Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = induced morbidity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5362 KB  
Article
Human Small Airway Epithelia Reveal Dichloroacetate as a Broad-Spectrum Antiviral Against Respiratory Viruses
by Paula Martínez de Iturrate, Bruno Hernáez, Patricia de los Santos, Yolanda Sierra-Palomares, Alba García-Gómez, Alonso Sánchez-Cruz, Catalina Hernández-Sánchez, Luis Rivas, Margarita del Val and Eduardo Rial
Int. J. Mol. Sci. 2025, 26(20), 9853; https://doi.org/10.3390/ijms26209853 (registering DOI) - 10 Oct 2025
Abstract
Respiratory viral infections are a major cause of morbidity and mortality worldwide. The COVID-19 pandemic has evidenced the need for broad-spectrum antivirals and improved preclinical models that more accurately recapitulate human respiratory disease. These new strategies should also involve the search for drug [...] Read more.
Respiratory viral infections are a major cause of morbidity and mortality worldwide. The COVID-19 pandemic has evidenced the need for broad-spectrum antivirals and improved preclinical models that more accurately recapitulate human respiratory disease. These new strategies should also involve the search for drug targets in the infected cell that hamper the development of resistance and of potential efficacy against diverse viruses. Since many viruses reprogram cellular metabolism to support viral replication, we performed a comparative analysis of inhibitors targeting the PI3K/AKT/mTOR pathway, central to virus-induced metabolic adaptations, using MRC5 lung fibroblasts and Huh7 hepatoma cells. HCoV-229E infection in MRC5 cells caused the expected shift in the energy metabolism but the inhibitors had markedly different effects on the metabolic profile and antiviral activity in these two cell lines. Dichloroacetate (DCA), a clinically approved inhibitor of aerobic glycolysis, showed antiviral activity against HCoV-229E in MRC5 cells, but not in Huh7 cells, underscoring that the screening model is more critical than previously assumed. We further tested DCA in polarized human small airway epithelial cells cultured in air–liquid interface, a 3D model that mimics the human respiratory tract. DCA reduced the viral progeny of HCoV-229E, SARS-CoV-2, and respiratory syncytial virus by 2–3 orders of magnitude, even when administered after infection was established. Our work reinforces the need for advanced human preclinical screening models to identify antivirals that target host metabolic pathways frequently hijacked by respiratory viruses, and establishes DCA as a proof-of-concept candidate. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments Targeting Respiratory Diseases)
Show Figures

Graphical abstract

19 pages, 3651 KB  
Article
Developmentally Regulated CYP2E1 Expression Is Associated with a Fetal Pulmonary Transcriptional Response to Maternal Acetaminophen Exposure
by Emma M. Golden, Zhuowei Li, Lijun Zheng, Mack Solar, Maya R. Grayck, Nicole Talaba, David J. McCulley, David J. Orlicky and Clyde J. Wright
Biomedicines 2025, 13(10), 2446; https://doi.org/10.3390/biomedicines13102446 - 8 Oct 2025
Viewed by 56
Abstract
Background/Objectives: Acetaminophen (APAP) is used during 50–60% of pregnancies in the U.S. and has been associated with childhood respiratory morbidity, though the underlying mechanism remains unclear. APAP-induced injury is dependent on cell-specific expression of CYP2E1, the enzyme that metabolizes APAP into the [...] Read more.
Background/Objectives: Acetaminophen (APAP) is used during 50–60% of pregnancies in the U.S. and has been associated with childhood respiratory morbidity, though the underlying mechanism remains unclear. APAP-induced injury is dependent on cell-specific expression of CYP2E1, the enzyme that metabolizes APAP into the mitochondrial toxin NAPQI. In mice, pulmonary Cyp2e1 expression peaks during the saccular stage of lung development on embryonic day 18 (E18). We investigated whether this developmental surge in Cyp2e1 triggers a pulmonary transcriptional response to maternal APAP exposure in embryonic lungs. Methods: Pregnant dams were exposed to APAP on E17 or E18 (150 or 250 mg/kg, IP) using doses derived from prior studies. We assessed the induction of NRF2 target genes and genes associated with inflammation, apoptosis and cellular stress due to their roles in APAP-induced oxidative and cellular stress. Results: At E17, maternal treatment with APAP induced pulmonary Cyp2e1 but resulted in inconsistent transcriptional changes. In contrast, maternal APAP at E18 triggered a robust transcriptional induction of Cyp2e1, NRF2 targets and markers of apoptosis, inflammation and cellular stress. Histopathology at birth after E18 APAP exposure revealed no acute pulmonary injury. Conclusions: We demonstrate a developmentally regulated, dose-dependent transcriptional response to maternal APAP in the embryonic murine lung. Importantly, transcriptional responses do not directly indicate lung injury; thus, future studies should assess protein-level changes following APAP exposure. This study underscores the need for further investigation into the role of developmentally regulated Cyp2e1 expression in APAP-induced toxicity and long-term respiratory morbidity. Full article
(This article belongs to the Special Issue Progress in Neonatal Pulmonary Biology)
Show Figures

