Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,956)

Search Parameters:
Keywords = inertial effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 932 KiB  
Article
Segmental External Load in Linear Running in Elite Futsal Players: A Multifactorial and Individual Variability Analysis Using Linear Mixed Models
by Diego Hernán Villarejo-García, Carlos Navarro-Martínez and José Pino-Ortega
Sports 2025, 13(8), 268; https://doi.org/10.3390/sports13080268 - 13 Aug 2025
Viewed by 154
Abstract
Limited evidence exists on how segmental external load is distributed during linear running and how it varies with speed, training intensity, and individual differences. This study examines the external load profile across six body segments in elite female futsal players during linear treadmill [...] Read more.
Limited evidence exists on how segmental external load is distributed during linear running and how it varies with speed, training intensity, and individual differences. This study examines the external load profile across six body segments in elite female futsal players during linear treadmill running, focusing on the effects of speed and training zone, as well as individual variability. Eight elite players, including six outfield players and two goalkeepers (mean age 23.9 ± 3.4 years, height 164.96 ± 4.22 cm, body mass 60.31 ± 4.56 kg), performed an incremental test and were measured using six WIMU PRO™ inertial sensors. The sensors recorded segmental PlayerLoad, speed, and training zones. Data were analyzed using Linear Mixed Models. The most important results show significant interactions between body location and speed and between body location and training zone (p < 0.001), with intraclass correlation coefficients (ICC) ranging from 0.437 to 0.515. These results indicate variability among players and specific and asymmetrical segmental load patterns. These findings offer practical insights for tailoring individualized training strategies that optimize performance and reduce segment specific overuse injuries. Full article
(This article belongs to the Special Issue Cutting-Edge Research on Physical Fitness Profile in Soccer Players)
Show Figures

Figure 1

17 pages, 2347 KiB  
Article
Fuzzy Logic-Based Adaptive Filtering for Transfer Alignment
by Zhaohui Gao, Jiahui Yang, Chengfan Gu and Yongmin Zhong
Sensors 2025, 25(16), 4998; https://doi.org/10.3390/s25164998 - 12 Aug 2025
Viewed by 126
Abstract
The transfer alignment of strapdown inertial navigation systems (SINSs) is of great significance for improving the strike accuracy of airborne tactical vehicles. This study designed a new fuzzy logic-based adaptive filtering method by using the fuzzy logic theory to address the influence of [...] Read more.
The transfer alignment of strapdown inertial navigation systems (SINSs) is of great significance for improving the strike accuracy of airborne tactical vehicles. This study designed a new fuzzy logic-based adaptive filtering method by using the fuzzy logic theory to address the influence of system model error on the state estimation of the Kalman filter for SINS transfer alignment. It established the state error model and measurement error model, which were embedded with the state prediction residual and measurement residual, respectively, for SINS transfer alignment. The fuzzy rules were designed and introduced into the Kalman filtering framework to estimate the covariances of the system measurement and predicted state by minimizing their residuals to improve filtering accuracy for SINS transfer alignment. Simulation and experimentation together with associated comparative analyses were conducted, demonstrating that the proposed method can effectively handle the influence of system model error on SINS transfer alignment, and its accuracy is at least 18.83% higher than benchmark methods for transfer alignment. Full article
(This article belongs to the Special Issue New Challenges and Sensor Techniques in Robot Positioning)
Show Figures

