Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Mathematical Model
- (1)
- Mass conservation equations:
- (2)
- Conservation of momentum equation:
- (3)
- Conservation of energy equation:
- (4)
- Radiation model:
- (5)
- Porous model
2.3. Measurement of the Porous Parameters
2.4. Numerical Method
2.4.1. Mesh Independence Research
2.4.2. Boundary Condition
2.4.3. Solution of Simulation
2.5. Evaluation Method
3. Result
3.1. Model Validation
3.2. Airflow Distribution
3.3. Temperature Distribution
3.4. Effect of the Inlet Velocity
3.5. Effect of the Skylight Opening
3.6. Effect of Side Window Opening
3.7. Effect of Side Window Height
3.8. Effect of Planting Interval
4. Discussion
4.1. Numerical Model
4.2. Inlet Velocity
4.3. Skylight Opening
4.4. Side Window Opening
4.5. Side Window Height
4.6. Planting Interval
5. Conclusions
- (1)
- The porous resistance characteristics of tomatoes were obtained through experimental research. The inertial resistances of tomato plants in the x, y, and z directions were 80,000,000, 18,000,000, and 120,000,000, respectively; the viscous resistances of tomato plants in the x, y, and z directions were 0.43, 0.60, and 0.63, respectively. The porosity was 0.996, and the R-squared of the curve fitting reached 0.96.
- (2)
- The average difference between the temperature of the established numerical model and the experimental temperature is less than 0.11 °C, and the average relative error is 2.72%, indicating a relatively high experimental accuracy.
- (3)
- Based on the established numerical model, the effects of wind velocity, skylight opening, side window opening, side window height, and planting interval on the velocity of greenhouse temperature were studied, and the optimal parameter combination was obtained. The optimal wind velocity, skylight opening, side window opening, side window height, and planting interval of the Venlo greenhouse are 1.32 m/s, 1.76 m, 0.67 m, 1.18 m, and 1.40 m, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Zhang, L.; Xia, X. Model predictive control of a Venlo-type greenhouse system considering electrical energy, water, and carbon dioxide consumption. Appl. Energy 2021, 298, 117163. [Google Scholar] [CrossRef]
- Aich, W.; Kolsi, L.; Borjini, M.; Al-Rashed, A.; BenAissia, H.; Oztop, H.; Abu-Hamdeh, N. Three-dimensional computational fluid dynamics analysis of buoyancy-driven natural ventilation and entropy generation in a prismatic greenhouse. Therm. Sci. 2018, 22 Pt A, 73–85. [Google Scholar] [CrossRef]
- Sun, D.; Li, Y.; Xia, T.; He, M.; Li, T.; Liu, X. Thermal performance of a novel underground energy migration system for greenhouse. Appl. Therm. Eng. 2024, 245, 122884. [Google Scholar] [CrossRef]
- Wang, X.; Han, C.; Wu, W.; Xu, J.; Zeng, Z.; Tang, T.; Zheng, Z.; Huang, T. Experimental Study on the Ventilation Resistance Characteristics of Paddy Grain Layer Modelled with Response Surface Methodology. Appl. Sci. 2021, 11, 7826. [Google Scholar] [CrossRef]
- Kalbasinia, A.; Jafari, M.; Benni, S.; Kouhikamali, R.; Sadeghi, M.; Nikbakht, A.; Tayefi, A. Application of computational fluid dynamics (CFD) for optimal temperature sensor placement in a greenhouse equipped with a pad-fan cooling (PFC) system. Smart Agric. Techn. 2025, 12, 101109. [Google Scholar] [CrossRef]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Temperature Gradients in a Partially Shaded Large Greenhouse equipped with Evaporative Cooling Pads. Biosyst. Eng. 2003, 85, 87–94. [Google Scholar] [CrossRef]
- McCartney, L.; Lefsrud, M. Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 159–172. [Google Scholar] [CrossRef]