Graphical abstract

16 pages, 1816 KB  
Article
Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection
by Kwadwo O. Oworae, Emily Rayens, Taylor I. Chapman, Daniel A. Wychrij, Lizabeth Buzzelli, Whitney Rabacal and Karen A. Norris
Vaccines 2025, 13(10), 1033; https://doi.org/10.3390/vaccines13101033 - 7 Oct 2025
Viewed by 217
Abstract
Background: Candida auris has emerged as a significant public health threat causing life-threatening systemic infections. Of particular concern is the frequency of multidrug resistance, high transmissibility, and persistence in the environment; thus, there is a need for novel strategies to prevent and treat [...] Read more.
Background: Candida auris has emerged as a significant public health threat causing life-threatening systemic infections. Of particular concern is the frequency of multidrug resistance, high transmissibility, and persistence in the environment; thus, there is a need for novel strategies to prevent and treat this infection. We previously generated a “pan-fungal” vaccine candidate, NXT-2, which induces protective immunity against several invasive fungal infections. Methods: In this study, we investigated the efficacy of NXT-2 immunization against systemic C. auris infection in an immunosuppressed murine model and investigated the possible mechanisms by which NXT-2 protection is mediated in vitro. Results: Active immunization afforded significant improvement in survival and reduced morbidity in neutropenic mice challenged intravenously with C. auris compared to controls (48.4% vs. 13.8%). To assess humoral immunity in promoting protection, passive immunization with NXT-2-specific IgG to neutropenic mice prior to the challenge with C. auris resulted in significantly higher survival (42% vs. 0%) and low morbidity compared to controls. Sera from NXT-2-immunized animals inhibited biofilm formation and enhanced opsonophagocytic killing of multiple C. auris clades in vitro. Conclusions: These findings show that immunization with NXT-2 improves survival in C. auris infection and that NXT-2 antibodies promote antifungal activity in vitro and in vivo. These results extend the range of the pan-fungal NXT-2 vaccine to include protection against systemic C. auris-mediated infection and provide a rationale for the development of NXT-2 monoclonal antibodies for the treatment of C. auris infections. Full article
(This article belongs to the Special Issue Vaccines and Antibody-Based Therapeutics Against Infectious Disease)
Show Figures

Figure 1

19 pages, 6583 KB  
Article
Compromised Regeneration, Damage to Blood Vessels and the Endomysium Underpin Permanent Muscle Damage Induced by Puff Adder (Bitis arietans) Venom
by Sodiq Opeyemi Adeyemi, Nicholas John Richards, Ali Alqallaf, Husain Bin Haidar, Mustafa Jawad Jalil Al-Asady, Jarred Williams, José R. Almeida and Ketan Patel
Toxins 2025, 17(10), 496; https://doi.org/10.3390/toxins17100496 - 6 Oct 2025
Viewed by 292
Abstract
The puff adder (Bitis arietans) is a clinically relevant viper species found throughout Africa, and it is responsible for a greater incidence of health-related envenomations than all other snake species on the continent combined. Unresolved skeletal muscle damage is a common [...] Read more.
The puff adder (Bitis arietans) is a clinically relevant viper species found throughout Africa, and it is responsible for a greater incidence of health-related envenomations than all other snake species on the continent combined. Unresolved skeletal muscle damage is a common consequence of B. arietans envenomation that can result in long-term morbidity and even death. Antivenom treatment can mitigate the systemic effects of the venom but offers little protection against local tissue damage. Identifying the mechanisms through which B. arietans venom induces tissue damage and impedes skeletal muscle regeneration could identify possible treatment alternatives that could help alleviate the long-term consequences of envenomation. Skeletal muscle has an innate ability to regenerate, but constituents within the venom can impede multiple stages of this regeneration process. In this study, we employed a combination of biochemical analyses, cell-based assays, and in vivo experiments to assess the toxicological implications of B. arietans envenomation and its impacts on key processes of regeneration. Our findings demonstrate that the pathological characteristics of permanent muscle damage resulting from B. arietans envenomation may be attributed to the venom’s effects on muscle stem cell precursors, the extracellular matrix (ECM), and the influence of blood-borne proteins that promote fibrosis. Full article
(This article belongs to the Special Issue Snake Bite and Related Injury)
Show Figures

