Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = information and computing ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 678 KB  
Review
Toward Sustainable Wetland Management: A Literature Review of Global Wetland Vulnerability Assessment Techniques in the Context of Rising Pressures
by Assia Abdenour, Mohamed Sinan and Brahim Lekhlif
Sustainability 2025, 17(17), 7962; https://doi.org/10.3390/su17177962 - 4 Sep 2025
Viewed by 836
Abstract
Wetlands are natural ecosystems of great ecological and economic value. They provide undeniable ecosystem services that contribute to promoting sustainable development. Exposed to different pressures, these limnic ecosystems are particularly vulnerable to climate change. Thus, assessing wetland vulnerability is of utmost importance. Based [...] Read more.
Wetlands are natural ecosystems of great ecological and economic value. They provide undeniable ecosystem services that contribute to promoting sustainable development. Exposed to different pressures, these limnic ecosystems are particularly vulnerable to climate change. Thus, assessing wetland vulnerability is of utmost importance. Based on a systematic selection of relevant peer-reviewed studies, this paper helps to develop a general vision of the methods used to assess wetland vulnerability in different contexts, emphasizing the use of advanced computational approaches. Hence, an overview of different cases of wetlands all across the five continents and of different types of habitats is presented. Whether the wetland is permanently or seasonally flooded, coastal, or tropical, this study enables the analysis of diverse, already established vulnerability evaluation index systems. Some of these indices were computed using geographic information systems (GISs), artificial intelligence (AI), machine learning (ML), spatial principal component analysis (SPCA) and driver–pressure–state–impact–response (DPSIR) as evaluation models. Indeed, given the adoption of different methods, diverse models, and analytical approaches under different scenarios, the vulnerability assessment process should be seen as an iterative rather than a definitive process. An accurate wetland vulnerability assessment is essential for ensuring the sustainability of wetland ecosystems and for informing effective conservation and management strategies. Full article
Show Figures

Figure 1

22 pages, 3866 KB  
Article
Development of a BIM-Based Metaverse Virtual World for Collaborative Architectural Design
by David Stephen Panya, Taehoon Kim, Soon Min Hong and Seungyeon Choo
Architecture 2025, 5(3), 71; https://doi.org/10.3390/architecture5030071 - 1 Sep 2025
Viewed by 547
Abstract
The rapid evolution of the metaverse is driving the development of new digital design tools that integrate Computer-Aided Design (CAD) and Building Information Modeling (BIM) technologies. Core technologies such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) are increasingly combined [...] Read more.
The rapid evolution of the metaverse is driving the development of new digital design tools that integrate Computer-Aided Design (CAD) and Building Information Modeling (BIM) technologies. Core technologies such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) are increasingly combined with BIM to enhance collaboration and innovation in design and construction workflows. However, current BIM–VR integration often remains limited to isolated tasks, lacking persistent, multi-user environments that support continuous project collaboration. This study proposes a BIM-based Virtual World (VW) framework that addresses these limitations by creating an immersive, real-time collaborative platform for the Architecture, Engineering, and Construction (AEC) industry. The system enables multi-user access to BIM data through avatars, supports direct interaction with 3D models and associated metadata, and maintains a persistent virtual environment that evolves alongside project development. Key functionalities include interactive design controls, real-time decision-making support, and integrated training capabilities. A prototype was developed using Unreal Engine and supporting technologies to validate the approach. The results demonstrate improved interdisciplinary collaboration, reduced information loss during design iteration, and enhanced stakeholder engagement. This research highlights the potential of BIM-based Virtual Worlds to transform AEC collaboration by fostering an open, scalable ecosystem that bridges immersive environments with data-driven design and construction processes. Full article
(This article belongs to the Special Issue Architecture in the Digital Age)
Show Figures

