Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = indirect assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1412 KiB  
Article
Development and Application of Indirect ELISA for IBDV VP2 Antibodies Detection in Poultry
by Wenying Zhang, Yulong Wang, Guodong Wang, Hangbo Yu, Mengmeng Huang, Yulong Zhang, Runhang Liu, Suyan Wang, Hongyu Cui, Yanping Zhang, Yuntong Chen, Yulong Gao and Xiaole Qi
Viruses 2025, 17(7), 871; https://doi.org/10.3390/v17070871 - 20 Jun 2025
Viewed by 480
Abstract
Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viruses in poultry, causing the global spread of infectious bursal disease (IBD). It poses a significant threat to the healthy development of the poultry industry. Vaccination is an effective approach for [...] Read more.
Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viruses in poultry, causing the global spread of infectious bursal disease (IBD). It poses a significant threat to the healthy development of the poultry industry. Vaccination is an effective approach for controlling IBDV infection. Therefore, reliable immune monitoring for IBDV is critical for maintaining poultry health. The enzyme-linked immunosorbent assay (ELISA) is a common technique used to detect specific antibodies in clinical serum testing and for the serological evaluation of IBDV vaccines. Among the currently available and under development IBDV vaccines, IBD VP2 subunit-based vaccines account for a considerable proportion. These vaccines stimulate the production of antibodies that are specific only to VP2. However, most IBDV antibody ELISA kits approved for use have applied the whole virus as the coating antigen, which does not adequately meet the diverse requirements for IBDV detection across different conditions. This study utilized a prokaryotic expression system to express the VP2 protein of the IBDV epidemic strain, assembling it into virus-like particles to be used as coating antigens. This approach enabled the establishment of an indirect ELISA method for detecting IBDV VP2 antibody (VP2-ELISA). The optimal coated antigen concentration was determined to be 2.5 μg/mL, with overnight coating at 4 °C; sealing with 5% skim milk at 37 °C for 4 h; serum dilution at 1:500 with incubation at 37 °C for 30 min; secondary antibody dilution at 1:4000 with incubation at 37 °C for 40 min; and then incubation with the substrate solution 3,3′,5,5′-tetramethylbenzidine at room temperature for 20 min. The criterion for interpreting the detection results was OD450nm ≥ 0.111 indicates IBDV antibody positivity, while OD450nm < 0.111 indicates negativity. The established VP2-ELISA can specifically detect IBDV-positive sera at the lowest serum dilution of 1:6400, with intra- and inter-batch coefficients of variation of <2%. This indicates that the VP2-ELISA exhibits good specificity, sensitivity, and stability. Detection experiments using 20 laboratory-immunized chicken serum samples and 273 clinical serum samples demonstrated that the results of VP2-ELISA were consistent with those of commercial ELISA kits coated with whole virus. In summary, the VP2-ELISA developed in this study offers advantages in immune response detection for IBD VP2 subunit-based vaccines and is appropriate for evaluating the efficacy of IBD vaccines and detecting clinical serum samples. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

21 pages, 3558 KiB  
Article
Parametric Study of Geometry and Process Parameter Influences on Additively Manufactured Piezoresistive Sensors Under Cyclic Loading
by Marijn Goutier and Thomas Vietor
Polymers 2025, 17(12), 1625; https://doi.org/10.3390/polym17121625 - 11 Jun 2025
Viewed by 345
Abstract
The additive manufacturing of piezoresistive sensors offers several advantages, such as the elimination of assembly or installation steps, enabling integration into complex parts precisely where desired, and compatibility with soft robotics applications. Previous studies have demonstrated that several characteristics of additively manufactured sensors, [...] Read more.
The additive manufacturing of piezoresistive sensors offers several advantages, such as the elimination of assembly or installation steps, enabling integration into complex parts precisely where desired, and compatibility with soft robotics applications. Previous studies have demonstrated that several characteristics of additively manufactured sensors, such as their resistance and sensitivity, are significantly affected by the selected printing parameters. This work seeks to further the understanding of the relationships between process parameters, material, sensor design, and the resulting sensor characteristics. To this end, sensors made from two materials, with differing printing layer heights, infill angles, and thicknesses, are characterized under cyclic tensile loading. For these sensors, the nonlinearity, hysteresis, and drift are analyzed. The findings indicate that both nonlinearity and hysteresis are significantly affected by the material choice, as well as the selected parameters. Notably, parameters that affect the sensitivity of the sensor, e.g., the infill angle, can have significant indirect effects on the nonlinearity and hysteresis errors. Through correct parameter selection, nonlinearity errors can be reduced by up to 30.7% or 25.3%, depending on the material used. The hysteresis error can be reduced by up to 38.7% or 23.8%, depending on the material. The drift over multiple cycles is found to be strongly material dependent, but can also be affected by the process parameters, e.g., the infill angle. Understanding the interactions between material, design, process, and the resulting sensor characteristics provides valuable insights for the successful design and additive manufacturing of piezoresistive sensors. Full article
(This article belongs to the Special Issue Applications of 3D Printing for Polymers, 3rd Edition)
Show Figures

