Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = indigo reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 733 KiB  
Perspective
A Perspective on Indigo: An Iconic Colorant
by Anthony Harriman
Colorants 2025, 4(2), 12; https://doi.org/10.3390/colorants4020012 - 31 Mar 2025
Cited by 1 | Viewed by 622
Abstract
This perspective sets out to raise awareness about the chemical and photophysical properties of indigo, a highly distinguished colorant with an extraordinary history. Indigo, like many other dyes, was first extracted from plants at an inordinately low yield and at great ecological expense. [...] Read more.
This perspective sets out to raise awareness about the chemical and photophysical properties of indigo, a highly distinguished colorant with an extraordinary history. Indigo, like many other dyes, was first extracted from plants at an inordinately low yield and at great ecological expense. Such was its popularity that indigo was among the first natural colorants to be synthesized in a laboratory before refinement and cost reduction resulted in its economical industrial-scale production. The color of indigo is highly characteristic but difficult to describe, since it falls at the blue/violet interface. It is a small, planar molecule with an exceptionally high degree of π-electron conjugation that pushes the absorption maximum to above 600 nm. Its structure helps explain the high level of photostability enjoyed by indigo, while recent spectroscopic studies have added to our understanding of the longevity of this emblematic colorant. The reversible formation of leuco-indigo increases the ways in which indigo can be used to add color to objects while helping to circumvent the effects of attack by free radicals. It is stressed that the journal Colorants would welcome submissions that describe the chemistry and/or spectroscopy of other representative colorants. Full article
Show Figures

Figure 1

18 pages, 20034 KiB  
Article
Combination of Photo-Fenton and Granular Activated Carbon for the Removal of Microcontaminants from Municipal Wastewater via an Acidic Dye
by Paula Núñez-Tafalla, Irene Salmerón, Silvia Venditti and Joachim Hansen
Sustainability 2024, 16(4), 1605; https://doi.org/10.3390/su16041605 - 14 Feb 2024
Cited by 2 | Viewed by 2280
Abstract
Combining photo-Fenton and granular activated carbon (GAC) is an alternative to increase the feasibility of using photo-Fenton in full scale. This work is a preliminary study of its viability at natural pH. Both technologies were applied separately and compared with their combination, GAC [...] Read more.
Combining photo-Fenton and granular activated carbon (GAC) is an alternative to increase the feasibility of using photo-Fenton in full scale. This work is a preliminary study of its viability at natural pH. Both technologies were applied separately and compared with their combination, GAC filtration instead of batch mode, to achieve an approach close to full scale. The target compound considered in this investigation was indigo carmine as a hydroxyl radicals’ probe. The results show that 80% removal of the target compound could be achieved when 20 min of the photo-Fenton treatment time was applied with the optimal dosing of the reagents (5 mg L−1 of iron and 40 mg L−1 of H2O2) working at natural conditions and using ethylenediamine-N,N-disuccinic acid as a chelating agent. Two GAC types, fresh GAC and regenerated, were evaluated on Rapid Small-Scale Columns showing similar breakthroughs and close capacity to adsorb the target compound per gram of GAC. Combining the technologies, with photo-Fenton as the first step and GAC as the second, was performed with 5 min of photo-Fenton treatment time. The 80% removal was maintained during 340 and 170 bed volumes for fresh and regenerated GAC, respectively. Aiming to achieve the maximum reduction of irradiation, 75% of the energy consumption was saved compared to the standalone photo-Fenton process, and the GAC life was extended to a maximum of 7 times. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 4576 KiB  
Article
Evaluation of the Applicability of Modifying CdSe Thin Films by the Addition of Cobalt and Nickel to Enhance the Efficiency of Photocatalytic Decomposition of Organic Dyes
by Aliya Zh. Omarova, Talgatbek Ayazbaev, Zhanar S. Yesdauletova, Sholpan A. Aldabergen, Artem L. Kozlovskiy and Gulnaz Zh. Moldabayeva
J. Compos. Sci. 2023, 7(11), 460; https://doi.org/10.3390/jcs7110460 - 3 Nov 2023
Cited by 3 | Viewed by 1471
Abstract
This article presents the results of an assessment of the use of CdSe, NiCdSe, and CoCdSe thin films as a basis for photocatalysts used for the decomposition of the organic dyes rhodamine B, cargo red, and indigo carmine. Interest in this area was [...] Read more.
This article presents the results of an assessment of the use of CdSe, NiCdSe, and CoCdSe thin films as a basis for photocatalysts used for the decomposition of the organic dyes rhodamine B, cargo red, and indigo carmine. Interest in this area was determined by the need to solve a number of issues related to increasing the efficiency purifying aqueous media from the negative effects of organic dyes, which cannot be disposed of using traditional methods associated with adsorption or filtration. The use of the electrochemical synthesis method to obtain thin films of a given thickness showed that the addition of nickel or cobalt sulfates to the standard electrolyte solution used to obtain CdSe films results in the formation of CdSe films with a higher degree of structural ordering (the crystallinity degree was more than 50%), as well as a decline in the band gap. When analyzing data on the photocatalytic decomposition of organic dyes, it was found that a change in the structure of the films due to the introduction of nickel and cobalt leads, in the case of the decomposition of the rhodamine B dye, to a more efficient decomposition, and in the case of the cargo red and indigo carmine dyes, not only to their complete decomposition and mineralization, but also to a reduction in the time of photocatalytic reactions (decomposition growth rate). Moreover, an analysis of cyclic tests demonstrated that NiCdSe and CoCdSe films maintain 90% of their photocatalytic decomposition efficiency compared to that achieved during the first decomposition cycle, while CdSe degrades after three consecutive cycles and its efficiency reduces by more than 2.5–3 times. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