Figure 1

30 pages, 578 KB  
Article
Two-Stage Mining of Linkage Risk for Data Release
by Runshan Hu, Yuanguo Lin, Mu Yang, Yuanhui Yu and Vladimiro Sassone
Mathematics 2025, 13(17), 2731; https://doi.org/10.3390/math13172731 - 25 Aug 2025
Viewed by 511
Abstract
Privacy risk mining, a crucial domain in data privacy protection, endeavors to uncover potential information among datasets that could be linked to individuals’ sensitive data. Existing anonymization and privacy assessment techniques either lack quantitative granularity or fail to adapt to dynamic, heterogeneous data [...] Read more.
Privacy risk mining, a crucial domain in data privacy protection, endeavors to uncover potential information among datasets that could be linked to individuals’ sensitive data. Existing anonymization and privacy assessment techniques either lack quantitative granularity or fail to adapt to dynamic, heterogeneous data environments. In this work, we propose a unified two-phase linkability quantification framework that systematically measures privacy risks at both the inter-dataset and intra-dataset levels. Our approach integrates unsupervised clustering on attribute distributions with record-level matching to compute interpretable, fine-grained risk scores. By aligning risk measurement with regulatory standards such as the GDPR, our framework provides a practical, scalable solution for safeguarding user privacy in evolving data-sharing ecosystems. Extensive experiments on real-world and synthetic datasets show that our method achieves up to 96.7% precision in identifying true linkage risks, outperforming the compared baseline by 13 percentage points under identical experimental settings. Ablation studies further demonstrate that the hierarchical risk fusion strategy improves sensitivity to latent vulnerabilities, providing more actionable insights than previous privacy gain-based metrics. Full article
Show Figures

Figure 1

44 pages, 4243 KB  
Review
AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Zhanel Baigarayeva, Nurdaulet Izmailov, Tolebi Riza, Abdulaziz Abdukarimov, Miras Mukazhan and Bakdaulet Zhumagulov
Sensors 2025, 25(17), 5265; https://doi.org/10.3390/s25175265 - 24 Aug 2025
Cited by 1 | Viewed by 1861
Abstract
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis [...] Read more.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10–35% while maintaining an operative temperature within ±0.5 °C and CO2 below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO2 near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87–97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy–security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 4687 KB  
Article
F3-YOLO: A Robust and Fast Forest Fire Detection Model
by Pengyuan Zhang, Xionghan Zhao, Xubing Yang, Ziqian Zhang, Changwei Bi and Li Zhang
Forests 2025, 16(9), 1368; https://doi.org/10.3390/f16091368 - 23 Aug 2025
Viewed by 573
Abstract
Forest fires not only destroy vegetation and directly decrease forested areas, but they also significantly impair forest stand structures and habitat conditions, ultimately leading to imbalances within the entire forest ecosystem. Therefore, accurate forest fire detection is critical for ecological safety and for [...] Read more.
Forest fires not only destroy vegetation and directly decrease forested areas, but they also significantly impair forest stand structures and habitat conditions, ultimately leading to imbalances within the entire forest ecosystem. Therefore, accurate forest fire detection is critical for ecological safety and for protecting lives and property. However, existing algorithms often struggle with detecting flames and smoke in complex scenarios like sparse smoke, weak flames, or vegetation occlusion, and their high computational costs hinder practical deployment. To cope with it, this paper introduces F3-YOLO, a robust and fast forest fire detection model based on YOLOv12. F3-YOLO introduces conditionally parameterized convolution (CondConv) to enhance representational capacity without incurring a substantial increase in computational cost, improving fire detection in complex backgrounds. Additionally, a frequency domain-based self-attention solver (FSAS) is integrated to combine high-frequency and high-contrast information, thus better handling real-world detection scenarios involving both small distant targets in aerial imagery and large nearby targets on the ground. To provide more stable structural cues, we propose the Focaler Minimum Point Distance Intersection over Union Loss (FMPDIoU), which helps the model capture irregular and blurred boundaries caused by vegetation occlusion or flame jitter and smoke dispersion. To enable efficient deployment on edge devices, we also apply structured pruning to reduce computational overhead. Compared to YOLOv12 and other mainstream methods, F3-YOLO achieves superior accuracy and robustness, attaining the highest mAP@50 of 68.5% among all compared methods on the dataset while requiring only 5.4 GFLOPs of computational cost and maintaining a compact parameter count of 2.6 M, demonstrating exceptional efficiency and effectiveness. These attributes make it a reliable, low-latency solution well-suited for real-time forest fire early warning systems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 358 KB  
Article
Artificial Intelligence in Curriculum Design: A Data-Driven Approach to Higher Education Innovation
by Thai Son Chu and Mahfuz Ashraf
Knowledge 2025, 5(3), 14; https://doi.org/10.3390/knowledge5030014 - 29 Jul 2025
Viewed by 1932
Abstract
This paper shows that artificial intelligence is fundamentally transforming college curricula by enabling data-driven personalization, which enhances student outcomes and better aligns educational programs with evolving workforce demands. Specifically, predictive analytics, machine learning algorithms, and natural language processing were applied here, grounded in [...] Read more.
This paper shows that artificial intelligence is fundamentally transforming college curricula by enabling data-driven personalization, which enhances student outcomes and better aligns educational programs with evolving workforce demands. Specifically, predictive analytics, machine learning algorithms, and natural language processing were applied here, grounded in constructivist learning theory and Human–Computer Interaction principles, to evaluate student performance and identify at-risk students to propose personalized learning pathways. Results indicated that the AI-based curriculum achieved much higher course completion rates (89.72%) as well as retention (91.44%) and dropout rates (4.98%) compared to the traditional model. Sentiment analysis of learner feedback showed a more positive learning experience, while regression and ANOVA analyses proved the impact of AI on enhancing academic performance to be real. Therefore, the learning content delivery for each student was continuously improved based on individual learner characteristics and industry trends by AI-enabled recommender systems and adaptive learning models. Its advantages notwithstanding, the study emphasizes the need to address ethical concerns, ensure data privacy safeguards, and mitigate algorithmic bias before an equitable outcome can be claimed. These findings can inform institutions aspiring to adopt AI-driven models for curriculum innovation to build a more dynamic, responsive, and learner-centered educational ecosystem. Full article
(This article belongs to the Special Issue Knowledge Management in Learning and Education)
Show Figures