Figure 1

19 pages, 3959 KiB  
Review
Soldering and Bonding in Contemporary Electronic Device Packaging
by Yuxuan Li, Bei Pan, Zhenting Ge, Pengpeng Chen, Bo Bi, Xin Yi, Chaochao Wu and Ce Wang
Materials 2025, 18(9), 2015; https://doi.org/10.3390/ma18092015 - 29 Apr 2025
Viewed by 1036
Abstract
Electronic packaging can transform the chip to a device for assembly. Soldering and bonding are important procedures in the process of electronic packaging. The continuous development of packaging architecture has driven the emergence of improved soldering and bonding processes. At the same time, [...] Read more.
Electronic packaging can transform the chip to a device for assembly. Soldering and bonding are important procedures in the process of electronic packaging. The continuous development of packaging architecture has driven the emergence of improved soldering and bonding processes. At the same time, conventional soldering and bonding processes are still widely used in device packaging. This paper introduces two kinds of technologies in wafer bonding, direct and indirect, expounds on five kinds of die attachment processes, and also describes the process of ball bonding and wedge bonding in wire bonding in detail. Flip chip bonding and methods for making bumps are also described in depth. Bump bonding processes are vital for 3D-SiP packages, and the bonding technology of copper bumps is a research hotspot in the field of advanced packaging. The surface mount technology and sealing technology used in some electronic devices are also briefly introduced. This paper provides insights for researchers studying soldering and bonding in contemporary electronic device packaging. Full article
Show Figures

Figure 1

17 pages, 15320 KiB  
Article
A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method
by Luca Evangelisti, Edoardo De Cristo, Salvatore Monteleone, Claudia Guattari, Paola Gori, Ivan Pini, Tullio de Rubeis and Dario Ambrosini
Energies 2025, 18(6), 1537; https://doi.org/10.3390/en18061537 - 20 Mar 2025
Viewed by 345
Abstract
This study introduces a novel, low-cost, non-contact measurement system for heat flux estimation based on an enhanced thermometric method. The customized system was designed and assembled to implement a non-contact, indirect approach for heat flux assessment. Developed as an affordable alternative to conventional [...] Read more.
This study introduces a novel, low-cost, non-contact measurement system for heat flux estimation based on an enhanced thermometric method. The customized system was designed and assembled to implement a non-contact, indirect approach for heat flux assessment. Developed as an affordable alternative to conventional contact-based techniques, it is suitable for historical buildings, where invasive sensors could compromise structural integrity. The system integrates real-time data acquisition, remote access via a web-based interface, and automated data processing, enhancing both usability and efficiency. Laboratory tests were conducted to evaluate its performance, with results compared against data from widely used heat flow plates and air/surface temperature sensors. The results showed good agreement between the proposed method and the reference data. Small differences were observed between the values measured by the air temperature sensors (0.10 °C on average), as well as by the contact and non-contact surface temperature sensors (0.12 °C on average). Finally, percentage variations between −6% and −5% in terms of heat fluxes confirmed the reliability of the non-contact approach. These findings provide a strong foundation for further testing, including applications in real buildings. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

