Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = in-situ Raman spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3343 KiB  
Article
Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications
by Xiai Zhuo, Ruize Zhang, Erbin Shi, Jiahui Liu and Zongcheng Ling
Universe 2024, 10(12), 462; https://doi.org/10.3390/universe10120462 - 19 Dec 2024
Viewed by 1187
Abstract
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In [...] Read more.
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In this study, three hydrated ferrous sulfates were prepared in the laboratory by heating dehydration reactions. These samples were analyzed using X-ray Diffraction (XRD) to confirm their phase and homogeneity. Subsequently, Raman, mid-infrared (MIR) spectra, visible near-infrared (VNIR) spectra, and laser-induced breakdown spectroscopy (LIBS) were measured and analyzed. The results demonstrate that the spectra of three hydrated ferrous sulfates exhibit distinctive features (e.g., the v1 and v3 features of SO42 tetrahedra in their Raman and MIR spectra) that can offer new insights for identifying different ferrous sulfates on Mars and aid in the interpretation of in-situ data collected by instruments such as the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC), SuperCam, and ChemCam, etc. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

13 pages, 1332 KiB  
Article
Exploring Near-Infrared and Raman Spectroscopies for the Non-Destructive In-Situ Estimation of Sweetness in Half Watermelons
by Miguel Vega-Castellote, Dolores Pérez-Marín, Jens Petter Wold, Nils Kristian Afseth and María-Teresa Sánchez
Foods 2024, 13(23), 3971; https://doi.org/10.3390/foods13233971 - 9 Dec 2024
Cited by 2 | Viewed by 1269
Abstract
Watermelons are in high demand for their juicy texture and sweetness, which is linked to their soluble solids content (SSC). Traditionally, watermelons have been sold as whole fruits. However, the decline in the mean size of households and the very large size of [...] Read more.
Watermelons are in high demand for their juicy texture and sweetness, which is linked to their soluble solids content (SSC). Traditionally, watermelons have been sold as whole fruits. However, the decline in the mean size of households and the very large size of the fruits, together with high prices, mainly at the beginning of the season, mean that supermarkets now sell them as half fruits. For consumers, it is important to know in advance that the fruits that they are purchasing are of a high quality, based not only on external flesh colour but also on sweetness. Near-infrared spectroscopy (NIRS) and Raman spectroscopy were used for the in situ determination of SSC in half watermelons while simulating supermarket conditions. A handheld linear variable filter (LVF) device and an all-in-one (AIO) Process Raman analyser were used for the NIRS and Raman analysis, respectively. The excellent results obtained—including residual predictive deviation for prediction (RPDp) values of 3.06 and 2.90 for NIRS and Raman, respectively—showed the viability of NIRS and Raman spectroscopies for the prediction of sweetness in half watermelons. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

22 pages, 4919 KiB  
Article
Conducting and Magnetic Hybrid Polypyrrole/Nickel Composites and Their Application in Magnetorheology
by Marek Jurča, Jarmila Vilčáková, Natalia E. Kazantseva, Andrei Munteanu, Lenka Munteanu, Michal Sedlačík, Jaroslav Stejskal, Miroslava Trchová and Jan Prokeš
Materials 2024, 17(1), 151; https://doi.org/10.3390/ma17010151 - 27 Dec 2023
Cited by 9 | Viewed by 1662
Abstract
Hybrid organic/inorganic conducting and magnetic composites of core–shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various [...] Read more.
Hybrid organic/inorganic conducting and magnetic composites of core–shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier. Full article
Show Figures