Figure 1

37 pages, 1895 KB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Cited by 1 | Viewed by 2101
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 9767 KB  
Article
Improved Binary Classification of Underwater Images Using a Modified ResNet-18 Model
by Mehrunnisa, Mikolaj Leszczuk, Dawid Juszka and Yi Zhang
Electronics 2025, 14(15), 2954; https://doi.org/10.3390/electronics14152954 - 24 Jul 2025
Cited by 1 | Viewed by 1376
Abstract
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine [...] Read more.
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine eco-systems, analysis of biological habitats, and monitoring underwater infrastructure. Extracting useful information from underwater images is highly challenging due to factors such as light distortion, scattering, poor contrast, and complex foreground patterns. These difficulties make traditional image processing and machine learning techniques struggle to analyze images accurately. As a result, these challenges and complexities make the classification difficult or poor to perform. Recently, deep learning techniques, especially convolutional neural network (CNN), have emerged as influential tools for underwater image classification, contributing noteworthy improvements in accuracy and performance in the presence of all these challenges. In this paper, we have proposed a modified ResNet-18 model for the binary classification of underwater images into raw and enhanced images. In the proposed modified ResNet-18 model, we have added new layers such as Linear, rectified linear unit (ReLU) and dropout layers, arranged in a block that was repeated three times to enhance feature extraction and improve learning. This enables our model to learn the complex patterns present in the image in more detail, which helps the model to perform the classification very well. Due to these newly added layers, our proposed model addresses various complexities such as noise, distortion, varying illumination conditions, and complex patterns by learning vigorous features from underwater image datasets. To handle the issue of class imbalance present in the dataset, we applied a data augmentation technique. The proposed model achieved outstanding performance, with 96% accuracy, 99% precision, 92% sensitivity, 99% specificity, 95% F1-score, and a 96% Area under the Receiver Operating Characteristic Curve (AUC-ROC) score. These results demonstrate the strength and reliability of our proposed model in handling the challenges posed by the underwater imagery and making it a favorable solution for advancing underwater image classification tasks. Full article
Show Figures