Figure 1

14 pages, 789 KB  
Systematic Review
Contraceptive Barriers and Psychological Well-Being After Repeat Induced Abortion: A Systematic Review
by Bogdan Dumitriu, Alina Dumitriu, Flavius George Socol, Ioana Denisa Socol and Adrian Gluhovschi
Behav. Sci. 2025, 15(10), 1363; https://doi.org/10.3390/bs15101363 - 6 Oct 2025
Viewed by 196
Abstract
Background: Repeat induced abortion (defined as ≥two lifetime procedures) is becoming more common worldwide, yet its independent influence on women’s psychological health remains contested, particularly in settings where access to modern contraception is restricted. Objectives: This review sought to quantify the burden of [...] Read more.
Background: Repeat induced abortion (defined as ≥two lifetime procedures) is becoming more common worldwide, yet its independent influence on women’s psychological health remains contested, particularly in settings where access to modern contraception is restricted. Objectives: This review sought to quantify the burden of depression, anxiety, stress, and generic quality of life (QoL) among women with repeat abortions and to determine how barriers to contraceptive access alter those outcomes. Methods: Following the preregistered PRISMA-2020 protocol, PubMed, Embase and Scopus were searched from inception to 31 June 2025. Results: Eight eligible studies comprising approximately 262,000 participants (individual sample sizes up to 79,609) revealed wide variation in psychological morbidity. Prevalence of clinically significant symptoms ranged from 5.5% to 24.8% for depression, 8.3% to 31.2% for anxiety, and 18.8% to 27% for perceived stress; frequent mental distress affected 12.3% of women in neutral policy environments but rose to 21.9% under highly restrictive abortion legislation. Having three or more abortions, compared with none or one, increased the odds of depressive symptoms by roughly one-third (pooled OR ≈ 1.37, 95% CI 1.13–1.67). Contextual factors exerted comparable or stronger effects: abortions sought for socioeconomic reasons elevated depression odds by 34%, unwanted disclosure of the abortion episode increased depressive scores by 0.62 standard deviations, and low partner support raised them by 0.67 SD. At the structural level, every standard deviation improvement in a state’s reproductive rights index reduced frequent mental distress odds by 5%, whereas enactment of a near-total legal ban produced an absolute increase of 6.8 percentage points. QoL outcomes were less frequently reported; where measured, denied or heavily delayed abortions were associated with a 0.41-unit decrement on a seven-point life satisfaction scale. Conclusions: Psychological morbidity after abortion clusters where legal hostility, financial hardship, or interpersonal coercion constrain contraceptive autonomy while, in comparison, the mere number of procedures is a weaker predictor. Interventions that integrate stigma-free mental health support with confidential, affordable, and rights-based contraception are essential to protect well-being in women who experience repeat abortions. Full article
Show Figures