Figure 1

20 pages, 9696 KiB  
Article
Remobilization of HFSE, Y, and REE during Diagenetic Alteration of Heavy Minerals in Sandstones from the Chvalčov Site, Flysch Belt of the Outer Western Carpathians, Czech Republic
by Zdeněk Dolníček, Michaela Krejčí Kotlánová, Jana Ulmanová and Jiří Sejkora
Minerals 2024, 14(1), 1; https://doi.org/10.3390/min14010001 - 19 Dec 2023
Viewed by 1898
Abstract
An in situ electron microprobe study of detrital minerals yielded important insights into the diagenetic history of the Cretaceous-to-Paleogene flysch sandstones from the Chvalčov site, Rača Unit, Flysch Belt of the Outer Western Carpathians. Detrital titanite and a Fe-Ti mineral (probably ilmenite) were [...] Read more.
An in situ electron microprobe study of detrital minerals yielded important insights into the diagenetic history of the Cretaceous-to-Paleogene flysch sandstones from the Chvalčov site, Rača Unit, Flysch Belt of the Outer Western Carpathians. Detrital titanite and a Fe-Ti mineral (probably ilmenite) were almost completely altered to TiO2 minerals, which also newly crystallized in intergranular spaces of sandstone. Brookite, anatase, and, exceptionally, rutile were identified by Raman spectroscopy. Authigenic TiO2 phases show complex composition with occasionally elevated contents of Fe, Nb, Zr, V, Sc, Cr, Al, Y, and/or P, which were likely sourced from altered neighboring heavy minerals. In addition, rare authigenic LREE- and Y-enriched apatite rims were observed on detrital apatite. The remobilization of REE, Y, and HFSE was likely mediated by acidic early diagenetic fluids enriched in fluoride and sulfate anions. The superimposed formation of calcite cement was associated with the dissolution of detrital garnet, feldspars, and quartz. The compositions of detrital apatite and garnet (Alm60-82Prp4-30Sps0-24Grs0-19) are comparable with those from adjacent parts of the Flysch Belt. Detrital rutile is enriched in Nb, V, Cr, and Zr. Our study illustrates the intensity of diagenetic alteration of detrital minerals in flysch sandstones as well as the usefulness of in-situ electron-microprobe investigations for the recognition of processes influencing heavy minerals in diagenetically altered sediments. Full article
(This article belongs to the Special Issue Mineral Evolution and Mineralization during Weathering)
Show Figures

Figure 1

12 pages, 2634 KiB  
Article
Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore
by Xi Liu, Xiaoguang Zhao, Xianguang Wang, Yili Tang, Juan Liao, Qianwen Wu, Jie Wang, Jun Zhang and Huaming Yang
Minerals 2023, 13(12), 1488; https://doi.org/10.3390/min13121488 - 27 Nov 2023
Cited by 1 | Viewed by 1603
Abstract
Composites made from carbon and nanominerals show great potential for thermal phase change materials, environmental water treatment, and biomass conversion. In 2019, a micro and nano-quartz-carbon ore was discovered in Feng-cheng City, Jiangxi Province. The study of the structural and physicochemical changes of [...] Read more.
Composites made from carbon and nanominerals show great potential for thermal phase change materials, environmental water treatment, and biomass conversion. In 2019, a micro and nano-quartz-carbon ore was discovered in Feng-cheng City, Jiangxi Province. The study of the structural and physicochemical changes of quartz-carbon ore (QZC) during calcination is essential for the preparation of QZC-based composites and to broaden their application areas. Firstly, the SiO2 crystal structure evolution of QZC during calcination was investigated using in-situ X-ray diffraction (XRD), 29Si magic-angle sample spinning nuclear magnetic resonance (MAS NMR), and Fourier transform infrared FTIR spectroscopy. Then, the changes in carbon during calcination were investigated using Raman spectroscopy, 13C MAS NMR, and X-ray photoelectron spectroscopy (XPS). In addition, changes in the QZC morphology were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Finally, the evolution of the physicochemical properties of QZC during calcination was revealed using thermogravimetric (TG), Brunauer–Emmet–Teller (BET), resistivity, thermal conductivity, and zeta potential techniques. Full article
Show Figures

Graphical abstract

14 pages, 2622 KiB  
Article
Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption
by Jaroslav Stejskal, Fahanwi Asabuwa Ngwabebhoh, Miroslava Trchová and Jan Prokeš
Nanomaterials 2023, 13(20), 2794; https://doi.org/10.3390/nano13202794 - 19 Oct 2023
Cited by 6 | Viewed by 1952
Abstract
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes [...] Read more.
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm−1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1–2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