Figure 1

18 pages, 1268 KB  
Review
Perspectives on the Presence of Environmentally Persistent Free Radicals (EPFRs) in Ambient Particulate Matters and Their Potential Implications for Health Risk
by Senlin Lu, Jiakuan Lu, Xudong Wang, Kai Xiao, Jingying Niuhe, Xinchun Liu and Shinichi Yonemochi
Atmosphere 2025, 16(7), 876; https://doi.org/10.3390/atmos16070876 - 17 Jul 2025
Viewed by 560
Abstract
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. [...] Read more.
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. This review critically synthesizes recent advancements in understanding EPFR formation mechanisms, analytical detection methodologies, environmental distribution patterns, and toxicological impacts. While progress has been made in characterization techniques, challenges persist—particularly in overcoming limitations of electron paramagnetic resonance (EPR) spectroscopy and spin-trapping methods in complex environmental matrices. Key knowledge gaps remain, including molecular-level dynamics of EPFR formation, long-term environmental fate under varying geochemical conditions, and quantitative relationships between chronic EPFR exposure and health outcomes. Future research priorities could focus on: (1) atomic-scale mechanistic investigations using advanced computational modeling to resolve formation pathways; (2) development of next-generation detection tools to improve sensitivity and spatial resolution; and (3) integration of EPFR data into region-specific air-quality indices to enhance risk assessment and inform mitigation strategies. Addressing these gaps will advance our capacity to mitigate EPFR persistence and safeguard environmental and public health. Full article
Show Figures

Figure 1

33 pages, 534 KB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 - 17 Jul 2025
Viewed by 4213
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

27 pages, 13245 KB  
Article
LHRF-YOLO: A Lightweight Model with Hybrid Receptive Field for Forest Fire Detection
by Yifan Ma, Weifeng Shan, Yanwei Sui, Mengyu Wang and Maofa Wang
Forests 2025, 16(7), 1095; https://doi.org/10.3390/f16071095 - 2 Jul 2025
Cited by 1 | Viewed by 560
Abstract
Timely and accurate detection of forest fires is crucial for protecting forest ecosystems. However, traditional monitoring methods face significant challenges in effectively detecting forest fires, primarily due to the dynamic spread of flames and smoke, irregular morphologies, and the semi-transparent nature of smoke, [...] Read more.
Timely and accurate detection of forest fires is crucial for protecting forest ecosystems. However, traditional monitoring methods face significant challenges in effectively detecting forest fires, primarily due to the dynamic spread of flames and smoke, irregular morphologies, and the semi-transparent nature of smoke, which make it extremely difficult to extract key visual features. Additionally, deploying these detection systems to edge devices with limited computational resources remains challenging. To address these issues, this paper proposes a lightweight hybrid receptive field model (LHRF-YOLO), which leverages deep learning to overcome the shortcomings of traditional monitoring methods for fire detection on edge devices. Firstly, a hybrid receptive field extraction module is designed by integrating the 2D selective scan mechanism with a residual multi-branch structure. This significantly enhances the model’s contextual understanding of the entire image scene while maintaining low computational complexity. Second, a dynamic enhanced downsampling module is proposed, which employs feature reorganization and channel-wise dynamic weighting strategies to minimize the loss of critical details, such as fine smoke textures, while reducing image resolution. Furthermore, a scale weighted Fusion module is introduced to optimize multi-scale feature fusion through adaptive weight allocation, addressing the issues of information dilution and imbalance caused by traditional fusion methods. Finally, the Mish activation function replaces the SiLU activation function to improve the model’s ability to capture flame edges and faint smoke textures. Experimental results on the self-constructed Fire-SmokeDataset demonstrate that LHRF-YOLO achieves significant model compression while further improving accuracy compared to the baseline model YOLOv11. The parameter count is reduced to only 2.25M (a 12.8% reduction), computational complexity to 5.4 GFLOPs (a 14.3% decrease), and mAP50 is increased to 87.6%, surpassing the baseline model. Additionally, LHRF-YOLO exhibits leading generalization performance on the cross-scenario M4SFWD dataset. The proposed method balances performance and resource efficiency, providing a feasible solution for real-time and efficient fire detection on resource-constrained edge devices with significant research value. Full article
(This article belongs to the Special Issue Forest Fires Prediction and Detection—2nd Edition)
Show Figures