- Saberian, A.; Sajadiye, S.M. Assessing the variable performance of fan-and-pad cooling in a subtropical desert greenhouse. Appl. Therm. Eng. 2020, 179, 115672. [Google Scholar] [CrossRef]
- Bastien, D.; Dermardiros, V.; Athienitis, A.K. Development of a new control strategy for improving the operation of multiple shades in a solarium. Sol. Energy 2015, 122, 277–292. [Google Scholar] [CrossRef]
- Bonachela, S.; Fernández, M.D.; Hernández, J.; Karaca, C. Computing air temperature and humidity for reference crop evapotranspiration calculation in passive Mediterranean greenhouses. Agric. Water Manag. 2024, 302, 108991. [Google Scholar] [CrossRef]
- Bournet, P.; Boulard, T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Kim, Y.; Sung, H.; Yoon, N.; Lee, S.; Hwang, S.; Kim, H.; Lee, J. Effects of the Open Level of the Side Window on the Control of the Temperature and Relative Humidity in the Fog Cooling Greenhouse. J. Agric. Life Sci. 2011, 45, 265–278. [Google Scholar]
- Huang, J.; Du, Y. Impact of Fan Position and Velocity Adjustments in Glass Greenhouse Environments. Highlights Sci. Eng. Technol. 2024, 104, 197–206. [Google Scholar] [CrossRef]
- Ould Khaoua, S.A.; Bournet, P.E.; Migeon, C.; Boulard, T. Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosyst. Eng. 2006, 95, 83–98. [Google Scholar] [CrossRef]
- von Grabe, J. Flow resistance for different types of windows in the case of buoyancy ventilation. Energy Build. 2013, 65, 516–522. [Google Scholar] [CrossRef]
- Li, K.; Xue, W.; Mao, H.; Chen, X.; Jiang, H.; Tan, G. Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics. Energies 2019, 12, 2873. [Google Scholar] [CrossRef]
- Piscia, D.; Muñoz, P.; Panadès, C.; Montero, J. A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Comput. Electron. Agric. 2015, 115, 129–141. [Google Scholar] [CrossRef]
- Bailey, B.J.; Montero, J.I.; Parra, J.P.; Robertson, A.P.; Baeza, E.; Kamaruddin, R. Airflow Resistance of Greenhouse Ventilators with and without Insect Screens. Biosyst. Eng. 2003, 86, 217–229. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D. Towards automated greenhouse: A state of the art review on greenhouse monitoring methods and technologies based on internet of things. Comput. Electron. Agric. 2021, 191, 106558. [Google Scholar] [CrossRef]
- Kim, J. Automatic Control of a Sunlight Reflector Board for Achieving the Sunlight Intensity Set by the Greenhouse Operator. Appl. Sci. 2024, 14, 5257. [Google Scholar] [CrossRef]
- Yin, H.; Wang, K.; Zeng, J.; Pang, Z. CFD Analysis and Optimization of a Plastic Greenhouse with a Semi-Open Roof in a Tropical Area. Agronomy 2024, 14, 876. [Google Scholar] [CrossRef]
- Tsafaras, I.; Campen, J.B.; Stanghellini, C.; Zwart, H.F.; Voogt, W.; Scheffers, K.; Harbi, A.A.; Assaf, K.A. Intelligent greenhouse design decreases water use for evaporative cooling in arid regions. Agric. Water Manag. 2021, 250, 106807. [Google Scholar] [CrossRef]
- Lee, I.B.; Short, T.H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Trans. ASABE 2000, 43, 745–753. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Benni, S.; Barbaresi, L.; Torreggiani, D.; Tassinari, P. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Comput. Electron. Agric. 2018, 149, 41–53. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Wang, Q.J.; Western, A.W.; Graham, T.D.J.; Wu, W. Monthly disaggregation of annual irrigation water demand in the southern Murray Darling Basin. Agric. Water Manag. 2024, 302, 108961. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Liu, Z. Effects of Wind Regime and Vent Configuration on Microclimate in Tunnel Greenhouses in Summer. Trans. Chin. Soc. Agric. Mach. 2017, 48, 311–318. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Wang, F.; Battaglia, F. Numerical investigation of single-sided natural ventilation driven by buoyancy and wind through variable window configurations. Energy Build 2018, 168, 147–164. [Google Scholar] [CrossRef]