18 pages, 4182 KiB  
Article
Unraveling the Phase Transition Behavior of MgMn2O4 Electrodes for Their Use in Rechargeable Magnesium Batteries
by Carmen Miralles, Teresa Lana-Villarreal and Roberto Gómez
Materials 2023, 16(15), 5402; https://doi.org/10.3390/ma16155402 - 1 Aug 2023
Cited by 4 | Viewed by 2066
Abstract
Rechargeable magnesium batteries are an attractive alternative to lithium batteries because of their higher safety and lower cost, being spinel-type materials promising candidates for their positive electrode. Herein, MgMn2O4 with a tetragonal structure is synthesized via a simple, low-cost Pechini [...] Read more.
Rechargeable magnesium batteries are an attractive alternative to lithium batteries because of their higher safety and lower cost, being spinel-type materials promising candidates for their positive electrode. Herein, MgMn2O4 with a tetragonal structure is synthesized via a simple, low-cost Pechini methodology and tested in aqueous media. Electrochemical measurements combined with in-situ Raman spectroscopy and other ex-situ physicochemical characterization techniques show that, in aqueous media, the charge/discharge process occurs through the co-intercalation of Mg2+ and water molecules. A progressive structure evolution from a well-defined spinel to a birnessite-type arrangement occurs during the first cycles, provoking capacity activation. The concomitant towering morphological change induces poor cycling performance, probably due to partial delamination and loss of electrical contact between the active film and the substrate. Interestingly, both MgMn2O4 capacity retention and cyclability can be increased by doping with nickel. This work provides insights into the positive electrode processes in aqueous media, which is vital for understanding the charge storage mechanism and the correlated performance of spinel-type host materials. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries)
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures
by Delyana Marinova, Mariya Kalapsazova, Zlatina Zlatanova, Liuda Mereacre, Ekaterina Zhecheva and Radostina Stoyanova
Materials 2023, 16(13), 4798; https://doi.org/10.3390/ma16134798 - 3 Jul 2023
Cited by 3 | Viewed by 1917
Abstract
To make supercapattery devices feasible, there is an urgent need to find electrode materials that exhibit a hybrid mechanism of energy storage. Herein, we provide a first report on the capability of lithium manganese sulfates to be used as supercapattery materials at elevated [...] Read more.
To make supercapattery devices feasible, there is an urgent need to find electrode materials that exhibit a hybrid mechanism of energy storage. Herein, we provide a first report on the capability of lithium manganese sulfates to be used as supercapattery materials at elevated temperatures. Two compositions are studied: monoclinic Li2Mn(SO4)2 and orthorhombic Li2Mn2(SO4)3, which are prepared by a freeze-drying method followed by heat treatment at 500 °C. The electrochemical performance of sulfate electrodes is evaluated in lithium-ion cells using two types of electrolytes: conventional carbonate-based electrolytes and ionic liquid IL ones. The electrochemical measurements are carried out in the temperature range of 20–60 °C. The stability of sulfate electrodes after cycling is monitored by in-situ Raman spectroscopy and ex-situ XRD and TEM analysis. It is found that sulfate salts store Li+ by a hybrid mechanism that depends on the kind of electrolyte used and the recording temperature. Li2Mn(SO4)2 outperforms Li2Mn2(SO4)3 and displays excellent electrochemical properties at elevated temperatures: at 60 °C, the energy density reaches 280 Wh/kg at a power density of 11,000 W/kg. During cell cycling, there is a transformation of the Li-rich salt, Li2Mn(SO4)2, into a defective Li-poor one, Li2Mn2(SO4)3, which appears to be responsible for the improved storage properties. The data reveals that Li2Mn(SO4)2 is a prospective candidate for supercapacitor electrode materials at elevated temperatures. Full article
Show Figures