17 pages, 2528 KiB  
Article
Effect of Fermentation Scale on Microbiota Dynamics and Metabolic Functions for Indigo Reduction
by Nowshin Farjana, Hiromitsu Furukawa, Hisako Sumi and Isao Yumoto
Int. J. Mol. Sci. 2023, 24(19), 14696; https://doi.org/10.3390/ijms241914696 - 28 Sep 2023
Cited by 1 | Viewed by 2587
Abstract
During indigo dyeing fermentation, indigo reduction for the solubilization of indigo particles occurs through the action of microbiota under anaerobic alkaline conditions. The original microbiota in the raw material (sukumo: composted indigo plant) should be appropriately converged toward the extracellular electron [...] Read more.
During indigo dyeing fermentation, indigo reduction for the solubilization of indigo particles occurs through the action of microbiota under anaerobic alkaline conditions. The original microbiota in the raw material (sukumo: composted indigo plant) should be appropriately converged toward the extracellular electron transfer (EET)-occurring microbiota by adjusting environmental factors for indigo reduction. The convergence mechanisms of microbiota, microbial physiological basis for indigo reduction, and microbiota led by different velocities in the decrease in redox potential (ORP) at different fermentation scales were analyzed. A rapid ORP decrease was realized in the big batch, excluding Actinomycetota effectively and dominating Alkalibacterium, which largely contributed to the effective indigo reduction. Functional analyses of the microbiota related to strong indigo reduction on approximately day 30 indicated that the carbohydrate metabolism, prokaryotic defense system, and gene regulatory functions are important. Because the major constituent in the big batch was Alkalibacterium pelagium, we attempted to identify genes related to EET in its genome. Each set of genes for flavin adenine dinucleotide (FAD) transportation to modify the flavin mononucleotide (FMN)-associated family, electron transfer from NADH to the FMN-associated family, and demethylmenaquinone (DMK) synthesis were identified in the genome sequence. The correlation between indigo intensity reduction and metabolic functions suggests that V/A-type H+/Na+-transporting ATPase and NAD(P)H-producing enzymes drive membrane transportations and energization in the EET system, respectively. Full article
Show Figures

Figure 1

14 pages, 1030 KiB  
Article
Electrochemical Characterization Using Biosensors with the Coagulant Moringa oleifera Seed Lectin (cMoL)
by Benny Ferreira de Oliveira, Hallysson Douglas Andrade de Araújo, Eloisa Ferreira Neves, Thiago Henrique Napoleão, Patrícia Maria Guedes Paiva, Katia Cristina Silva de Freitas, Sandra Rodrigues de Souza and Luana Cassandra Breitenbach Barroso Coelho
Biosensors 2023, 13(6), 655; https://doi.org/10.3390/bios13060655 - 15 Jun 2023
Cited by 2 | Viewed by 1983
Abstract
Triturated Moringa oleifera seeds have components that adsorb recalcitrant indigo carmine dye. Coagulating proteins known as lectins (carbohydrate-binding proteins) have already been purified from the powder of these seeds, in milligram amounts. The coagulant lectin from M. oleifera seeds (cMoL) was characterized by [...] Read more.
Triturated Moringa oleifera seeds have components that adsorb recalcitrant indigo carmine dye. Coagulating proteins known as lectins (carbohydrate-binding proteins) have already been purified from the powder of these seeds, in milligram amounts. The coagulant lectin from M. oleifera seeds (cMoL) was characterized by potentiometry and scanning electron microscopy (SEM) using MOFs, or metal–organic frameworks, of [Cu3(BTC)2(H2O)3]n to immobilize cMoL and construct biosensors. The potentiometric biosensor revealed an increase in the electrochemical potential resulting from the Pt/MOF/cMoL interaction with different concentrations of galactose in the electrolytic medium. The developed aluminum batteries constructed with recycled cans degraded an indigo carmine dye solution; the oxide reduction reactions of the batteries generated Al(OH)3, promoting dye electrocoagulation. Biosensors were used to investigate cMoL interactions with a specific galactose concentration and monitored residual dye. SEM revealed the components of the electrode assembly steps. Cyclic voltammetry showed differentiated redox peaks related to dye residue quantification by cMoL. Electrochemical systems were used to evaluate cMoL interactions with galactose ligands and efficiently degraded dye. Biosensors could be used for lectin characterization and monitoring dye residues in environmental effluents of the textile industry. Full article
(This article belongs to the Special Issue Electrochemical (Bio-) Sensors in Biological Applications)
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Photocatalytic Denitrification of Nitrate Using Fe-TiO2-Coated Clay Filters
by Tanveer A. Gadhi, Imtiaz Ali Bhurt, Tayyab A. Qureshi, Imran Ali, Anira Latif, Rasool Bux Mahar, Najeebullah Channa and Barbara Bonelli
Catalysts 2023, 13(4), 729; https://doi.org/10.3390/catal13040729 - 12 Apr 2023
Cited by 5 | Viewed by 2933
Abstract
In this work, 3D-structured clay filters were prepared and coated with iron-doped titanium dioxide (Fe-TiO2) using 3D printing and sol–gel soaking and calcination techniques. Three-dimensional printing was employed to mold and shape the clay filters before annealing. The coated and uncoated [...] Read more.
In this work, 3D-structured clay filters were prepared and coated with iron-doped titanium dioxide (Fe-TiO2) using 3D printing and sol–gel soaking and calcination techniques. Three-dimensional printing was employed to mold and shape the clay filters before annealing. The coated and uncoated filters were characterized for different properties, i.e., morphology, optical properties, and crystalline structure, using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), UV/Vis diffused reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The FESEM images show uniform coatings of round-shaped Fe-TiO2 on the tiny pore of the clay filter. The optical energy band gap of the obtained coating was around 2.8 eV, estimated by Tauc’s plot, compared with 3.2 eV of pristine anatase TiO2. The XRD spectra data processed through XRD software revealed the coatings of TiO2 on the filter surface with the obtained phase of anatase. The photocatalytic performance of bare and coated filters was initially tested for the degradation of indigo carmine (IC) dye and the obtained results suggested the photocatalytic degradation of IC dye by the Fe-TiO2 clay filter compared with the bare filter. Afterward, the denitrification of nitrate NO3 at various concentrations was performed using Fe-TiO2-coated clay filters and analyzing the total nitrogen (TN) analysis and reduction of NO3 to nitrite (NO2), nitrogen monoxide (NO), and nitrogen gas (N2). The TN analysis revealed up to 81% denitrification efficiency of the 30 ppm NO3 solution with the photocatalytic response of the Fe-TiO2-coated filter. The results revealed that the Fe-TiO2-coated clay filter has a high potential for denitrification applications under natural sunlight. Full article
(This article belongs to the Special Issue UV/Vis/NIR Photocatalysis and Optical Properties)
Show Figures

Figure 1

14 pages, 2373 KiB  
Article
The Biodegradation of Indigo Carmine by Bacillus safensis HL3 Spore and Toxicity Analysis of the Degradation Products
by Chunlei Wang, Sijia Wang, Jieru Zhang, Shumin Jiang, Daizong Cui, Haiqiong Sun, Chengwei Liu, Lili Li and Min Zhao
Molecules 2022, 27(23), 8539; https://doi.org/10.3390/molecules27238539 - 4 Dec 2022
Cited by 12 | Viewed by 2869
Abstract
The aims of this article were to investigate Bacillus safensis HL3 spore for its capacity to degrade and detoxify indigo carmine and to provide an effective biological agent for the treatment of isatin dye wastewater. Bacillus safensis HL3 spore was found to decolorize [...] Read more.
The aims of this article were to investigate Bacillus safensis HL3 spore for its capacity to degrade and detoxify indigo carmine and to provide an effective biological agent for the treatment of isatin dye wastewater. Bacillus safensis HL3 spore was found to decolorize indigo carmine by 97% in the presence of acetosyringone within 2 h. Significantly increased activities of spore laccase, intracellular tyrosinase, and lignin peroxidase upon exposure to indigo carmine were observed. The results of RT–qPCR also showed that the expression of laccase gene was significantly increased. The spore has the ability to degrade indigo carmine through oxidization. Furthermore, the pathway by which indigo carmine is degraded was investigated using liquid chromatography–mass spectrometry analysis to identify the biodegradation products. A detailed pathway of indigo carmine degradation by bacterial spores was proposed for the first time. Toxicity tests indicated that the biodegradation products of indigo carmine are non-toxic to Nicotiana tabacum seeds and are less hazardous to human erythrocytes than the original dye. Indigo carmine is a typical recalcitrant dye and severely jeopardizes human health. The results demonstrate the utility of the spore from Bacillus safensis HL3 for the degradation of indigo carmine and simultaneous reduction of its toxicity. Full article
Show Figures

Figure 1

17 pages, 4099 KiB  
Article
Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation
by Wuhuan Zhang, Charles R. Burgis, Gail M. Hayes, Derek A. Henderson and James A. Smith
Land 2022, 11(6), 907; https://doi.org/10.3390/land11060907 - 14 Jun 2022
Cited by 5 | Viewed by 3093
Abstract
Green infrastructure (GI) protects aquatic ecosystems from stormwater runoff caused by urban development. Bioretention (BR) is a typical GI system wherein stormwater runoff is routed to a soil basin planted with vegetation and has been shown to reduce deicing salt loads in surface [...] Read more.
Green infrastructure (GI) protects aquatic ecosystems from stormwater runoff caused by urban development. Bioretention (BR) is a typical GI system wherein stormwater runoff is routed to a soil basin planted with vegetation and has been shown to reduce deicing salt loads in surface runoff, but the removal mechanism of salt is poorly understood. This study explores the potential of different vegetation types to reduce deicing salt released from a BR by transpiration. Six engineered soil media columns were built in a laboratory greenhouse to simulate a 1012 m2 BR basin along Lorton Road, Fairfax County, VA, USA. The effect of vegetation type (Blue Wild Indigo and Broadleaf Cattail) and influent salt concentration on flow volume and salt mass reduction were quantified for multiple storm events. For all storm events, chloride inflow concentrations, and vegetation types, Cl load reduction ranged from 26.1% to 33.5%, Na+ load reduction ranged from 38.2% to 47.4%, and volume reductions ranged from 11.4% to 41.9%. Different inflow salt concentrations yielded different removal rates of deicing salt, and for a given column, salt removal decreased over sequential storm events. For each influent salt concentration, columns planted with Broadleaf Cattail (BC) performed better for volume and salt mass reductions than columns planted with Blue Wild Indigo (BWI), which in turn performed better than the controls. Full article
Show Figures

Figure 1

13 pages, 1571 KiB  
Article
Indigo-Mediated Semi-Microbial Biofuel Cell Using an Indigo-Dye Fermenting Suspension
by Mayu Kikuchi, Keisei Sowa, Kasumi Nakagawa, Momoka Matsunaga, Akinori Ando, Kenji Kano, Michiki Takeuchi and Eiji Sakuradani
Catalysts 2021, 11(9), 1080; https://doi.org/10.3390/catal11091080 - 8 Sep 2021
Cited by 1 | Viewed by 3904
Abstract
Aizome (Japanese indigo dyeing) is a unique dyeing method using microbial activity under anaerobic alkaline conditions. In indigo-dye fermenting suspensions; microorganisms reduce indigo into leuco-indigo with acetaldehyde as a reductant. In this study; we constructed a semi-microbial biofuel cell using an indigo-dye fermenting [...] Read more.
Aizome (Japanese indigo dyeing) is a unique dyeing method using microbial activity under anaerobic alkaline conditions. In indigo-dye fermenting suspensions; microorganisms reduce indigo into leuco-indigo with acetaldehyde as a reductant. In this study; we constructed a semi-microbial biofuel cell using an indigo-dye fermenting suspension. Carbon fiber and Pt mesh were used as the anode and cathode materials, respectively. The open-circuit voltage (OCV) was 0.6 V, and the maximum output power was 32 µW cm−2 (320 mW m−2). In addition, the continuous stability was evaluated under given conditions starting with the highest power density; the power density rapidly decreased in 0.5 h due to the degradation of the anode. Conversely, at the OCV, the anode potential exhibited high stability for two days. However, the OCV decreased by approximately 80 mV after 2 d compared with the initial value, which was attributed to the performance degradation of the gas-diffusion-cathode system caused by the evaporation of the dispersion solution. This is the first study to construct a semi-microbial biofuel cell using an indigo-dye fermenting suspension. Full article
Show Figures

Graphical abstract

22 pages, 6456 KiB  
Article
Experimental and Theoretical Studies on Sustainable Synthesis of Gold Sol Displaying Dichroic Effect
by Anshuman Jakhmola, Raffaele Vecchione, Valentina Onesto, Francesco Gentile, Maurizio Celentano and Paolo Antonio Netti
Nanomaterials 2021, 11(1), 236; https://doi.org/10.3390/nano11010236 - 18 Jan 2021
Cited by 21 | Viewed by 4357
Abstract
Gold nanoparticles depending on their shape and mixtures of multiple shapes can exhibit peculiar optical properties, including the dichroic effect typical of the Lycurgus cup, which has puzzled scientists for a long time. Such optical properties have been recently exploited in several fields [...] Read more.
Gold nanoparticles depending on their shape and mixtures of multiple shapes can exhibit peculiar optical properties, including the dichroic effect typical of the Lycurgus cup, which has puzzled scientists for a long time. Such optical properties have been recently exploited in several fields such as paint technology, sensors, dichroic polarizers, display (LCD) devices, laser applications, solar cells and photothermal therapy among others. In this article, we have demonstrated a simple room temperature one-pot synthesis of gold sol displaying a dichroic effect using a slow reduction protocol involving only trisodium citrate as a reducing agent. We found that the dichroic gold sol can be easily formed at room temperature by reducing gold salt by trisodium citrate below a certain critical concentration. The sol displayed an orangish-brown color in scattered/reflected light and violet/blue/indigo/purple/red/pink in transmitted light, depending on the experimental conditions. With minor changes such as the introduction of a third molecule or replacing a small amount of water in the reaction mixture with ethanol, the color of the gold sol under transmitted light changed and a variety of shades of red, pink, cobalt blue, violet, magenta and purple were obtained. The main advantage of the proposed method lies in its simplicity, which involves the identification of the right ratio of the reactants, and simple mixing of reactants at room temperature with no other requirements. TEM micrographs displayed the formation of two main types of particles viz. single crystal gold nanoplates and polycrystalline faceted polyhedron nanoparticles. The mechanism of growth of the nanoplates and faceted polyhedron particles have been described by an enhanced diffusion limited aggregation numerical scheme, where it was assumed that both trisodium citrate and the gold ions in solution undergo a stochastic Brownian motion, and that the evolution of the entire system is regulated by a principle of energy minimization. The predictions of the model matched with the experiments with a good accuracy, indicating that the initial hypothesis is correct. Full article
Show Figures

Figure 1

8 pages, 1283 KiB  
Article
Electrochemical Response of Clay/Polyelectrolyte Composite Barrier Coatings
by Sumin Kim, Clare Chisu Byeon and Sung Yeol Kim
Coatings 2020, 10(12), 1173; https://doi.org/10.3390/coatings10121173 - 30 Nov 2020
Cited by 3 | Viewed by 2239
Abstract
Composite materials made of polymer and clay are effective at blocking mass transport. In this study, the blocking efficacy of layer-by-layer (LbL) coatings of exfoliated montmorillonite (MMT) and polyethylenimine (PEI) was studied using cyclic voltammetry and a redox couple, indigo carmine (IC). The [...] Read more.
Composite materials made of polymer and clay are effective at blocking mass transport. In this study, the blocking efficacy of layer-by-layer (LbL) coatings of exfoliated montmorillonite (MMT) and polyethylenimine (PEI) was studied using cyclic voltammetry and a redox couple, indigo carmine (IC). The pH of the MMT solution was varied from 4 to 10 to prepare LbL coatings of different surface roughness on metal substrates. It was found that the coated electrode had a lower redox peak current value than without the coating, demonstrating the reduction of the mass transport of IC to the metal surface. The peak values decreased with decreasing the coating’s roughness and increasing the number of layers, indicating that the blocking capability can be controlled by changing the deposition conditions. Smooth LbL coatings deposited with MMT at pH 4 showed the highest blocking efficacy up to 97.5%. The IC adsorbed at the interface between the coating and the metal substrate was found to cause the peak current measured for the coated electrode. It was also confirmed that the same coating on the copper substrate reduced the corrosion of the copper during the electrochemical potential cycling. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 3343 KiB  
Article
Indigo as a Plant Growth Inhibitory Chemical from the Fruit Pulp of Couroupita guianensis Aubl.
by Kohinoor Begum, Takashi Motobayashi, Nazmul Hasan, Kwame Sarpong Appiah, Mashura Shammi and Yoshiharu Fujii
Agronomy 2020, 10(9), 1388; https://doi.org/10.3390/agronomy10091388 - 14 Sep 2020
Cited by 8 | Viewed by 4589
Abstract
Weed management is an important issue since weeds directly compete with crop plants for space, nutrients; serve as habitat for insect pests and diseases, and can create a significant annual reduction in crop productivity. This study focused on evaluating the contribution of the [...] Read more.
Weed management is an important issue since weeds directly compete with crop plants for space, nutrients; serve as habitat for insect pests and diseases, and can create a significant annual reduction in crop productivity. This study focused on evaluating the contribution of the secondary metabolites of the fruit pulp of Couroupita guianensis Aubl. for its potential growth inhibitory effect. Crude extracts of C. guianensis fruit pulp were collected with different solvents and applied to test plants in petri dishes. The crude extracts of methanol and 1% dimethyl sulfoxide (DMSO) showed potential growth inhibitions with the 50% effective concentration (EC50) of 223 and 229 µg/mL in the bioassay experiment. In the greenhouse pot experiment, soil incorporated with oven-dried fruit pulp of C. guianensis was evaluated on cultivated plant species including Lactuca sativa L., Trifolium repens L., Medicago sativa L., Lolium multiflorum Lam., and Phleum pratense L. The incorporation of dried fruit pulp of C. guianensis into soil reduced shoot and root lengths and the germination percentage of test plants. It was observed that the monocot plants were more affected than the dicot plants. The fruit pulp of C. guianensis was subjected to reversed-phase high-performance liquid chromatography (HPLC) analysis to identify the active compounds. Indigo, identified as one of the candidate compounds of the C. guianensis, had high specific activity (i.e., strong inhibitory activity) in a phytotoxicity bioassay and could explain through the total activity concept the growth inhibitory effect of the C. guianensis on test plants. The results suggested that indigo has plant growth inhibitory effect, indicating the allelopathic potential of C. guianensis, which could be exploited in sustainable weed management. Full article
(This article belongs to the Special Issue Allelochemicals: Effects on Seed Germination and Plant Growth)
Show Figures

Figure 1

15 pages, 3671 KiB  
Article
Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels
by Lina Sanchez-Botero, Adriana P. Herrera and Juan P. Hinestroza
Nanomaterials 2017, 7(5), 117; https://doi.org/10.3390/nano7050117 - 22 May 2017
Cited by 46 | Viewed by 8773
Abstract
We report on the synthesis of alpha manganese dioxide (α-MnO2) nanorods using natural extracts from Vitis vinifera grape stems and Malus domestica ‘Cortland’ apple peels. We used a two-step method to produce highly crystalline α-MnO2 nanorods: (1) reduction of KMnO [...] Read more.
We report on the synthesis of alpha manganese dioxide (α-MnO2) nanorods using natural extracts from Vitis vinifera grape stems and Malus domestica ‘Cortland’ apple peels. We used a two-step method to produce highly crystalline α-MnO2 nanorods: (1) reduction of KMnO4 in the presence of natural extracts to initiate the nucleation process; and (2) a thermal treatment to enable further solid-state growth of the nuclei. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) images provided direct evidence of the morphology of the nanorods and these images were used to propose nucleation and growth mechanisms. We found that the α-MnO2 nanorods synthesized using natural extracts exhibit structural and magnetic properties similar to those of nanoparticles synthesized via traditional chemical routes. Furthermore, Fourier transform infrared (FTIR) shows that the particle growth of the α-MnO2 nanorods appears to be controlled by the presence of natural capping agents during the thermal treatment. We also evaluated the catalytic activity of the nanorods in the degradation of aqueous solutions of indigo carmine dye, highlighting the potential use of these materials to clean dye-polluted water. Full article
Show Figures

Graphical abstract

22 pages, 943 KiB  
Article
Synthesis, Characterization and Photocatalytic Activity of New Photocatalyst ZnBiSbO4 under Visible Light Irradiation
by Jingfei Luan, Mengjing Chen and Wenhua Hu
Int. J. Mol. Sci. 2014, 15(6), 9459-9480; https://doi.org/10.3390/ijms15069459 - 28 May 2014
Cited by 18 | Viewed by 8917
Abstract
In this paper, ZnBiSbO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiSbO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscope and [...] Read more.
In this paper, ZnBiSbO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiSbO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscope and UV-visible spectrometer. ZnBiSbO4 crystallized with a pyrochlore-type structure and a tetragonal crystal system. The band gap of ZnBiSbO4 was estimated to be 2.49 eV. The photocatalytic degradation of indigo carmine was realized under visible light irradiation with ZnBiSbO4 as a catalyst compared with nitrogen-doped TiO2 (N-TiO2) and CdBiYO4. The results showed that ZnBiSbO4 owned higher photocatalytic activity compared with N-TiO2 or CdBiYO4 for the photocatalytic degradation of indigo carmine under visible light irradiation. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3, and the evolution of CO2 revealed the continuous mineralization of indigo carmine during the photocatalytic process. One possible photocatalytic degradation pathway of indigo carmine was obtained. The phytotoxicity of the photocatalytic-treated indigo carmine (IC) wastewater was detected by examining its effect on seed germination and growth. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

13 pages, 1157 KiB  
Article
Inhibitory Effect of Indigo Naturalis on Tumor Necrosis Factor-α-Induced Vascular Cell Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial Cells
by Hsin-Ning Chang, Jong-Hwei Su Pang, Sien-Hung Yang, Chi-Feng Hung, Chi-Hsin Chiang, Tung-Yi Lin and Yin-Ku Lin
Molecules 2010, 15(9), 6423-6435; https://doi.org/10.3390/molecules15096423 - 14 Sep 2010
Cited by 26 | Viewed by 10756
Abstract
The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo [...] Read more.
The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis. Full article
Show Figures

Figure 1

Back to TopTop