Figure 1

29 pages, 15230 KB  
Article
Harpagide Confers Protection Against Acute Lung Injury Through Multi-Omics Dissection of Immune–Microenvironmental Crosstalk and Convergent Therapeutic Mechanisms
by Hong Wang, Jicheng Yang, Yusheng Zhang, Jie Wang, Shaoqi Song, Longhui Gao, Mei Liu, Zhiliang Chen and Xianyu Li
Pharmaceuticals 2025, 18(10), 1494; https://doi.org/10.3390/ph18101494 - 4 Oct 2025
Viewed by 316
Abstract
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading [...] Read more.
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading to alveolar–capillary barrier disruption and fatal respiratory failure. Methods: We applied an integrative multi-omics strategy combining single-cell transcriptomics, peripheral blood proteomics, and lung tissue proteomics in a lipopolysaccharide (LPS, 10 mg/kg)-induced mouse ALI model to identify key signaling pathways. Harpagide, an iridoid glycoside identified from our natural compound screen, was evaluated in vivo (40 and 80 mg/kg) and in vitro (0.1–1 mg/mL). Histopathology, oxidative stress markers (SOD, GSH, and MDA), cytokine levels (IL-6 and IL-1β), and signaling proteins (HIF-1α, p-PI3K, p-AKT, Nrf2, and HO-1) were quantitatively assessed. Direct target engagement was probed using surface plasmon resonance (SPR), the cellular thermal shift assay (CETSA), and 100 ns molecular dynamics (MD) simulations. Results: Multi-omics profiling revealed robust activation of HIF-1, PI3K/AKT, and glutathione-metabolism pathways following the LPS challenge, with HIF-1α, VEGFA, and AKT as core regulators. Harpagide treatment significantly reduced lung injury scores by ~45% (p < 0.01), collagen deposition by ~50%, and ROS accumulation by >60% relative to LPS (n = 6). The pro-inflammatory cytokines IL-6 and IL-1β were reduced by 55–70% at the protein level (p < 0.01). Harpagide dose-dependently suppressed HIF-1α and p-AKT expression while enhancing Nrf2 and HO-1 levels (p < 0.05). SPR confirmed direct binding of Harpagide to HIF-1α (KD = 8.73 µM), and the CETSA demonstrated enhanced thermal stability of HIF-1α. MD simulations revealed a stable binding conformation within the inhibitory/C-TAD region after 50 ns. Conclusions: This study reveals convergent immune–microenvironmental regulatory mechanisms across cellular and tissue levels in ALI and demonstrates the protective effects of Harpagide through multi-pathway modulation. These findings offer new insights into the pathogenesis of ALI and support the development of “one-drug, multilayer co-regulation” strategies for systemic inflammatory diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

30 pages, 7258 KB  
Review
Cancer-Induced Cardiac Dysfunction: Mechanisms, Diagnostics, and Emerging Therapeutics in the Era of Onco-Cardiology
by Sarama Saha, Praveen K. Singh, Partha Roy, Vasa Vemuri, Mariusz Z. Ratajczak, Mahavir Singh and Sham S. Kakar
Cancers 2025, 17(19), 3225; https://doi.org/10.3390/cancers17193225 - 3 Oct 2025
Viewed by 189
Abstract
Cancer-induced cardiac dysfunction has become a major clinical challenge as advances in cancer therapies continue to extend patient survival. Once regarded as a secondary concern, cardiotoxicity is now recognized as a leading contributor to morbidity and mortality among cancer patients and survivors. Its [...] Read more.
Cancer-induced cardiac dysfunction has become a major clinical challenge as advances in cancer therapies continue to extend patient survival. Once regarded as a secondary concern, cardiotoxicity is now recognized as a leading contributor to morbidity and mortality among cancer patients and survivors. Its pathophysiology is multifactorial, involving systemic inflammation (e.g., TNF-α, IL-6), oxidative stress driven by reactive oxygen species (ROS), neurohormonal imbalances (e.g., angiotensin II, endothelin-1), and metabolic disturbances. These mechanisms collectively promote cardiomyocyte apoptosis, atrophy, mitochondrial dysfunction, and impaired cardiac output. Cardiac complications may arise directly from cancer itself or as adverse effects of oncologic therapies such as anthracyclines, trastuzumab, and immune checkpoint inhibitors. These agents have been linked to heart failure (HF), systolic dysfunction, and cardiac atrophy, often progressing insidiously and underscoring the importance of early detection and careful monitoring. Current preventive and therapeutic strategies include pharmacological interventions such as ACE inhibitors, beta-blockers, statins, dexrazoxane, and endothelin receptor antagonists like atrasentan. Emerging compounds, particularly Withaferin A (WFA), have shown potential through their anti-inflammatory and cardiac protective properties. In addition, antioxidants and lifestyle modifications may provide supplementary cardioprotective benefits, while interventional cardiology procedures are increasingly considered in selected patients. Despite encouraging progress, standardized treatment protocols and robust long-term outcome data remain limited. Given the heterogeneity of cancer types and cardiovascular responses, a personalized and multidisciplinary approach is essential. Continued research and close collaboration between oncologists, cardiologists, and basic scientists will be the key to advancing care, reducing treatment-related morbidity, and ensuring that improvements in cancer survival are matched by preservation of cardiovascular health. Full article
(This article belongs to the Special Issue Cancer Induced Organ Dysfunctions (Cachexia))
Show Figures

Figure 1

13 pages, 708 KB  
Systematic Review
Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review
by Alexandra Sandu, Dan Bratu, Alin Mihețiu, Dragos Serban and Ciprian Tănăsescu
J. Clin. Med. 2025, 14(19), 6999; https://doi.org/10.3390/jcm14196999 - 3 Oct 2025
Viewed by 188
Abstract
Background: Spontaneous retroperitoneal hematomas constitute a rare clinical entity, yet their incidence has markedly increased during the SARS-CoV-2 pandemic. The pathophysiological substrate is incompletely elucidated, being influenced by anticoagulant therapy, vascular inflammatory alterations induced by SARS-CoV-2 infection, and comorbidities in critically ill patients [...] Read more.
Background: Spontaneous retroperitoneal hematomas constitute a rare clinical entity, yet their incidence has markedly increased during the SARS-CoV-2 pandemic. The pathophysiological substrate is incompletely elucidated, being influenced by anticoagulant therapy, vascular inflammatory alterations induced by SARS-CoV-2 infection, and comorbidities in critically ill patients that exacerbate hemorrhagic risk. Methods: We performed a comprehensive literature review of published case reports and case series on spontaneous retroperitoneal hematomas in COVID-19 patients, complemented by our institutional experience, in order to synthesize current diagnostic and therapeutic approaches. Results: Available evidence indicates that most cases occur in anticoagulated patients, with clinical manifestations often limited to nonspecific abdominal or lumbar pain. Diagnosis relies primarily on contrast-enhanced CT imaging. Reported therapeutic strategies include conservative management, endovascular embolization, and surgical intervention, with outcomes ranging from complete recovery to fatal progression, particularly in elderly and comorbid individuals. Conclusions: Spontaneous retroperitoneal hematomas in the setting of SARS-CoV-2 infection represent a diagnostic and therapeutic challenge associated with considerable morbidity and mortality. Early recognition, prompt imaging, and individualized multidisciplinary management are essential, while further research is needed to clarify incidence, risk factors, and preventive strategies. Full article
(This article belongs to the Special Issue Managements of Venous Thromboembolism)
Show Figures

Figure 1

24 pages, 4725 KB  
Article
Multi-Omics Alterations in Rat Kidneys upon Chronic Glyphosate Exposure
by Favour Chukwubueze, Cristian D. Guiterrez Reyes, Jesús Chávez-Reyes, Joy Solomon, Vishal Sandilya, Sarah Sahioun, Bruno A. Marichal-Cancino and Yehia Mechref
Biomolecules 2025, 15(10), 1399; https://doi.org/10.3390/biom15101399 - 1 Oct 2025
Viewed by 338
Abstract
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s [...] Read more.
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s critical role in excretion, it is particularly susceptible to damage from xenobiotic exposure. In this study, we aim to identify N-glycomics and proteomics change in the kidney following chronic GBH exposure, to better understand the mechanisms behind glyphosate-induced kidney damage. Kidney tissues from female and male rats were analyzed using liquid chromatography–tandem mass spectrometry. The results revealed notable changes in the N-glycan composition, particularly in the fucosylated and sialofucosylated N-glycan types. The proteomic analysis revealed the activation of immune signaling and inflammatory pathways, including neutrophil degranulation, integrin signaling, and MHC class I antigen presentation. Transcription regulators, such as IL-6, STAT3, and NFE2L2, were upregulated, indicating a coordinated inflammatory and oxidative stress response. Sex-specific differences were apparent, with female rats exhibiting more pronounced alterations in both the N-glycan and protein expression profiles, suggesting a higher susceptibility to GBH-induced nephrotoxicity. These findings provide new evidence that chronic GBH exposure may trigger immune activation, inflammation, and potentially carcinogenic processes in the kidney. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 701 KB  
Review
The Potential of Cellular Therapies in the Field of Nephrology
by Bozhidar Vergov, Yordan Sbirkov, Kostadin Yordanov Dimitrov and Violeta Zheleva
Kidney Dial. 2025, 5(4), 47; https://doi.org/10.3390/kidneydial5040047 - 1 Oct 2025
Viewed by 193
Abstract
The incidence of kidney diseases has been increasing in the last decade due to extended lifespan, which is often related to polymorbidity. Chronic kidney disease (CKD) and acute kidney injury (AKI) are associated with high morbidity and mortality, elevated costs for renal replacement [...] Read more.
The incidence of kidney diseases has been increasing in the last decade due to extended lifespan, which is often related to polymorbidity. Chronic kidney disease (CKD) and acute kidney injury (AKI) are associated with high morbidity and mortality, elevated costs for renal replacement therapy, and heavy psychosomatic burden. At the same time, therapeutic options are limited to prophylactic and renoprotective medications and measurements, and they often cannot restore the impaired kidney function. With the development of cellular therapies, new perspectives arise on the horizon with promising potential, including mesenchymal stem cells (MSCs) and induced pluripotent cells (iPSCs). Here we review the current possibility of both cell types in the field of nephrology and assess their cost implication. Full article
Show Figures

Figure 1

22 pages, 2167 KB  
Article
Effects of Ultra-Processed Diets on Adiposity, Gut Barrier Integrity, Inflammation, and Microbiota in Male and Female Mice
by Caroline de Menezes, Clara Machado Campolim, Angie Triana, Kênia Moreno de Oliveira, Leticia Gama S. Calixto, Fernanda Garofalo Xavier, Mario J. A. Saad, Everardo Magalhães Carneiro and Patricia O. Prada
Nutrients 2025, 17(19), 3116; https://doi.org/10.3390/nu17193116 - 30 Sep 2025
Viewed by 319
Abstract
Background/Objectives: The consumption of highly palatable ultra-processed foods (UPFs), enriched in sugar, saturated fat, and salt, increases the risk of morbidity and mortality by inducing obesity, type 2 diabetes (T2DM), cardiovascular disease, and cancer. The present study aimed to investigate the impact of [...] Read more.
Background/Objectives: The consumption of highly palatable ultra-processed foods (UPFs), enriched in sugar, saturated fat, and salt, increases the risk of morbidity and mortality by inducing obesity, type 2 diabetes (T2DM), cardiovascular disease, and cancer. The present study aimed to investigate the impact of a UPF-rich diet on adiposity, feeding behavior, glucose homeostasis, intestinal barrier markers, expression of inflammatory cytokines, and microbiota in male and female C57BL/6J mice. Methods: Animals received a chow diet or a UPF diet for 10 (UPF10) or 30 days (UPF30). UPF10 induced greater calorie intake as early as 10 days on a UPF diet. Fat accumulation occurs in both sexes, specifically after 30 days of exposure. Results: The duration of UPF exposure significantly influenced glucose metabolism and insulin sensitivity. A 10-day UPF diet was associated with lower fasting blood glucose levels, without higher insulin levels, in both sexes. Females showed early impairment in glucose tolerance. Male mice on UPF30 exhibited elevated systemic IL-6 levels, as well as reduced intestinal expression of Occludin and E-cadherin genes. In females, UPF30 increased TNF-α expression in the gut and increased microbial diversity. Both sexes displayed dysbiosis, with females showing pronounced changes in the proportion between predominant phyla, and males showing more specific changes in bacterial genera. Conclusions: A diet high in UPFs promoted metabolic, inflammatory, and gut microbiota alterations, with effects varying according to exposure duration and biological context, and becoming more pronounced after 30 days. Full article
(This article belongs to the Special Issue Food–Gut–Brain: Control of Appetite and Weight Management)
Show Figures

Figure 1

14 pages, 4979 KB  
Article
Regeneration of the Gastrointestinal Tract After Using a Small Intestine Submucosa Patch—A Rat Model
by Tamas Toth, Radu-Alexandru Prisca, Emoke Andrea Szasz, Reka Borka-Balas and Angela Borda
Biomedicines 2025, 13(10), 2397; https://doi.org/10.3390/biomedicines13102397 - 30 Sep 2025
Viewed by 345
Abstract
Background: Necrotizing enterocolitis (NEC) is a life-threatening condition characterized by necrosis of the gastrointestinal tract caused by hypoperfusion and hypoxia-induced inflammation. Surgical treatment often requires resection, with high morbidity and mortality. Intestinal tissue engineering using absorbable biomaterials represents a potential alternative. Small intestinal [...] Read more.
Background: Necrotizing enterocolitis (NEC) is a life-threatening condition characterized by necrosis of the gastrointestinal tract caused by hypoperfusion and hypoxia-induced inflammation. Surgical treatment often requires resection, with high morbidity and mortality. Intestinal tissue engineering using absorbable biomaterials represents a potential alternative. Small intestinal submucosa (SIS) is a biodegradable extracellular matrix (ECM) scaffold that may facilitate regeneration of the native tissue. Objectives: The aim of our study is to investigate the regenerative potential of SIS in a rat model with multiple gastrointestinal defects. Methods: In rats, after a midline laparotomy, an approximately 1 cm full-thickness incision was performed on the anterior gastric wall, on the antimesenteric side of the small and large intestine, each covered with an SIS patch. After three weeks, the graft sites and adjacent fragments were harvested and fixed in 10% neutral buffered formalin. Cross-sections of the grafted area were processed and stained with hematoxylin and eosin for histologic analysis. Results: Among the fifteen Wistar rats used in the study, the survival rate was 80% (12/15). Macroscopic examination of the abdominal cavity after the second surgery showed no complications. Adhesions were present in 92% (11/12). Histological examination demonstrated complete mucosal coverage in all stomach samples, nine of the small intestine, and ten of the large intestine. Mild fibrosis with minimal inflammatory infiltrates predominated. Ulceration with granulation tissue replacement was observed in three small intestine samples. Foreign body reactions were restricted to suture sites. Conclusions: In this multifocal injury model, SIS integrated effectively and supported early regenerative healing across gastric, small-intestinal, and colonic sites at 3 weeks. These data support further studies with longer follow-up, quantitative histology and functional assessment, and evaluation in neonatal-relevant large animal models to determine translational potential for NEC surgery. Full article
(This article belongs to the Special Issue Updates on Tissue Repair and Regeneration Pathways)
Show Figures

Figure 1

20 pages, 7515 KB  
Article
A Synbiotic of Bifidobacterium animalis subsp. lactis BB-12 and 2′-FL Alleviate Infant Diarrhea and Anxiety-like Behaviors via Gut Microbiota Modulation in an EPEC O127 Infection Model
by Zhuo Liu, Wenxiu Wang, Ning Li, Jinkuan Chen, Qianxu Wang, Mengzhen Jia, Xiaorui Wang, Bo Zhang, Nan Sheng and Zhigang Liu
Nutrients 2025, 17(19), 3099; https://doi.org/10.3390/nu17193099 - 29 Sep 2025
Viewed by 367
Abstract
Background/Objectives: Infant diarrhea is a major global cause of morbidity and mortality. While Bifidobacterium is linked to diarrhea, its preventive effects, underlying mechanisms, and potential synergistic benefits with prebiotics remain unclear. The objective of this study was to explore the efficacy of [...] Read more.
Background/Objectives: Infant diarrhea is a major global cause of morbidity and mortality. While Bifidobacterium is linked to diarrhea, its preventive effects, underlying mechanisms, and potential synergistic benefits with prebiotics remain unclear. The objective of this study was to explore the efficacy of a synbiotic composed of Bifidobacterium animalis subsp. lactis BB-12 (BB-12) and 2′-fucosyllactose (2′-FL) in alleviating infant diarrhea. Methods: One-week-old C57BL/6J mice were used to construct a model of infant diarrhea via infection with enteropathogenic Escherichia coli (EPEC) O127. Mice were administered BB-12 (108 CFU per mouse), 2′-FL (1 g/kg), or their combination (synbiotic) for three consecutive weeks. Results: Administration of the synbiotic not only markedly improved diarrhea, anxiety-like behavior, colon inflammation, and gut barrier function but also positively reshaped the microbial community. This was achieved through a significant rise in short-chain fatty acid (SCFA)-producing bacteria (e.g., Akkermansia and Paraprevotella), a rise in fecal SCFAs, and a reduction in harmful bacteria such as EscherichiaConclusions: The synbiotic effectively relieves EPEC-induced infant diarrhea by regulating gut microbiota composition and metabolic functions. These findings highlight its potential as a dietary intervention in infant diarrhea and provide new insights into infant health applications. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Graphical abstract

13 pages, 1961 KB  
Article
A CpG 1018S/QS-21-Adjuvanted HBsAg Therapeutic Vaccine as a Novel Strategy Against HBV
by Zixuan Wang, Jing Wu, Xiaohan Meng, He Weng, Qiang Li, Lin Li, Zhenhao Ma, Sirong Bi, Qiuju Han, Huajun Zhao, Cunbao Liu and Deping Meng
Vaccines 2025, 13(10), 1014; https://doi.org/10.3390/vaccines13101014 - 29 Sep 2025
Viewed by 487
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report [...] Read more.
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report a therapeutic vaccine comprising hepatitis B surface antigen (HBsAg) formulated with the dual adjuvant system CpG 1018S and QS-21. The immunogenicity and therapeutic efficacy of this vaccine were systematically evaluated in an rAAV8-HBV1.3-established chronic HBV mouse model. Results: The vaccine elicited a robust Th1-skewed immune response, characterized by elevated anti-HBs IgG2b titers and an increased IgG2b/IgG1 ratio. Notably, immunized mice showed markedly reduced circulating HBsAg levels. Mechanistically, the CpG 1018S and QS-21 adjuvant system enhanced dendritic cell activation, maturation, and antigen presentation, expanded HBV-specific CD4+ and CD8+ T cell populations, and attenuated the expression of the exhaustion markers TIM-3 and TIGIT. Additionally, immunized mice exhibited restored T cell polyfunctionality, with an increased secretion of effector cytokines, including TNF-α and IL-21. These responses collectively contributed to the reversal of T cell exhaustion and breakdown of immune tolerance, facilitating sustained viral suppression. Conclusions: Our findings demonstrate that the CpG 1018S/QS-21-adjuvanted vaccine induces potent humoral and cellular immunity against chronic HBV infection and represents a promising candidate for clinical chronic HBV (CHB) treatment. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
Show Figures

Figure 1

22 pages, 490 KB  
Review
Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies
by Nicola Sinatra, Giuseppe Cuttone, Giulio Geraci, Caterina Carollo, Michele Fici, Tarek Senussi Testa and Luigi La Via
Biomedicines 2025, 13(10), 2382; https://doi.org/10.3390/biomedicines13102382 - 28 Sep 2025
Viewed by 313
Abstract
Hypophosphatemia, defined as serum phosphate levels below 2.5 mg/dL, is a common yet underrecognized electrolyte disturbance in critically ill patients, with prevalence estimates reaching up to 80%. This review explores the intricate bidirectional relationship between hypophosphatemia and hyperventilation, emphasizing its profound implications for [...] Read more.
Hypophosphatemia, defined as serum phosphate levels below 2.5 mg/dL, is a common yet underrecognized electrolyte disturbance in critically ill patients, with prevalence estimates reaching up to 80%. This review explores the intricate bidirectional relationship between hypophosphatemia and hyperventilation, emphasizing its profound implications for respiratory function and critical care management. Hypophosphatemia impairs oxygen delivery by depleting 2,3-diphosphoglycerate (2,3-DPG), disrupts central respiratory drive, and weakens respiratory muscles, leading to hyperventilation, ventilatory failure, and prolonged mechanical ventilation. Conversely, hyperventilation exacerbates hypophosphatemia through respiratory alkalosis, triggering intracellular phosphate shifts and metabolic cascades that rapidly deplete serum levels. This cycle creates significant challenges for ventilator weaning and increases morbidity and mortality. Underlying mechanisms include impaired ATP synthesis, altered chemoreceptor sensitivity, and systemic inflammatory responses. Hypophosphatemia-induced hyperventilation manifests as unexplained tachypnea and respiratory alkalosis, often misdiagnosed as anxiety or pain, while hyperventilation-induced hypophosphatemia contributes to diaphragmatic dysfunction and poor ventilatory performance. Common precipitating factors include refeeding syndrome, diabetic ketoacidosis, continuous renal replacement therapy, and malnutrition. Complications extend beyond respiratory dysfunction to include cardiac depression, immune dysfunction, prolonged ICU stays, and increased healthcare costs. Current diagnostic approaches rely on serum phosphate measurements, which poorly reflect total body stores due to significant intracellular shifts. Emerging biomarkers such as fibroblast growth factor 23 (FGF23) and advanced monitoring technologies, including continuous phosphate tracking, may enhance recognition. Treatment strategies emphasize targeted phosphate repletion based on severity, with intravenous supplementation and ventilatory support tailored to minimize complications. Preventive measures, including risk stratification, prophylactic supplementation, and ventilator management, are critical for high-risk populations. Despite advances, knowledge gaps persist in optimizing monitoring and repletion protocols, understanding genetic variations, and identifying ideal phosphate targets for improved respiratory outcomes. This review provides a comprehensive framework for recognizing and managing hypophosphatemia’s impact on respiratory dysfunction in critically ill patients. Adopting evidence-based interventions and leveraging emerging technologies can significantly improve clinical outcomes, reduce ICU complications, and enhance recovery in this vulnerable population. Full article
(This article belongs to the Special Issue Emerging Trends in Kidney Disease)
Show Figures

Figure 1

Back to TopTop