to recognize a wide variety of characters. In addition, the application of a change-point detection algorithm enabled accurate segmentation of sign language motion boundaries, improving word-level recognition performance. These efforts laid the foundation for a highly practical recognition system. However, several challenges remain, including the limited size and diversity of the dataset and the need for further improvements in segmentation accuracy. Future work will focus on enhancing the model’s generalizability by collecting more diverse data from a broader range of participants and incorporating segmentation methods that consider contextual information. Ultimately, the outcomes of this research should contribute to the development of educational support tools and sign language interpretation systems aimed at real-world applications. Full article
Show Figures

Figure 1

20 pages, 834 KiB  
Article
Time-Fractional Evolution of Quantum Dense Coding Under Amplitude Damping Noise
by Chuanjin Zu, Baoxiong Xu, Hao He, Xiaolong Li and Xiangyang Yu
Fractal Fract. 2025, 9(8), 501; https://doi.org/10.3390/fractalfract9080501 - 30 Jul 2025
Abstract
In this paper, we investigate the memory effects introduced by the time-fractional Schrödinger equation proposed by Naber on quantum entanglement and quantum dense coding under amplitude damping noise. Two formulations are analyzed: one with fractional operations applied to the imaginary unit and one [...] Read more.
In this paper, we investigate the memory effects introduced by the time-fractional Schrödinger equation proposed by Naber on quantum entanglement and quantum dense coding under amplitude damping noise. Two formulations are analyzed: one with fractional operations applied to the imaginary unit and one without. Numerical results show that the formulation without fractional operations on the imaginary unit may be more suitable for describing non-Markovian (power-law) behavior in dissipative environments. This finding provides a more physically meaningful interpretation of the memory effects in time-fractional quantum dynamics and indirectly addresses fundamental concerns regarding the violation of unitarity and probability conservation in such frameworks. Our work offers a new perspective for the application of fractional quantum mechanics to realistic open quantum systems and shows promise in supporting the theoretical modeling of decoherence and information degradation. Full article
Show Figures

Figure 1

42 pages, 3045 KiB  
Review
HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review
by Maria Parente, Nazarena Bruno and Federica Ottoni
Heritage 2025, 8(8), 306; https://doi.org/10.3390/heritage8080306 (registering DOI) - 30 Jul 2025
Abstract
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric [...] Read more.
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric modeling—given its significant challenges in the context of historic buildings—this study places greater emphasis on the integration of non-geometric data within the BIM environment. A systematic search was conducted in the Scopus database to extract the 451 relevant publications analyzed in this review, covering the period from 2008 to mid-2024. A bibliometric analysis was first performed to identify trends in publication types, geographic distribution, research focuses, and software usage. The main body of the review then explores three core themes in the development of the information system: the definition of model entities, both semantic and geometric; the data enrichment phase, incorporating historical, diagnostic, monitoring and conservation-related information; and finally, data use and sharing, including on-site applications and interoperability. For each topic, the review highlights and discusses the principal approaches documented in the literature, critically evaluating the advantages and limitations of different information management methods with respect to the distinctive features of the building under analysis and the specific objectives of the information model. Full article
Show Figures

Figure 1

12 pages, 451 KiB  
Article
Medical Post-Traumatic Stress Disorder Symptoms in Children and Adolescents with Chronic Inflammatory Arthritis: Prevalence and Associated Factors
by Leah Medrano, Brenda Bursch, Jennifer E. Weiss, Nicholas Jackson, Deborah McCurdy and Alice Hoftman
Children 2025, 12(8), 1004; https://doi.org/10.3390/children12081004 - 30 Jul 2025
Viewed by 16
Abstract
Background: Youth with chronic rheumatologic diseases undergo medical experiences that can lead to post-traumatic stress disorder (PTSD). Understudied in pediatric rheumatology, medical PTSD can be significantly distressing and impairing. Objective: This study explored the prevalence of medical PTSD symptoms in youth with chronic [...] Read more.
Background: Youth with chronic rheumatologic diseases undergo medical experiences that can lead to post-traumatic stress disorder (PTSD). Understudied in pediatric rheumatology, medical PTSD can be significantly distressing and impairing. Objective: This study explored the prevalence of medical PTSD symptoms in youth with chronic inflammatory arthritis and associated factors, including pain, disease activity, mental health history, and anxiety sensitivity. Methods: A cross-sectional study of 50 youth (ages 8–18) with juvenile idiopathic arthritis (JIA) and childhood-onset systemic lupus erythematous (cSLE) was conducted at a pediatric rheumatology clinic. Participants completed self-report measures assessing post-traumatic stress symptoms (CPSS-V), pain, anxiety sensitivity (CASI), pain-related self-efficacy (CSES), adverse childhood experiences (ACEs), and fibromyalgia symptoms (PSAT). Clinical data included diagnoses, disease activity, treatment history, and demographics. Results: Forty percent had trauma symptoms in the moderate or more severe range. The 14% likely meeting criteria for probable medical PTSD were older (median 17 vs. 15 years, p = 0.005), had higher pain scores (median 4 vs. 3, p = 0.008), more ACEs (median 3 vs. 1, p = 0.005), higher anxiety sensitivity scores (median 39 vs. 29, p = 0.008), and higher JIA disease activity scores (median cJADAS-10 11.5 vs. 7.5, p = 0.032). They were also more likely to report a history of depression (71 vs. 23%, p = 0.020). No associations were found with hospitalization or injected/IV medication use. Conclusions: Medical trauma symptoms are prevalent in youth with chronic inflammatory arthritis. Probable PTSD was associated with pain and psychological distress. These findings support the need for trauma-informed care in pediatric rheumatology. Full article
Show Figures

Figure 1

18 pages, 3071 KiB  
Article
Predicting the Uniaxial Compressive Strength of Cement Paste: A Theoretical and Experimental Study
by Chunming Lian, Xiong Zhang, Lu Han, Weijun Wen, Lifang Han and Lizhen Wang
Materials 2025, 18(15), 3565; https://doi.org/10.3390/ma18153565 - 30 Jul 2025
Viewed by 83
Abstract
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement [...] Read more.
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement ratio and paste density; (2) a density-corrected effective water–cement ratio w/ceff that accounts for the physical effects of mineral additives including fly ash, slag, and limestone powder; and (3) a hydration-informed strength model incorporating curing age and temperature through an equivalent hydration degree αte. Experimental validation using over 60 cement paste mixes demonstrated high predictive accuracy, with coefficients of determination up to 0.97. The proposed model unifies the influence of binder composition, packing density, and curing conditions into a physically interpretable and practically applicable formulation. It enables early-age strength prediction of blended cementitious systems using only routine mix and density parameters, supporting performance-based mix design and optimization. The methodology provides a robust foundation for extending compactness-based modeling to more complex cementitious materials and structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop