Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,353)

Search Parameters:
Keywords = industrial environments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 (registering DOI) - 2 Aug 2025
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

25 pages, 19715 KiB  
Article
Microstructure, Mechanical Properties, and Magnetic Properties of 430 Stainless Steel: Effect of Critical Cold Working Rate and Heat Treatment Atmosphere
by Che-Wei Lu, Fei-Yi Hung and Tsung-Wei Chang
Metals 2025, 15(8), 868; https://doi.org/10.3390/met15080868 (registering DOI) - 2 Aug 2025
Abstract
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, [...] Read more.
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, F-1.5Si-10%, F-1.5Si-40%, F-1.5Si-10% (MA), F-1.5Si-40% (MA), F-1.5Si-10% (H2), and F-1.5Si-40% (H2)). The results indicate that increasing the cold working rate improves the material’s mechanical properties; however, it negatively impacts its magnetic and corrosion resistance properties. Additionally, the magnetic annealing process improves the mechanical properties, while atmospheric magnetic annealing optimizes the overall magnetic performance. In contrast, magnetic annealing in a hydrogen atmosphere does not enhance the magnetic properties as effectively as atmospheric magnetic annealing. Still, it promotes the formation of a protective layer, preserving the mechanical properties and providing better corrosion resistance. Furthermore, regardless of whether magnetic annealing is conducted in an atmospheric or hydrogen environment, materials with 10% cold work rate (F-1.5Si-10% (MA) and F-1.5Si-10% (H2)) exhibit the lowest coercive force (286 and 293 A/m in the 10 Hz test condition), making them ideal for electromagnetic applications. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 (registering DOI) - 2 Aug 2025
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 (registering DOI) - 2 Aug 2025
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Figure 1

36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 (registering DOI) - 2 Aug 2025
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 (registering DOI) - 2 Aug 2025
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

20 pages, 5077 KiB  
Article
Ventilation Modeling of a Hen House with Outdoor Access
by Hojae Yi, Eileen Fabian-Wheeler, Michael Lee Hile, Angela Nguyen and John Michael Cimbala
Animals 2025, 15(15), 2263; https://doi.org/10.3390/ani15152263 (registering DOI) - 1 Aug 2025
Abstract
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor [...] Read more.
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor environment, including properly planned ventilation. Moreover, complaints exist that hens do not use the holes to access the outdoor environment due to the strong incoming airflow through the outdoor access, as they behave as uncontrolled air inlets in a negative pressure ventilation system. As the egg industry transitions to cage-free systems, there is an urgent need for validated computational fluid dynamics (CFD) models to optimize ventilation strategies that balance animal welfare, environmental control, and production efficiency. We developed and validated CFD models of a cage-free hen house with outdoor access by specifying real-world conditions, including two exhaust fans, sidewall ventilation inlets, wire-meshed pens, outdoor access, and plenum inlets. The simulations of four ventilation scenarios predict the measured air flow velocity with an error of less than 50% for three of the scenarios, and the simulations predict temperature with an error of less than 6% for all scenarios. Plenum-based systems outperformed sidewall systems by up to 136.3 air changes per hour, while positive pressure ventilation effectively mitigated disruptions to outdoor access. We expect that knowledge of improved ventilation strategy will help the egg industry improve the welfare of hens cost-effectively. Full article
24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 (registering DOI) - 1 Aug 2025
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Lightweight Vision Transformer for Frame-Level Ergonomic Posture Classification in Industrial Workflows
by Luca Cruciata, Salvatore Contino, Marianna Ciccarelli, Roberto Pirrone, Leonardo Mostarda, Alessandra Papetti and Marco Piangerelli
Sensors 2025, 25(15), 4750; https://doi.org/10.3390/s25154750 (registering DOI) - 1 Aug 2025
Abstract
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly on raw RGB images without requiring skeleton reconstruction, joint angle estimation, or image segmentation. A single ViT model simultaneously classifies eight anatomical regions, enabling efficient multi-label posture assessment. Training is supervised using a multimodal dataset acquired from synchronized RGB video and full-body inertial motion capture, with ergonomic risk labels derived from RULA scores computed on joint kinematics. The system is validated on realistic, simulated industrial tasks that include common challenges such as occlusion and posture variability. Experimental results show that the ViT model achieves state-of-the-art performance, with F1-scores exceeding 0.99 and AUC values above 0.996 across all regions. Compared to previous CNN-based system, the proposed model improves classification accuracy and generalizability while reducing complexity and enabling real-time inference on edge devices. These findings demonstrate the model’s potential for unobtrusive, scalable ergonomic risk monitoring in real-world manufacturing environments. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

19 pages, 1310 KiB  
Review
A Survey of Machine and Deep Learning Techniques in Analog Integrated Circuit Layout Synthesis
by Ricardo M. F. Martins
Microelectronics 2025, 1(1), 2; https://doi.org/10.3390/microelectronics1010002 (registering DOI) - 1 Aug 2025
Abstract
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact [...] Read more.
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact of parasitic structures constantly challenges existing automatic layout generation techniques and keeps the pressure on for further improvement. At the time of writing, no automatic tool or flow has been established in the industrial environment, resulting in a time-consuming and difficult-to-reuse design process. However, very recently, machine and deep learning techniques started to offer solutions for problems not dealt with in the previous generation of automatic layout tools and are reshaping analog design automation. Therefore, this paper conducts a review of the most recent analog integrated circuit automatic layout techniques powered by machine and deep learning methods, covering placement, routing, and trends on post-layout performance estimation, as well as providing an actual, complete, and comprehensive guide for circuit designers and design automation developers. Full article
Show Figures

Figure 1

19 pages, 2196 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 (registering DOI) - 1 Aug 2025
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

12 pages, 1161 KiB  
Article
Power Ultrasound and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Fresh Produce
by Megan L. Fay, Priya Biswas, Xinyi Zhou, Bashayer A. Khouja, Diana S. Stewart, Catherine W. Y. Wong, Wei Zhang and Joelle K. Salazar
Microbiol. Res. 2025, 16(8), 172; https://doi.org/10.3390/microbiolres16080172 - 1 Aug 2025
Abstract
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. [...] Read more.
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. This study evaluated the effectiveness of organic acids (citric, malic, and lactic acid) and power ultrasound, individually and in combination, for the reduction in Salmonella enterica and Listeria monocytogenes on four fresh produce types: romaine lettuce, cucumber, tomato, and strawberry. Produce samples were inoculated with bacterial cocktails at 8–9 log CFU/unit and treated with organic acids at 2 or 5% for 2 or 5 min, with or without power ultrasound (40 kHz). Results showed that pathogen reductions varied based on the produce matrix with smoother surfaces such as tomato, exhibiting greater reductions than rougher surfaces (e.g., romaine lettuce and strawberry). Lactic and malic acids were the most effective treatments, with 5% lactic acid achieving a reduction of >5 log CFU/unit for S. enterica and 4.53 ± 0.71 log CFU/unit for L. monocytogenes on tomatoes. The combination of organic acids and power ultrasound demonstrated synergistic effects, further enhancing pathogen reduction by <1.87 log CFU/unit. For example, S. enterica on cucumbers was reduced by an additional 1.87 log CFU/unit when treated with 2% malic acid and power ultrasound for 2 min compared to malic acid alone. Similarly, L. monocytogenes on strawberries was further reduced by 1.84 log CFU/unit when treated with 5% malic acid and power ultrasound for 2 min. These findings suggest that organic acids, particularly malic and lactic acids, combined with power ultrasound, may serve as an effective hurdle technology for enhancing the microbial safety of fresh produce. Future research can include validating these treatments in an industrial processing environment. Full article
Show Figures

Figure 1

Back to TopTop