Figure 1

26 pages, 10272 KiB  
Article
Research on Disaster Environment Map Fusion Construction and Reinforcement Learning Navigation Technology Based on Air–Ground Collaborative Multi-Heterogeneous Robot Systems
by Hongtao Tao, Wen Zhao, Li Zhao and Junlong Wang
Sensors 2025, 25(16), 4988; https://doi.org/10.3390/s25164988 - 12 Aug 2025
Viewed by 329
Abstract
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to [...] Read more.
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to achieve rapid three-dimensional space coverage and complex terrain crossing for rapid and efficient map construction. Meanwhile, it utilizes the stable operation capability of an unmanned ground vehicle (UGV) and the ground detail survey capability to achieve precise map construction. The maps constructed by the two are accurately integrated to obtain precise disaster environment maps. Among them, the map construction and positioning technology is based on the FAST LiDAR–inertial odometry 2 (FAST-LIO2) framework, enabling the robot to achieve precise positioning even in complex environments, thereby obtaining more accurate point cloud maps. Before conducting map fusion, the point cloud is preprocessed first to reduce the density of the point cloud and also minimize the interference of noise and outliers. Subsequently, the coarse and fine registrations of the point clouds are carried out in sequence. The coarse registration is used to reduce the initial pose difference of the two point clouds, which is conducive to the subsequent rapid and efficient fine registration. The coarse registration uses the improved sample consensus initial alignment (SAC-IA) algorithm, which significantly reduces the registration time compared with the traditional SAC-IA algorithm. The precise registration uses the voxelized generalized iterative closest point (VGICP) algorithm. It has a faster registration speed compared with the generalized iterative closest point (GICP) algorithm while ensuring accuracy. In reinforcement learning navigation, we adopted the deep deterministic policy gradient (DDPG) path planning algorithm. Compared with the deep Q-network (DQN) algorithm and the A* algorithm, the DDPG algorithm is more conducive to the robot choosing a better route in a complex and unknown environment, and at the same time, the motion trajectory is smoother. This paper adopts Gazebo simulation. Compared with physical robot operation, it provides a safe, controllable, and cost-effective environment, supports efficient large-scale experiments and algorithm debugging, and also supports flexible sensor simulation and automated verification, thereby optimizing the overall testing process. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 2749 KiB  
Article
Real-Time Wind Estimation for Fixed-Wing UAVs
by Yifan Fu, Weigang An, Xingtao Su and Bifeng Song
Drones 2025, 9(8), 563; https://doi.org/10.3390/drones9080563 - 11 Aug 2025
Viewed by 396
Abstract
Wind estimation plays a crucial role in atmospheric boundary layer research and aviation flight safety. Fixed-wing UAVs enable rapid and flexible detection across extensive boundary layer regions. Traditional meteorological fixed-wing UAVs require either additional wind measurement sensors or sustained turning maneuvers for wind [...] Read more.
Wind estimation plays a crucial role in atmospheric boundary layer research and aviation flight safety. Fixed-wing UAVs enable rapid and flexible detection across extensive boundary layer regions. Traditional meteorological fixed-wing UAVs require either additional wind measurement sensors or sustained turning maneuvers for wind estimation, increasing operational costs while inevitably reducing mission duration and coverage per flight. This paper proposes a real-time wind estimation method based on an Unscented Kalman Filter (UKF) without aerodynamic sensors. The approach utilizes only standard UAV avionics—GNSS, pitot tube, and Inertial Measurement Unit (IMU)—to estimate wind fields. To validate accuracy, the method was integrated into a meteorological UAV equipped with a wind vane sensor, followed by multiple flight tests. Comparison with wind vane measurements shows real-time wind speed errors below 1 m/s and wind direction errors within 20° (0.349 rad). Results demonstrate the algorithm’s effectiveness for real-time atmospheric boundary layer wind estimation using conventional fixed-wing UAVs. Full article
Show Figures

Figure 1

22 pages, 1096 KiB  
Systematic Review
Continuous Movement Monitoring at Home Through Wearable Devices: A Systematic Review
by Gianmatteo Farabolini, Nicolò Baldini, Alessandro Pagano, Elisa Andrenelli, Lucia Pepa, Giovanni Morone, Maria Gabriella Ceravolo and Marianna Capecci
Sensors 2025, 25(16), 4889; https://doi.org/10.3390/s25164889 - 8 Aug 2025
Viewed by 423
Abstract
Background: Wearable sensors are a promising tool for the remote, continuous monitoring of motor symptoms and physical activity, especially in individuals with neurological or chronic conditions. Despite many experimental trials, clinical adoption remains limited. A major barrier is the lack of awareness and [...] Read more.
Background: Wearable sensors are a promising tool for the remote, continuous monitoring of motor symptoms and physical activity, especially in individuals with neurological or chronic conditions. Despite many experimental trials, clinical adoption remains limited. A major barrier is the lack of awareness and confidence among healthcare professionals in these technologies. Methods: This systematic review analyzed the use of wearable sensors for continuous motor monitoring at home, focusing on their purpose, type, feasibility, and effectiveness in neurological, musculoskeletal, or rheumatologic conditions. This review followed PRISMA guidelines and included studies from PubMed, Scopus, and Web of Science. Results: Seventy-two studies with 7949 participants met inclusion criteria. Neurological disorders, particularly Parkinson’s disease, were the most frequently studied. Common sensors included inertial measurement units (IMUs), accelerometers, and gyroscopes, often integrated into medical devices, smartwatches, or smartphones. Monitoring periods ranged from 24 h to over two years. Feasibility studies showed high patient compliance (≥70%) and good acceptance, with strong agreement with clinical assessments. However, only half of the studies were controlled trials, and just 5.6% were randomized. Conclusions: Wearable sensors offer strong potential for real-world motor function monitoring. Yet, challenges persist, including ethical issues, data privacy, standardization, and healthcare access. Artificial intelligence integration may boost predictive accuracy and personalized care. Full article
Show Figures

Figure 1

13 pages, 4728 KiB  
Article
Stereo Direct Sparse Visual–Inertial Odometry with Efficient Second-Order Minimization
by Chenhui Fu and Jiangang Lu
Sensors 2025, 25(15), 4852; https://doi.org/10.3390/s25154852 - 7 Aug 2025
Viewed by 331
Abstract
Visual–inertial odometry (VIO) is the primary supporting technology for autonomous systems, but it faces three major challenges: initialization sensitivity, dynamic illumination, and multi-sensor fusion. In order to overcome these challenges, this paper proposes stereo direct sparse visual–inertial odometry with efficient second-order minimization. It [...] Read more.
Visual–inertial odometry (VIO) is the primary supporting technology for autonomous systems, but it faces three major challenges: initialization sensitivity, dynamic illumination, and multi-sensor fusion. In order to overcome these challenges, this paper proposes stereo direct sparse visual–inertial odometry with efficient second-order minimization. It is entirely implemented using the direct method, which includes a depth initialization module based on visual–inertial alignment, a stereo image tracking module, and a marginalization module. Inertial measurement unit (IMU) data is first aligned with a stereo image to initialize the system effectively. Then, based on the efficient second-order minimization (ESM) algorithm, the photometric error and the inertial error are minimized to jointly optimize camera poses and sparse scene geometry. IMU information is accumulated between several frames using measurement preintegration and is inserted into the optimization as an additional constraint between keyframes. A marginalization module is added to reduce the computation complexity of the optimization and maintain the information about the previous states. The proposed system is evaluated on the KITTI visual odometry benchmark and the EuRoC dataset. The experimental results demonstrate that the proposed system achieves state-of-the-art performance in terms of accuracy and robustness. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 1682 KiB  
Article
Profiling External Load in U14 Basketball: Cluster Analysis of Competition Performance Using Inertial Devices
by João Rocha, João Serrano, Pablo López-Sierra and Sergio J. Ibáñez
Appl. Sci. 2025, 15(15), 8616; https://doi.org/10.3390/app15158616 - 4 Aug 2025
Viewed by 254
Abstract
Physical performance data is essential for planning youth training effectively; however, there is a lack of scientific information regarding performance in youth competitions. To address this gap, an innovative study was conducted with Portuguese U14 regional selections. Each player was equipped with a [...] Read more.
Physical performance data is essential for planning youth training effectively; however, there is a lack of scientific information regarding performance in youth competitions. To address this gap, an innovative study was conducted with Portuguese U14 regional selections. Each player was equipped with a WimuPro™ inertial device. Six variables were considered: accelerations, decelerations, speed, player load, impacts, and high impacts. The objective of this study, based on data from official competitions, was to statistically analyze the distribution and intensity thresholds of six physical performance variables across five defined zones. A cluster k-means analysis was performed for a significance value of p < 0.05. Five zones were identified for all variables: acceleration [<0.37; 0.37 to 0.81; 0.81 to 1.54; 1.54 to 3.49; >3.49 m/s2], deceleration [<−0.26; −0.27 to −0.63; −0.63 to −1.22; −1.22 to −2.545; >−2.54 m/s2], speed [<5.42; 5.42 to 10.19; 10.20 to 14.63; 14.64 to 18.59; >18.59 km/h2], player load [<1.07; 1.07 to 1.36; 1.37 to 1.63; 1.64 to 1.95; >1.95 u.a./min], impacts [<133.45; 133.45 to 158.75; 158.76 to 181.45; 181.46 to 206.59; >206.59 cont/min], and high impacts [<1.13; 1.14 to 2.11; 2.12 to 3.13; 3.14 to 4.42; >4.42 cont/min]. These intensity zones should be taken into account to optimize training and enhance the understanding of competition in U14 basketball. Full article
(This article belongs to the Special Issue Science and Basketball: Recent Advances and Practical Applications)
Show Figures

Figure 1

16 pages, 2388 KiB  
Article
Evaluating Lumbar Biomechanics for Work-Related Musculoskeletal Disorders at Varying Working Heights During Wall Construction Tasks
by Md. Sumon Rahman, Tatsuru Yazaki, Takanori Chihara and Jiro Sakamoto
Biomechanics 2025, 5(3), 58; https://doi.org/10.3390/biomechanics5030058 - 3 Aug 2025
Viewed by 244
Abstract
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual [...] Read more.
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual body movements were recorded using Inertial Measurement Unit (IMU) sensors. Muscle activities of the lumbar erector spinae (ES), quadratus lumborum (QL), multifidus (MF), gluteus maximus (GM), and iliopsoas (IL) were estimated using a 3D musculoskeletal (MSK) model and measured via surface electromyography (sEMG). The analysis of variance (ANOVA) test was conducted to identify the significant differences in muscle activities across four working heights (i.e., foot, knee, waist, and shoulder). Results: Findings showed that working at foot-level height resulted in the highest muscle activity (7.6% to 40.6% increase), particularly in the ES and QL muscles, indicating an increased risk of WMSDs. The activities of the ES, MF, and GM muscles were statistically significant across both tasks and all working heights (p < 0.01). Conclusions: Both MSK and sEMG analyses indicated significantly lower muscle activities at knee and waist heights, suggesting these as the best working positions (47 cm to 107 cm) for minimizing the risk of WMSDs. Conversely, working at foot and shoulder heights was identified as a significant risk factor for WMSDs. Additionally, the similar trends observed between MSK simulations and sEMG data suggest that MSK modeling can effectively substitute for sEMG in future studies. These findings provide valuable insights into ergonomic work positioning to reduce WMSD risks among wall construction workers. Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 - 2 Aug 2025
Viewed by 226
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 414
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

22 pages, 4248 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 - 1 Aug 2025
Viewed by 254
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

19 pages, 4152 KiB  
Article
Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China
by Xinyu Wei, Yizhi Ou, Ziwei Li, Jiaming Guo, Enli Lü, Fengxi Yang, Yanhua Liu and Bin Li
Agriculture 2025, 15(15), 1660; https://doi.org/10.3390/agriculture15151660 - 1 Aug 2025
Viewed by 312
Abstract
Greenhouses are applied to mitigate the deleterious effects of inclement weather, which facilitates the optimal growth and development of the crops. South China has a climate characterized by high temperature and high humidity, and the temperature and relative humidity inside a Venlo greenhouse [...] Read more.
Greenhouses are applied to mitigate the deleterious effects of inclement weather, which facilitates the optimal growth and development of the crops. South China has a climate characterized by high temperature and high humidity, and the temperature and relative humidity inside a Venlo greenhouse are higher than those in the atmosphere. In this paper, the numerical model of the flow distribution of a Venlo greenhouse in South China was established using the CFD method, which mainly applied the DO model, the k-e turbulence model, and the porous medium model. The porous resistance characteristics of tomatoes were obtained through experimental research. The inertial resistances of tomato plants in the x, y, and z directions were 80,000,000, 18,000,000, and 120,000,000, respectively; the viscous resistances of tomato plants in the x, y, and z directions were 0.43, 0.60, and 0.63, respectively. The porosity of tomato plants was 0.996. The average difference between the temperature of the established numerical model and the experimental temperature was less than 0.11 °C, and the average relative error was 2.72%. This research also studied the effects of five management and structure parameters on the velocity and temperature distribution in a greenhouse. The optimal inlet velocity is 1.32 m/s, with the COF of velocity and temperature being 9.23% and 1.18%, respectively. The optimal skylight opening is 1.76 m, with the COF of velocity and temperature being 10.68% and 0.88%, respectively. The optimal side window opening is 0.67 m, with the COF of velocity and temperature being 9.25% and 2.10%, respectively. The optimal side window height is 1.18 m, with the COF of velocity and temperature being 9.50% and 1.33%, respectively. The optimal planting interval is 1.40 m, with the COF of velocity and temperature being 15.29% and 0.20%, respectively. The results provide a reference for the design and management of Venlo greenhouses in South China. Full article
Show Figures