- Fluent. User’s Guide; Fluent, Inc.: Lebanon, NH, USA, 2022. [Google Scholar]
- Guo, J.; Fang, S.; Zeng, Z.; Lu, H.; Lü, E. Numerical simulation and experimental verification on humidity field for pipeline humidifying device. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 57–64, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Söylemez, E.; Alpman, E.; Onat, A.; Yü, Y.; Hartomacıoğlu, S. Numerical (CFD) and experimental analysis of hybrid household refrigerator including thermoelectric and vapour compression cooling systems. Int. J. Refrig. 2019, 99, 300–315. [Google Scholar] [CrossRef]
- Guo, J.; Wei, X.; Li, B.; Cao, Y.; Han, J.; Yang, X.; Lü, E. Characteristic analysis of humidity control in a fresh-keeping container using CFD model. Comput. Electron. Agric. 2020, 179, 105816. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.; Pouillard, J.; Fatnassi, H.; Grisey, A. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Singh, G.; Singh, P.P.; Lubana, P.P.S.; Singh, K.G. Formulation and validation of a mathematical model of the microclimate of a greenhouse. Renew. Energy 2006, 31, 1541–1560. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Li, S.; Zhang, M.; Hüseyin, B.; Wang, Y. Numerical investigation for effects of natural light and ventilation on 3D tomato body heat distribution in a Venlo greenhouse. Inf. Process. Agric. 2023, 10, 535–546. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosyst. Eng. 2022, 220, 73–86. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, X.; Hao, W. Study on the wall optimization of solar greenhouse based on temperature field experiment and CFD simulation. Int. J. Heat Technol. 2018, 36, 847–854. [Google Scholar] [CrossRef]
- Hemming, S.; Waaijenberg, D.; Campen, J.B.; Bot, G.P.A. Development of a greenhouse system for tropical lowland in Indonesia. Int. Soc. Hortic. Sci. 2006, 710, 135–142. [Google Scholar] [CrossRef]
- Xu, K.; Guo, X.; He, J.; Yu, B.; Tan, J.; Guo, Y. A study on temperature spatial distribution of a greenhouse under solar load with considering crop transpiration and optical effects. Energy Convers. Manag. 2022, 254, 115277. [Google Scholar] [CrossRef]
- Teitel, M.; Ozer, S.; Mendelovich, V. Airflow temperature and humidity patterns in a screenhouse with a flat insect-proof screen roof and impermeable sloping walls—Computational fluid dynamics (CFD) results. Biosyst. Eng. 2022, 214, 165–176. [Google Scholar] [CrossRef]
- Guo, J.; Wei, X.; Du, X.; Ren, J.; Lü, E. Numerical simulation of liquid nitrogen injection in a container with controlled atmosphere. Biosyst. Eng. 2019, 187, 53–68. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Zhang, L.; Guan, Z. Analysis of Flow Field for Full Open-roof Glass Greenhouse with Nature Ventilation in Summer Based on CFD. Trans. Chin. Soc. Agric. Machinery (Trans. CSAM) 2016, 47, 332–337, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sun, Y.; Bao, E.; Zhu, C.; Yan, L.; Cao, Y.; Zhang, X.; Li, J.; Jing, H.; Zou, Z. Effects of window opening style on inside environment of solar greenhouse based on CFD simulation. Int. J. Agric. Biol. Eng. 2020, 13, 53–59. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Lee, S.; Kwon, J. Effect of Different Height of Side Vents on Microclimate in a Single-Span Greenhouse during Natural Ventilation. J. Bio-Environ. Control 2022, 31, 90–97. [Google Scholar] [CrossRef]