Figure 1

15 pages, 25274 KiB  
Article
Designing 3D Ternary Hybrid Composites Composed of Graphene, Biochar and Manganese Dioxide as High-Performance Supercapacitor Electrodes
by Vahid Babaahmadi, S. E. M. Pourhosseini, Omid Norouzi and Hamid Reza Naderi
Nanomaterials 2023, 13(12), 1866; https://doi.org/10.3390/nano13121866 - 15 Jun 2023
Cited by 6 | Viewed by 2137
Abstract
Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO [...] Read more.
Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO2) are in-situ synthesized on luffa-activated carbon (LAC) to improve the supercapacitive behavior. The structure and morphology of LAC, LAC-rGO and LAC-rGO-MnO2 are characterized by the employment of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), BET analysis, Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical performance of electrodes is performed in two and three-electrode systems. In the asymmetrical two-electrode system, the LAC-rGO-MnO2//Co3O4-rGO device shows high specific capacitance (SC), high-rate capability and excellent cycle reversibly in a wide potential window of 0–1.8 V. The maximum specific capacitance (SC) of the asymmetric device is 586 F g−1 at a scan rate of 2 mV s−1. More importantly, the LAC-rGO-MnO2//Co3O4-rGO device exhibits a specific energy of 31.4 W h kg−1 at a specific power of 400 W kg−1. Overall, the synergistic effect between the ternary structures of microporous LAC, rGO sheets and MnO2 nanoparticles leads to the introduction of high-performance hierarchical supercapacitor electrodes. Full article
Show Figures

Figure 1

15 pages, 3202 KiB  
Article
Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells
by Miao He, Xinyu Xu, Le Zhang, Fei Lu, Chuwu Xing, Duofa Wang and Tianjin Zhang
Nanomaterials 2023, 13(11), 1751; https://doi.org/10.3390/nano13111751 - 27 May 2023
Viewed by 2056
Abstract
Photovoltaics are being transformed by perovskite solar cells. The power conversion efficiency of these solar cells has increased significantly, and even higher efficiencies are possible. The scientific community has gained much attention due to perovskites’ potential. Herein, the electron-only devices were prepared by [...] Read more.
Photovoltaics are being transformed by perovskite solar cells. The power conversion efficiency of these solar cells has increased significantly, and even higher efficiencies are possible. The scientific community has gained much attention due to perovskites’ potential. Herein, the electron-only devices were prepared by spin-coating and introducing the organic molecule dibenzo-18-crown-6 (DC) to CsPbI2Br perovskite precursor solution. The current-voltage (I-V) and J-V curves were measured. The morphologies and elemental composition information of the samples were obtained by SEM, XRD, XPS, Raman, and photoluminescence (PL) spectroscopies. The distinct impact of organic DC molecules on the phase, morphology, and optical properties of perovskite films are examined and interpreted with experimental results. The efficiency of the photovoltaic device in the control group is 9.76%, and the device efficiency gradually increases with the increase of DC concentration. When the concentration is 0.3%, the device efficiency is the best, reaching 11.57%, short-circuit current is 14.01 mA/cm2, the open circuit voltage is 1.19 V, and the fill factor is 0.7. The presence of DC molecules effectively controlled the perovskite crystallization process by inhibiting the in-situ generations of impurity phases and minimizing the defect density of the film. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Figure 1

13 pages, 3582 KiB  
Article
Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO2 Electrochemical Reduction in Ionic Liquid by In-Situ SERS
by Feng Wu, Fengshuo Jiang, Jiahao Yang, Weiyan Dai, Donghui Lan, Jing Shen and Zhengjun Fang
Molecules 2023, 28(6), 2747; https://doi.org/10.3390/molecules28062747 - 18 Mar 2023
Cited by 5 | Viewed by 2646
Abstract
This study explores the electrochemical reduction in CO2 using room temperature ionic liquids as solvents or electrolytes, which can minimize the environmental impact of CO2 emissions. To design effective CO2 electrochemical systems, it is crucial to identify intermediate surface species [...] Read more.
This study explores the electrochemical reduction in CO2 using room temperature ionic liquids as solvents or electrolytes, which can minimize the environmental impact of CO2 emissions. To design effective CO2 electrochemical systems, it is crucial to identify intermediate surface species and reaction products in situ. The study investigates the electrochemical reduction in CO2 using a cobalt porphyrin molecular immobilized electrode in 1-n-butyl-3-methyl imidazolium tetrafluoroborate (BMI.BF4) room temperature ionic liquids, through in-situ surface-enhanced Raman spectroscopy (SERS) and electrochemical technique. The results show that the highest faradaic efficiency of CO produced from the electrochemical reduction in CO2 can reach 98%. With the potential getting more negative, the faradaic efficiency of CO decreases while H2 is produced as a competitive product. Besides, water protonates porphyrin macrocycle, producing pholorin as the key intermediate for the hydrogen evolution reaction, leading to the out-of-plane mode of the porphyrin molecule. Absorption of CO2 by the ionic liquids leads to the formation of BMI·CO2 adduct in BMI·BF4 solution, causing vibration modes at 1100, 1457, and 1509 cm−1. However, the key intermediate of CO2· radical is not observed. The υ(CO) stretching mode of absorbed CO is affected by the electrochemical Stark effect, typical of CO chemisorbed on a top site. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