Figure 1

19 pages, 400 KB  
Article
Impact of Smart Cities on Urban Resilience: The Roles of Land Green Utilization Efficiency and Industrial Structure Transformation
by Chaobo Zhou and Xinting Li
Land 2025, 14(7), 1373; https://doi.org/10.3390/land14071373 - 30 Jun 2025
Viewed by 716
Abstract
Relying on information technologies such as the Internet, big data, and cloud computing, smart cities (SC) fully integrate urban resources, constantly strengthen the ability of urban economic systems, infrastructure systems, ecosystems, social systems, institutional systems, and other systems to withstand disaster disturbance and [...] Read more.
Relying on information technologies such as the Internet, big data, and cloud computing, smart cities (SC) fully integrate urban resources, constantly strengthen the ability of urban economic systems, infrastructure systems, ecosystems, social systems, institutional systems, and other systems to withstand disaster disturbance and external risk shocks, and promote urban resilience (UR) construction. This study uses panel data from 254 prefecture-level cities in China from 2009 to 2021, and employs a multiperiod difference-in-differences method to examine the direct and heterogeneous effects of SC on UR. After a series of empirical tests, this study obtains the following results: (1) SC have a significant impact on the improvement of UR, which objectively demonstrates the reciprocity between SC and the level of UR construction, providing data support for promoting the in-depth practice of SC. (2) From the mechanism test of the impact of SC on UR, urban land green utilization efficiency and industrial structure transformation are intermediate mechanisms through which SC affect the improvement of UR. In addition, public environmental attention (PEA) has a positive regulatory effect on SC and UR, that is, PEA strengthens the role of SC in improving UR. (3) From the heterogeneity of urban characteristics that affect UR, SC have a more significant effect on improving UR in eastern cities and non-resource-based cities. This study provides new ideas for studying UR and provides useful insights for promoting SC construction and enhancing UR. This study proposes that the government should continue to promote the intelligent construction of Chinese cities, advance the industrial structure and improve the green land utilization efficiency, and strengthen their positive impact on UR. Full article
(This article belongs to the Special Issue Smart City and Architectural Design, Second Edition)
Show Figures