- Teitel, M.; Tanny, J. Natural ventilation of greenhouses: Experiments and model. Agric. For. Meteorol. 1999, 96, 59–70. [Google Scholar] [CrossRef]
- Kim, H. Evaluating the Ventilation Performance of Single-Span Plastic Greenhouses with Continuous Screened Side Openings. Agronomy 2024, 14, 1447. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Wang, C.; Tian, X.; Song, W.; Zhao, S.; Wang, K. CFD based airflow uniformity optimization of Chinese solar greenhouses with long-row cultivation: Impact of unit layout design. Case Stud. Therm. Eng. 2025, 71, 106192. [Google Scholar] [CrossRef]
Items | Values | |
---|---|---|
Inertial resistance C2 (m−1) | X-axis | 80,000,000 |
Y-axis | 18,000,000 | |
Z-axis | 120,000,000 | |
Viscous resistance (m−2) | X-axis | 0.43 |
Y-axis | 0.60 | |
Z-axis | 0.63 |
Physical Property/unit | Air [31] | Glass [32] | Soil [33] | Tomato Plants [34] |
---|---|---|---|---|
Density/kg·m−3 | 1.184 | 2530 | 1620 | 990 |
Cp/J·kg·K−1 | 1006.58 | 840 | 1480 | 3680 |
Thermal Conductivity/W·m·K−1 | 0.02604 | 1.20 | 1.3 | 0.476 |
Absorption Coefficient | 0.20 | 1.20 | 0.8 | 0.014 |
Diffusion Coefficient | 0 | 0.1 | 0.2 | 0.80 |
Scattering Coefficient | 1.00 | 1.00 | 1.0 | 0.80 |
Refractive Index | 0.86 | 0.85 | 0.9 | 0.95 |
Simulation | Velocity (m/s) | Skylight Opening (m) | Side Window Opening (m) | Side WindowHeight (m) | Planting Interval (m) |
---|---|---|---|---|---|
1 | 0.72 | 0 | 0 | 1.18 | 1.40 |
2 | 0.92 | 0 | 0 | 1.18 | 1.40 |
3 | 1.12 | 0 | 0 | 1.18 | 1.40 |
4 | 1.32 | 0 | 0 | 1.18 | 1.40 |
5 | 1.52 | 0 | 0 | 1.18 | 1.40 |
6 | 1.32 | 0 | 0 | 1.18 | 1.40 |
7 | 1.32 | 0.44 | 0 | 1.18 | 1.40 |
8 | 1.32 | 0.88 | 0 | 1.18 | 1.40 |
9 | 1.32 | 1.32 | 0 | 1.18 | 1.40 |
10 | 1.32 | 1.76 | 0 | 1.18 | 1.40 |
11 | 1.32 | 0.88 | 0 | 0.78 | 1.40 |
12 | 1.32 | 0.88 | 0 | 0.98 | 1.40 |
13 | 1.32 | 0.88 | 0 | 1.18 | 1.40 |
14 | 1.32 | 0.88 | 0 | 1.38 | 1.40 |
15 | 1.32 | 0.88 | 0 | 1.58 | 1.40 |
16 | 1.32 | 0.88 | 0 | 0.98 | 1.40 |
17 | 1.32 | 0.88 | 0.33 | 0.98 | 1.40 |
18 | 1.32 | 0.88 | 0.67 | 0.98 | 1.40 |
19 | 1.32 | 0.88 | 1.00 | 0.98 | 1.40 |
20 | 1.32 | 0.88 | 1.33 | 0.98 | 1.40 |
21 | 1.32 | 0.88 | 1.33 | 0.98 | 0.46 |
22 | 1.32 | 0.88 | 1.33 | 0.98 | 0.67 |
23 | 1.32 | 0.88 | 1.33 | 0.98 | 0.96 |
24 | 1.32 | 0.88 | 1.33 | 0.98 | 1.40 |
25 | 1.32 | 0.88 | 1.33 | 0.98 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Ou, Y.; Li, Z.; Guo, J.; Lü, E.; Yang, F.; Liu, Y.; Li, B. Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China. Agriculture 2025, 15, 1660. https://doi.org/10.3390/agriculture15151660
Wei X, Ou Y, Li Z, Guo J, Lü E, Yang F, Liu Y, Li B. Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China. Agriculture. 2025; 15(15):1660. https://doi.org/10.3390/agriculture15151660
Chicago/Turabian StyleWei, Xinyu, Yizhi Ou, Ziwei Li, Jiaming Guo, Enli Lü, Fengxi Yang, Yanhua Liu, and Bin Li. 2025. "Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China" Agriculture 15, no. 15: 1660. https://doi.org/10.3390/agriculture15151660
APA StyleWei, X., Ou, Y., Li, Z., Guo, J., Lü, E., Yang, F., Liu, Y., & Li, B. (2025). Optimization of Greenhouse Structure Parameters Based on Temperature and Velocity Distribution Characteristics by CFD—A Case Study in South China. Agriculture, 15(15), 1660. https://doi.org/10.3390/agriculture15151660