9 pages, 2540 KiB  
Article
Degradation Studies of Air-Exposed Black Phosphorous and Black Arsenic Phosphorous
by Usman O. Abu, Dinushika Vithanage, Ashan Vitharana, Jacek B. Jasinski and Gamini Sumanasekera
ChemEngineering 2023, 7(2), 18; https://doi.org/10.3390/chemengineering7020018 - 3 Mar 2023
Cited by 4 | Viewed by 2029
Abstract
This work investigates the effects of oxygen and humidity on black phosphorous (BP) and black arsenic phosphorous (AsxP1x ) flakes using Raman spectroscopy and in situ electric transport measurements (four-probe resistance and thermoelectric power, TEP). The results [...] Read more.
This work investigates the effects of oxygen and humidity on black phosphorous (BP) and black arsenic phosphorous (AsxP1x ) flakes using Raman spectroscopy and in situ electric transport measurements (four-probe resistance and thermoelectric power, TEP). The results show that the incorporation of arsenic into the lattice of BP renders it more stable, with the degradation times for BP, As0.2P0.8, and As0.4P0.6 being 4, 5, and 11 days, respectively. The P-P Raman peak intensities were determined to decrease with exposure to oxygen and moisture. The TEP measurements confirmed that both BP and AsxP1x are p-type semiconductors with the TEP of As0.4P0.6 stabilizing more slowly than that of BP. In addition, the four-probe resistance of BP and AsxP1x stabilized significantly faster when exposed to air after being degassed in a vacuum. This was attributed to the charge transfer between the oxygen redox potential of air and the Fermi energy (EF) of the semiconductors. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