14 pages, 3038 KiB  
Article
Spatiotemporal Dynamics of Bacterial Community Assembly and Co-Occurrence Patterns in Biological Soil Crusts of Desert Ecosystems
by Runze Bao, Kai Tang, Yanfu Ji, Shengnan Zhang, Chunying Wang, Yungang Liang, Xiujuan Zhao and Jianyu Meng
Microorganisms 2025, 13(2), 446; https://doi.org/10.3390/microorganisms13020446 - 18 Feb 2025
Viewed by 589
Abstract
Biological soil crusts (BSCs) play a fundamental role in desert ecosystems by stabilizing soil, cycling nutrients, and retaining moisture. However, the assembly processes governing bacterial communities within BSCs remain largely unknown. This study aimed to reveal the spatiotemporal variations in the bacterial community [...] Read more.
Biological soil crusts (BSCs) play a fundamental role in desert ecosystems by stabilizing soil, cycling nutrients, and retaining moisture. However, the assembly processes governing bacterial communities within BSCs remain largely unknown. This study aimed to reveal the spatiotemporal variations in the bacterial community diversity, co-occurrence patterns, and ecological assembly processes of BSCs and their underlying soils across different desert and seasonal conditions. We systematically analyzed the spatial differences in the bacterial diversity, co-occurrence networks, and community assembly processes of BSCs and their underlying soils using samples collected at various soil depths from different BSC types in different deserts. We discovered that BSC type and soil depth were the primary factors driving bacterial community assembly, while seasonal effects were weaker and more indirect, and mainly regulated community dynamics through changes in resource availability and environmental conditions. The underlying soils of moss- and lichen-BSCs exhibited higher bacterial diversity and richness than those of algae BSCs. In contrast, cyano-BSCs exhibited a lower diversity, but Cyanobacteria demonstrated the highest photosynthetic function. Among the different deserts, the community assembly of samples from the eastern Inner Mongolia deserts was largely influenced by environmental selection, whereas stochastic processes were more prominent in the central and western desert regions. A β-nearest taxon index (βNTI) analysis indicated that stochastic processes were dominant in surface BSC samples, while environmental selection played a stronger role in deeper layers. A co-occurrence network analysis revealed that surface BSC samples had a high degree of network connectivity, with those from moss- and lichen-BSCs being particularly high, and they also exhibited high modularity and local clustering that promoted the functional stability of the microbial communities. This study revealed the integrated effects of soil depth, BSC type, desert type, and resource availability on microbial community assembly in desert ecosystems. These findings provide a theoretical basis for the microbial management of BSCs and scientific insights to support restoration strategies in desert ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 3222 KiB  
Article
A Reduction-Based Approach to Improving the Estimation Consistency of Partial Path Contributions in Operational Transfer-Path Analysis
by Jan Senčič, Miha Pogačar, Domen Ocepek and Gregor Čepon
Appl. Mech. 2025, 6(1), 13; https://doi.org/10.3390/applmech6010013 - 11 Feb 2025
Viewed by 854
Abstract
Transfer-path analysis (TPA) is a reliable and effective diagnostic tool for determining the dominant vibration transfer paths from the actively vibrating components to the connected passive substructures in complex assemblies. Conventional and component-based TPA approaches achieve this by estimating a set of forces [...] Read more.
Transfer-path analysis (TPA) is a reliable and effective diagnostic tool for determining the dominant vibration transfer paths from the actively vibrating components to the connected passive substructures in complex assemblies. Conventional and component-based TPA approaches achieve this by estimating a set of forces that replicate the operational responses on the passive side of the assembly, requiring separate measurements of the transfer-path admittance and the operational responses, followed by an indirect estimation of the interface forces. This demands significant measurement effort, especially when only the dominant transfer paths are desired. Operational transfer-path analysis (OTPA) overcomes this by identifying transfer-path contributions solely from operational response measurements. However, OTPA is susceptible to measurement errors as minor inaccuracies can result in discrepancies regarding transfer-path characterization. This is especially evident when poor placement of the sensors results in similar response measurements from multiple channels, introducing redundancy and amplifying measurement noise. This is typically resolved using regularization techniques (e.g., singular-value truncation and Tikhonov regularization) that promote vibration transfer related to dominant singular vectors. As an alternative, this paper explores the benefits of using established reduction-based approaches from dynamic substructuring within OTPA. Measured responses are projected onto different dynamic sub-spaces that include the dominant dynamic behavior of the interface between the active and passive sides (i.e., dominant interface modes). In this way, only the vibration transfer related to the interface modes included in the reduction step is evaluated, leaving stiff modes obscured by noise unobserved. This paper proposes using interface-deformation modes and physical modes, demonstrating their feasibility via various experimental setups and comparing them to standard OTPA. Full article
Show Figures

Figure 1

16 pages, 3933 KiB  
Article
Influence of Nisin Grafting on the Antibacterial Efficacy of AMP Self-Assembled Monolayers (SAMs)
by Chloé Richet, Adeline Marguier, Audrey Bertin, Thérèse Leblois and Vincent Humblot
Molecules 2024, 29(22), 5417; https://doi.org/10.3390/molecules29225417 - 17 Nov 2024
Viewed by 1362
Abstract
The use of antimicrobial peptides (AMPs) covalently grafted on surfaces has been recognized in recent years as a promising strategy to fight against biofilm formation. However, after grafting, the understanding of AMP–bacteria interactions is still debated in the literature. In this study, Nisin, [...] Read more.
The use of antimicrobial peptides (AMPs) covalently grafted on surfaces has been recognized in recent years as a promising strategy to fight against biofilm formation. However, after grafting, the understanding of AMP–bacteria interactions is still debated in the literature. In this study, Nisin, a cyclic AMP, was grafted onto gold surfaces via an indirect grafting on acidic thiol self-assembled monolayers using succinimide linkers. The physical and chemical properties of these SAMs were then finely characterized by XPS and FT-IR to confirm the covalent grafting of Nisin. The antiadhesion and bactericidal effects were then studied for Escherichia coli ATCC25922, Staphylococcus aureus ATCC 25923, and Listeria ivanovii Li4(pVS2) by a posteriori analysis of the culture supernatants (i.e., indirect technique) and ex situ by optical microscopy following crystal violet staining (i.e., direct technique). Statistical analysis reveals that the Nisin coating has bactericidal and antiadhesive properties towards Gram-positive bacteria, while no significant results were obtained for Gram-negative bacteria. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

17 pages, 3110 KiB  
Article
Antagonistic Effects of Actin-Specific Toxins on Salmonella Typhimurium Invasion into Mammalian Cells
by David B. Heisler, Elena Kudryashova, Regan Hitt, Blake Williams, Michelle Dziejman, John Gunn and Dmitri S. Kudryashov
Biomolecules 2024, 14(11), 1428; https://doi.org/10.3390/biom14111428 - 9 Nov 2024
Viewed by 1449
Abstract
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium [...] Read more.
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, Vibrio cholerae MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, Photorhabdus luminescens TccC3, and Salmonella’s own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin-binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays and by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. These results suggest that bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 6653 KiB  
Article
Chloramphenicol Interferes with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms
by Ting Yu and Fuxing Zeng
Biomolecules 2024, 14(10), 1225; https://doi.org/10.3390/biom14101225 - 27 Sep 2024
Cited by 3 | Viewed by 2942
Abstract
Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the [...] Read more.
Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the 50S ribosomal subunit in Escherichia coli (E. coli). Using label-free quantitative mass spectrometry (LFQ-MS), we observed that CAM treatment also leads to the upregulation of assembly factors. Further cryo-electron microscopy (cryo-EM) analysis of the ribosomal precursors characterized the CAM-treatment-accumulated pre-50S intermediates. Heterogeneous reconstruction identified 26 distinct pre-50S intermediates, which were categorized into nine main states based on their structural features. Our structural analysis highlighted that CAM severely impedes the formation of the central protuberance (CP), H89, and H58 during 50S ribosomal subunit maturation. The ELISA assay further demonstrated the direct binding of CAM to the ribosomal precursors, suggesting that the interference with 50S maturation occurs through a combination of direct and indirect mechanisms. These findings provide new insights into the mechanism of the action of CAM and provide a foundation for a better understanding of the assembly landscapes of the ribosome. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

20 pages, 3513 KiB  
Article
The Joint Solvation Interaction
by Ali Hassanali and Colin K. Egan
Entropy 2024, 26(9), 749; https://doi.org/10.3390/e26090749 - 1 Sep 2024
Viewed by 1279
Abstract
The solvent-induced interactions (SIIs) between flexible solutes can be separated into two distinct components: the solvation-induced conformational effect and the joint solvation interaction (JSI). The JSI quantifies the thermodynamic effect of the solvent simultaneously accommodating the solutes, generalizing the typical notion of the [...] Read more.
The solvent-induced interactions (SIIs) between flexible solutes can be separated into two distinct components: the solvation-induced conformational effect and the joint solvation interaction (JSI). The JSI quantifies the thermodynamic effect of the solvent simultaneously accommodating the solutes, generalizing the typical notion of the hydrophobic interaction. We present a formal definition of the JSI within the framework of the mixture expansion, demonstrate that this definition is equivalent to the SII between rigid solutes, and propose a method, partially connected molecular dynamics, which allows one to compute the interaction with existing free energy algorithms. We also compare the JSI to the more natural generalization of the hydrophobic interaction, the indirect solvent-mediated interaction, and argue that JSI is a more useful quantity for studying solute binding thermodynamics. Direct calculation of the JSI may prove useful in developing our understanding of solvent effects in self-assembly, protein aggregation, and protein folding, for which the isolation of the JSI from the conformational component of the SII becomes important due to the intra-species flexibility. Full article
(This article belongs to the Special Issue Solvation Thermodynamics and Its Applications)
Show Figures

Figure 1

16 pages, 1908 KiB  
Review
NLRP3 Negative Regulation Mechanisms in the Resting State and Its Implications for Therapeutic Development
by YeJi Kim, Sumin Lee and Yong Hwan Park
Int. J. Mol. Sci. 2024, 25(16), 9018; https://doi.org/10.3390/ijms25169018 - 20 Aug 2024
Cited by 3 | Viewed by 2506
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular sensor of the innate immune system that detects various pathogen- and danger-associated molecular patterns, leading to the assembly of the NLRP3 inflammasome and release of interleukin (IL) 1β and IL-18. [...] Read more.
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular sensor of the innate immune system that detects various pathogen- and danger-associated molecular patterns, leading to the assembly of the NLRP3 inflammasome and release of interleukin (IL) 1β and IL-18. However, the abnormal activation of the NLRP3 inflammasome has been implicated in the pathogenesis of autoinflammatory diseases such as cryopyrin-associated autoinflammatory syndromes (CAPS) and common diseases such as Alzheimer’s disease and asthma. Recent studies have revealed that pyrin functions as an indirect sensor, similar to the plant guard system, and is regulated by binding to inhibitory 14-3-3 proteins. Upon activation, pyrin transitions to its active form. NLRP3 is predicted to follow a similar regulatory mechanism and maintain its inactive form in the cage model, as it also acts as an indirect sensor. Additionally, newly developed NLRP3 inhibitors have been found to inhibit NLRP3 activity by stabilizing its inactive form. Most studies and reviews on NLRP3 have focused on the activation of the NLRP3 inflammasome. This review highlights the molecular mechanisms that regulate NLRP3 in its resting state, and discusses how targeting this inhibitory mechanism can lead to novel therapeutic strategies for NLRP3-related diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 41773 KiB  
Article
Long-Range Imaging of Alpha Emitters Using Radioluminescence in Open Environments: Daytime and Night-Time Applications
by Lingteng Kong, Thomas Bligh Scott, John Charles Clifford Day and David Andrew Megson-Smith
Sensors 2024, 24(16), 5345; https://doi.org/10.3390/s24165345 - 18 Aug 2024
Viewed by 2177
Abstract
Alpha emitters like plutonium pose severe health risks when ingested, damaging DNA and potentially causing cancer. Traditional detection methods require proximity within millimeters of the contamination source, presenting safety risks and operational inefficiencies. Long-range detection through alpha radioluminescence (RL) offers a promising alternative. [...] Read more.
Alpha emitters like plutonium pose severe health risks when ingested, damaging DNA and potentially causing cancer. Traditional detection methods require proximity within millimeters of the contamination source, presenting safety risks and operational inefficiencies. Long-range detection through alpha radioluminescence (RL) offers a promising alternative. However, most of the previous experiments have been carried out under controlled conditions that preclude the overwhelming effect of ambient light. This study demonstrates the successful detection of a 3 MBq alpha emitter in an open environment using a compact alpha camera. This camera incorporates a deep-cooled CCD and a low f-number lens system designed to minimize the blue shift effects of filters. Night-time imaging was achieved with a dual-filter system using a sandwich filter assembly centered at 337 nm and 343 nm for capturing alpha RL and subtracting background light, respectively. At night, the alpha source was detected from 1 m away within one minute, and the lowest detection limit can be calculated as 75 kBq. The system was also evaluated under simulated urban lighting conditions. For daytime imaging, a stack of tilted 276 nm short pass filters minimized sunlight interference, enabling the detection of the alpha source at 70 cm within 10 min under indirect sunlight. This research highlights the viability of long-range optical detection of alpha emitters for environmental monitoring in real-world settings. Full article
(This article belongs to the Special Issue Novel Sensing Technologies for Environmental Monitoring and Detection)
Show Figures

Figure 1

13 pages, 3548 KiB  
Article
Specific Monoclonal Antibodies against African Swine Fever Virus Protease pS273R Revealed a Novel and Conserved Antigenic Epitope
by Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Pingping Zhang, Wanglong Zheng, Nanhua Chen and Jianzhong Zhu
Int. J. Mol. Sci. 2024, 25(16), 8906; https://doi.org/10.3390/ijms25168906 - 15 Aug 2024
Cited by 4 | Viewed by 1299
Abstract
The African swine fever virus (ASFV) is a large enveloped DNA virus that causes a highly pathogenic hemorrhagic disease in both domestic pigs and wild boars. The ASFV genome contains a double-stranded DNA encoding more than 150 proteins. The ASFV possesses only one [...] Read more.
The African swine fever virus (ASFV) is a large enveloped DNA virus that causes a highly pathogenic hemorrhagic disease in both domestic pigs and wild boars. The ASFV genome contains a double-stranded DNA encoding more than 150 proteins. The ASFV possesses only one protease, pS273R, which is important for virion assembly and host immune evasion. Therefore, the specific monoclonal antibody (mAb) against pS273R is useful for ASFV research. Here, we generated two specific anti-pS273R mAbs named 2F3 and 3C2, both of which were successfully applied for ELISA, Western blotting, and immunofluorescence assays. Further, we showed that both 2F3 and 3C2 mAbs recognize a new epitope of N terminal 1–25 amino acids of pS273R protein, which is highly conserved across different ASFV strains including all genotype I and II strains. Based on the recognized epitope, an indirect ELISA was established and was effective in detecting antibodies during ASFV infection. To conclude, the specific pS273R mAbs and corresponding epitope identified will strongly promote ASFV serological diagnosis and vaccine research. Full article
(This article belongs to the Special Issue Novel Insights into Monoclonal Antibodies in Disease)
Show Figures

Figure 1

18 pages, 2688 KiB  
Article
Poly(rC)-Binding Protein 2 Does Not Directly Participate in HCV Translation or Replication, but Rather Modulates Genome Packaging
by Sophie E. Cousineau, Carolina Camargo and Selena M. Sagan
Viruses 2024, 16(8), 1220; https://doi.org/10.3390/v16081220 - 30 Jul 2024
Viewed by 1639
Abstract
The hepatitis C virus (HCV) co-opts many cellular factors—including proteins and microRNAs—to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral [...] Read more.
The hepatitis C virus (HCV) co-opts many cellular factors—including proteins and microRNAs—to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly. Full article
(This article belongs to the Special Issue Viruses, MicroRNAs and Host Interactions)
Show Figures

Graphical abstract

9 pages, 2647 KiB  
Brief Report
The Generation and Characterization of Monoclonal Antibodies against the MPXV A29L Protein
by Wenlong Zhu, Mengjia Zhang, Mengdi Zhang, Ran Jing, Jiaru Zhou, Hua Cao, Changcheng Liu, Hongmei Zhu, Ahmed H. Ghonaim, Sherin R. Rouby and Wentao Li
Viruses 2024, 16(8), 1184; https://doi.org/10.3390/v16081184 - 24 Jul 2024
Cited by 2 | Viewed by 2378
Abstract
Mpox (formerly known as monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), a DNA virus belonging to the Orthopoxvirus genus, in the Poxviridae family. The disease constitutes a moderate risk to public health at the global level. The MPXV A29L protein [...] Read more.
Mpox (formerly known as monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), a DNA virus belonging to the Orthopoxvirus genus, in the Poxviridae family. The disease constitutes a moderate risk to public health at the global level. The MPXV A29L protein plays a crucial role in coordinating virion assembly and facilitating important virus-host interactions. This study focused on the expression, purification, and recombinant protein synthesis of the A29L protein of MPXV using prokaryotic systems. Using hybridoma technology, we successfully generated the monoclonal antibodies (mAbs) 1E12 and 4B2, which specifically recognize the A29L protein. These mAbs were found to be suitable for use in indirect immunofluorescence assays (IFA), Western blotting, and immunoprecipitation (IP). Our investigation also revealed that mAbs 1E12 and 4B2 could detect the A27L protein, a homologous protein found in the vaccinia virus Western Reserve (VACV WR) strain, using IFA, Western blotting, and immunoprecipitation (IP). Using mAbs 1E12 and 4B2 as primary immunological probes, A27L protein expression was detected as early as 6 h postinfection with VACV WR, with increasing protein levels being observed throughout the infection. This study enhances our understanding of the protein structure and function of MPXV and contributes to the development of specific MPXV detection methods. Full article
(This article belongs to the Special Issue B Cell-Mediated Immunity to Viruses)
Show Figures

Figure 1

Back to TopTop