Figure 1

37 pages, 7361 KB  
Review
Evolution and Knowledge Structure of Wearable Technologies for Vulnerable Road User Safety: A CiteSpace-Based Bibliometric Analysis (2000–2025)
by Gang Ren, Zhihuang Huang, Tianyang Huang, Gang Wang and Jee Hang Lee
Appl. Sci. 2025, 15(12), 6945; https://doi.org/10.3390/app15126945 - 19 Jun 2025
Viewed by 978
Abstract
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of [...] Read more.
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of collaboration networks, publication trajectories, and intellectual structures. The results indicate a clear evolution from single-purpose, stand-alone devices to integrated ecosystem solutions that address the needs of diverse VRU groups. Six dominant knowledge clusters emerged—street-crossing assistance, obstacle avoidance, human–computer interaction, cyclist safety, blind navigation, and smart glasses. Comparative analysis across pedestrians, cyclists and motorcyclists, and persons with disabilities shows three parallel transitions: single- to multisensory interfaces, reactive to predictive systems, and isolated devices to V2X-enabled ecosystems. Contemporary research emphasizes context-adaptive interfaces, seamless V2X integration, and user-centered design, and future work should focus on lightweight communication protocols, adaptive sensory algorithms, and personalized safety profiles. The review provides a consolidated knowledge map to inform researchers, practitioners, and policy-makers striving for inclusive and proactive road safety solutions. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 2331 KB  
Article
LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection
by Yu Cai, Jingjing Su, Jun Song, Dekai Xu, Liankang Zhang and Gaoyuan Shen
J. Mar. Sci. Eng. 2025, 13(6), 1161; https://doi.org/10.3390/jmse13061161 - 12 Jun 2025
Viewed by 751
Abstract
Oil spills represent a serious threat to marine ecosystems. Remote sensing monitoring, especially based on synthetic aperture radar (SAR), have been extensively employed in marine environments due to its unique advantages. However, SAR images of marine oil spills exhibit challenges of weak boundaries, [...] Read more.
Oil spills represent a serious threat to marine ecosystems. Remote sensing monitoring, especially based on synthetic aperture radar (SAR), have been extensively employed in marine environments due to its unique advantages. However, SAR images of marine oil spills exhibit challenges of weak boundaries, confusion with look-alike phenomena, and the difficulty of detecting small-scale targets. To address these issues, we propose LRA-UNet, a Lightweight Residual Attention UNet for semantic segmentation in SAR images. Our model integrates depthwise separable convolutions to reduce feature redundancy and computational cost, while adopting a residual encoder enhanced with the Simple Attention Module (SimAM) to improve the precise extraction of target features. Additionally, we design a joint loss function that incorporates Sobel-based edge information, emphasizing boundary features during training to enhance edge sharpness. Experimental results show that LRA-UNet achieves superior segmentation results, with a mIoU of 67.36%, surpassing the original UNet by 4.41%, and a 5.17% improvement in IoU for the oil spill category. These results confirm the effectiveness of our approach in accurately extracting oil spill regions from complex SAR imagery. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

24 pages, 1667 KB  
Article
Mitigating Class Imbalance Challenges in Fish Taxonomy: Quantifying Performance Gains Using Robust Asymmetric Loss Within an Optimized Mobile–Former Framework
by Yanhe Tao and Rui Zhong
Electronics 2025, 14(12), 2333; https://doi.org/10.3390/electronics14122333 - 7 Jun 2025
Viewed by 614
Abstract
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly [...] Read more.
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly deep learning models, often suffer from significant computational overhead and struggle with the pervasive issue of class imbalance inherent in ecological datasets. Addressing these limitations, this research introduces a novel computationally parsimonious fish classification framework leveraging the hybrid Mobile–Former neural network architecture. This architecture strategically combines the local feature extraction strengths of convolutional layers with the global context modeling capabilities of transformers, optimized for efficiency. To specifically mitigate the detrimental effects of the skewed data distributions frequently observed in real-world fish surveys, the framework incorporates a sophisticated robust asymmetric loss function designed to enhance model focus on under-represented categories and improve resilience against noisy labels. The proposed system was rigorously evaluated using the comprehensive FishNet dataset, comprising 74,935 images distributed across a detailed taxonomic hierarchy including eight classes, seventy-two orders, and three-hundred-forty-eight families, reflecting realistic ecological diversity. Our model demonstrates superior classification accuracy, achieving 93.97 percent at the class level, 88.28 percent at the order level, and 84.02 percent at the family level. Crucially, these high accuracies are attained with remarkable computational efficiency, requiring merely 508 million floating-point operations, significantly outperforming comparable state-of-the-art models in balancing performance and resource utilization. This advancement provides a streamlined, effective, and resource-conscious methodology for automated fish species identification, thereby strengthening ecological monitoring capabilities and contributing significantly to the informed conservation and management of vital marine ecosystems. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Image Classification)
Show Figures

Figure 1

Back to TopTop