Figure 1

24 pages, 2854 KiB  
Article
Autonomous Trajectory Control for Quadrotor eVTOL in Hover and Low-Speed Flight via the Integration of Model Predictive and Following Control
by Yeping Wang, Honglei Ji, Qingyu Kang, Haotian Qi and Jinghan Wen
Drones 2025, 9(8), 537; https://doi.org/10.3390/drones9080537 - 30 Jul 2025
Viewed by 504
Abstract
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the [...] Read more.
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the challenges of strong nonlinear dynamics, multi-axis coupling, and stringent safety constraints by separating the planning task from the fast-response control task. The MPC layer generates constrained velocity and yaw rate commands based on a simplified inertial prediction model, effectively reducing computational complexity while accounting for physical and operational limits. The EMFC layer then compensates for dynamic couplings and ensures the rapid execution of commands. A high-fidelity simulation model, incorporating rotor flapping dynamics, differential collective pitch control, and enhanced aerodynamic interference effects, is developed to validate the controller. Four representative ADS-33E-PRF tasks—Hover, Hovering Turn, Pirouette, and Vertical Maneuver—are simulated. Results demonstrate that the proposed controller achieves accurate trajectory tracking, stable flight performance, and full compliance with ADS-33E-PRF criteria, highlighting its potential for autonomous urban air mobility applications. Full article
Show Figures

Figure 1

16 pages, 1667 KiB  
Article
Quantification of the Effect of Saddle Fitting on Rider–Horse Biomechanics Using Inertial Measurement Units
by Blandine Becard, Marie Sapone, Pauline Martin, Sandrine Hanne-Poujade, Alexa Babu, Camille Hébert, Philippe Joly, William Bertucci and Nicolas Houel
Sensors 2025, 25(15), 4712; https://doi.org/10.3390/s25154712 - 30 Jul 2025
Viewed by 497
Abstract
The saddle’s adaptability to the rider–horse pair’s biomechanics is essential for equestrian comfort and performance. However, approaches to dynamic evaluation of saddle fitting are still limited in equestrian conditions. The purpose of this study is to propose a method of quantifying saddle adaptation [...] Read more.
The saddle’s adaptability to the rider–horse pair’s biomechanics is essential for equestrian comfort and performance. However, approaches to dynamic evaluation of saddle fitting are still limited in equestrian conditions. The purpose of this study is to propose a method of quantifying saddle adaptation to the rider–horse pair in motion. Eight rider–horse pairs were tested using four similar saddles with small modifications (seat depth, flap width, and front panel thickness). Seven inertial sensors were attached to the riders and horses to measure the active range of motion of the horses’ forelimbs and hindlimbs, stride duration, active range of motion of the rider’s pelvis, and rider–horse interaction. The results reveal that even small saddle changes affect the pair’s biomechanics. Some saddle configurations limit the limbs’ active range of motion, lengthen strides, or modify the rider’s pelvic motion. The temporal offset between the movements of the horse and the rider changes depending on the saddle modifications. These findings support the effect of fine saddle changes on the locomotion and synchronization of the rider–horse pair. The use of inertial sensors can be a potential way for quantifying the influence of dynamic saddle fitting and optimizing saddle adaptability in stable conditions with saddle fitter constraints. Full article
Show Figures

Graphical abstract

25 pages, 8468 KiB  
Article
An Autonomous Localization Vest System Based on Advanced Adaptive PDR with Binocular Vision Assistance
by Tianqi Tian, Yanzhu Hu, Xinghao Zhao, Hui Zhao, Yingjian Wang and Zhen Liang
Micromachines 2025, 16(8), 890; https://doi.org/10.3390/mi16080890 - 30 Jul 2025
Viewed by 245
Abstract
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and [...] Read more.
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and binocular vision, designed to provide a low-cost, high-reliability, and high-precision solution for rescuers. By analyzing the characteristics of measurement data from various body parts, the chest is identified as the optimal placement for sensors. A chest-mounted advanced APDR method based on dynamic step segmentation detection and adaptive step length estimation has been developed. Furthermore, step length features are innovatively integrated into the visual tracking algorithm to constrain errors. Visual data is fused with dead reckoning data through an extended Kalman filter (EKF), which notably enhances the reliability and accuracy of the positioning system. A wearable autonomous localization vest system was designed and tested in indoor corridors, underground parking lots, and tunnel environments. Results show that the system decreases the average positioning error by 45.14% and endpoint error by 38.6% when compared to visual–inertial odometry (VIO). This low-cost, wearable solution effectively meets the autonomous positioning needs of rescuers in disaster scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

Back to TopTop