15 pages, 5615 KiB  
Article
Chemoresistive Properties of V2CTx MXene and the V2CTx/V3O7 Nanocomposite Based on It
by Artem S. Mokrushin, Ilya A. Nagornov, Aleksey A. Averin, Tatiana L. Simonenko, Nikolay P. Simonenko, Elizaveta P. Simonenko and Nikolay T. Kuznetsov
Chemosensors 2023, 11(2), 142; https://doi.org/10.3390/chemosensors11020142 - 15 Feb 2023
Cited by 20 | Viewed by 3221 | Correction
Abstract
The in-situ Raman spectroscopy oxidation of the accordion-like V2CTx MXene has been studied. It was found that a nanocomposite of V2CTx/V3O7 composition was formed as a result. The elemental and phase composition, the [...] Read more.
The in-situ Raman spectroscopy oxidation of the accordion-like V2CTx MXene has been studied. It was found that a nanocomposite of V2CTx/V3O7 composition was formed as a result. The elemental and phase composition, the microstructure of the synthesized V2CTx powder and MXene film as well as the V2CTx/V3O7 nanocomposite obtained at a minimum oxidation temperature of 250 °C were studied using a variety of physical and chemical analysis methods. It was found that the obtained V2CTx and V2CTx/V3O7 films have an increased sensitivity to ammonia and nitrogen dioxide, respectively, at room temperature and zero humidity. It was shown that the V2CTx/V3O7 composite material is characterized by an increase in the response value for a number of analytes (including humidity) by more than one order of magnitude, as well as a change in their detection mechanisms compared to the individual V2CTx MXene. Full article
(This article belongs to the Special Issue Gas Sensors for Monitoring Environmental Changes)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Semi-Polycrystalline Polyaniline-Activated Carbon Composite for Supercapacitor Application
by Neelima Mahato, T. V. M. Sreekanth, Kisoo Yoo and Jonghoon Kim
Molecules 2023, 28(4), 1520; https://doi.org/10.3390/molecules28041520 - 4 Feb 2023
Cited by 23 | Viewed by 2871
Abstract
We report on the synthesis of activated carbon-semi-polycrystalline polyaniline (SPani-AC) composite material using in-situ oxidative polymerization of aniline on the carbon surface in an aqueous HCl medium at an elevated temperature of 60 °C. The electroactive polymeric composite material exhibits a uniformly distributed [...] Read more.
We report on the synthesis of activated carbon-semi-polycrystalline polyaniline (SPani-AC) composite material using in-situ oxidative polymerization of aniline on the carbon surface in an aqueous HCl medium at an elevated temperature of 60 °C. The electroactive polymeric composite material exhibits a uniformly distributed spindle-shaped morphology in scanning electron microscopy (SEM) and well-defined crystallographic lattices in the high-resolution transmission electron microscopy (TEM) images. The X-ray diffraction (XRD) spectrum reveals sharp peaks characteristic of crystalline polyaniline. The characteristic chemical properties of polyaniline are recorded using laser Raman spectroscopy. The cyclic voltammetry curves exhibit features of surface-redox pseudocapacitance. The specific capacitance calculated for the material is 507 F g−1 at the scan rate of 10 mV s−1. The symmetrical two-electrodes device exhibits a specific capacitance of 45 F g−1 at a current density of 5 A g−1. The capacitive retention calculated was found to be 96% up to 4500 continuous charge–discharge cycles and observed to be gradually declining at the end of 10,000 cycles. On the other hand, Coulombic efficiency was observed to be retained up to 85% until 4500 continuous charge–discharge cycles which declines up to 72% at the end of 10,000 cycles. The article also presents a detailed description of material synthesis, the formation of polyaniline (Pani) chains, and the role of material architecture in the performance as surface redox supercapacitor electrode. Full article
Show Figures

Figure 1

16 pages, 8914 KiB  
Article
A Non-Invasive In Situ Spectroscopic Analysis of Cinnabar Minerals to Assist Provenance Studies of Archaeological Pigments
by Silvia Pérez-Diez, Cheyenne Bernier, Javier G. Iñañez and Maite Maguregui
Crystals 2023, 13(2), 207; https://doi.org/10.3390/cryst13020207 - 23 Jan 2023
Cited by 4 | Viewed by 2889
Abstract
This study presents a non-invasive in situ methodology based on the use of portable elemental (energy dispersive X-ray fluorescence spectroscopy, EDXRF) and molecular (Raman spectroscopy) spectroscopic-based instrumentation as a tool to obtain preliminary information to assist subsequent provenance studies of archaeological cinnabar pigments [...] Read more.
This study presents a non-invasive in situ methodology based on the use of portable elemental (energy dispersive X-ray fluorescence spectroscopy, EDXRF) and molecular (Raman spectroscopy) spectroscopic-based instrumentation as a tool to obtain preliminary information to assist subsequent provenance studies of archaeological cinnabar pigments in the laboratory. In this work, six cinnabar mineral ores, extracted from the Almadén mining district and an original raw pigment coming from the Archaeological Park of Pompeii have been analyzed. As the detection capacities and spectral resolution of the portable instruments are usually poorer than the equivalent benchtop equipment, a comparative study of the in-situ and laboratory results was conducted. Afterward, chemometric data treatment was performed considering both the molecular and elemental information. According to the elemental results, it was not possible to find a strong concordance between the cinnabar ores and the pigment from Pompeii, suggesting the need for additional methodologies in the laboratory (isotope ratio analysis) to complete a proper provenance study. However, this approach was useful to classify the ores according to their mineralogical differences. Therefore, this methodology could be proposed as a useful tool to conduct a representative sampling of the cinnabar mineral ores to be considered in a provenance study of archaeological cinnabar pigments. Full article
(This article belongs to the Special Issue Archaeological Crystalline Materials)
Show Figures

Figure 1

Back to TopTop