Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = in vitro synergy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 241
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 306
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

21 pages, 319 KiB  
Review
The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals
by Giorgia della Rocca, Alessandra Di Salvo, Erica Salucci, Michela Amadori, Giovanni Re and Cristina Vercelli
Animals 2025, 15(15), 2185; https://doi.org/10.3390/ani15152185 - 24 Jul 2025
Viewed by 239
Abstract
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding [...] Read more.
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding for receptors and enzymes belonging to the endocannabinoid system has been found to be altered in several tumor types; it has been hypothesized that this aberrant expression may be related to the course of the neoplasm as well as to the patient’s prognosis. Several studies, conducted both in vitro and in vivo, suggest that both endo- and phytocannabinoids can modulate signaling pathways, controlling cell proliferation and survival. In the complex process of carcinogenesis, cannabinoids seem to intervene at different levels by stimulating cell death, inhibiting the processes of angiogenesis and metastasis, and regulating antitumor immunity. Although the molecular mechanisms by which cannabinoids act are not always clear and defined, their synergistic activity with the most used antineoplastic drugs in clinical oncology is showing promising results, thus providing veterinary medicine with alternative therapeutic targets in disease control. This review aims to summarize current knowledge on the potential role of the endocannabinoid system and exogenous cannabinoids in oncology, with specific reference to the molecular mechanisms by which cannabinoids may exert antitumor activity. Additionally, it explores the potential synergy between cannabinoids and conventional anticancer drugs and considers their application in veterinary oncology. Full article
19 pages, 9109 KiB  
Article
Metformin Enhances Doxycycline Efficacy Against Pasteurella multocida: Evidence from In Vitro, In Vivo, and Morphological Studies
by Nansong Jiang, Weiwei Wang, Qizhang Liang, Qiuling Fu, Rongchang Liu, Guanghua Fu, Chunhe Wan, Longfei Cheng, Yu Huang and Hongmei Chen
Microorganisms 2025, 13(8), 1724; https://doi.org/10.3390/microorganisms13081724 - 23 Jul 2025
Viewed by 259
Abstract
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity [...] Read more.
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity of doxycycline combined with metformin, an FDA-approved antidiabetic agent. Among several non-antibiotic adjuvant candidates, metformin exhibited the most potent in vitro synergy with doxycycline, especially against capsular serogroup A strain (PmA). The combination demonstrated minimal cytotoxicity and hemolysis in both mammalian and avian cells and effectively inhibited resistance development under doxycycline pressure. At 50 mg/kg each, the combination of metformin and doxycycline significantly reduced mortality in mice and ducks acutely infected with PmA (from 100% to 60%), decreased pulmonary bacterial burdens, and alleviated tissue inflammation and damage. Mechanistic validation confirmed that metformin enhances membrane permeability in Pm without compromising membrane integrity, dissipates membrane potential, increases intracellular doxycycline accumulation, and downregulates the transcription of the tetracycline efflux gene tet(B). Morphological analyses further revealed pronounced membrane deformation and possible leakage of intracellular contents. These findings highlight metformin as a potent, low-toxicity tetracycline adjuvant with cross-species efficacy, offering a promising therapeutic approach for managing tetracycline-resistant Pm infections. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

11 pages, 775 KiB  
Article
Whole Genome Sequencing of Klebsiella variicola Strains Isolated from Patients with Cancer
by Alicja Sękowska, Andrés Carrazco-Montalvo and Yulian Konechnyi
Antibiotics 2025, 14(8), 735; https://doi.org/10.3390/antibiotics14080735 - 22 Jul 2025
Viewed by 456
Abstract
Background: Klebsiella variicola is a Gram-negative, capsulated, nonmotile, facultative anaerobic rod. It is one of the species belonging to the K. pneumoniae complex. The objective of this study was to gain insights into the antimicrobial resistance and virulence of K. variicola [...] Read more.
Background: Klebsiella variicola is a Gram-negative, capsulated, nonmotile, facultative anaerobic rod. It is one of the species belonging to the K. pneumoniae complex. The objective of this study was to gain insights into the antimicrobial resistance and virulence of K. variicola strains isolated from clinical samples from oncologic patients. Methods: Strain identification was performed using a mass spectrometry method. Whole genome sequencing was conducted for all analyzed strains. Antimicrobial susceptibility was determined using an automated method. The presence of antimicrobial resistance mechanisms and genes encoding extended-spectrum beta-lactamases (ESBL) was assessed using the double-disc synergy test and genotypic methods. Results: All isolates were identified as K. variicola using mass spectrometry and whole genome sequencing (WGS). All isolates were ESBL-positive, and two of them harbored the blaCTX-M-15 gene. In our study, the blaLEN-17 gene was detected in all strains. Genome sequence analysis of the K. variicola isolates revealed the presence of virulence factor genes, including entAB, fepC, ompA, ykgK, and yagWXYZ. Two different plasmids, IncFIB(K) and IncFII, were identified in all of the analyzed K. variicola strains. The detected virulence factors suggest the ability of the bacteria to survive in the environment and infect host cells. All isolates demonstrated in vitro susceptibility to carbapenems. Conclusions: Further studies are needed to confirm whether multidrug-resistant K. variicola strains represent an important pathogen in infections among oncologic patients. Full article
Show Figures

Figure 1

34 pages, 8372 KiB  
Article
Supercomputing Multi-Ligand Modeling, Simulation, Wavelet Analysis and Surface Plasmon Resonance to Develop Novel Combination Drugs: A Case Study of Arbidol and Baicalein Against Main Protease of SARS-CoV-2
by Hong Li, Hailong Su, Akari Komori, Shuxuan Yang, Hailang Luo, Angela Wei Hong Yang, Xiaomin Sun, Hongwei Li, Andrew Hung and Xiaoshan Zhao
Pharmaceuticals 2025, 18(7), 1054; https://doi.org/10.3390/ph18071054 - 17 Jul 2025
Viewed by 360
Abstract
Background/Objectives: Combination therapies using traditional Chinese medicine and Western drugs have gained attention for their enhanced therapeutic effects and reduced side effects. Toujie Quwen Granules (TQG), known for its antiviral properties, particularly against respiratory viruses, could offer new treatment strategies when combined [...] Read more.
Background/Objectives: Combination therapies using traditional Chinese medicine and Western drugs have gained attention for their enhanced therapeutic effects and reduced side effects. Toujie Quwen Granules (TQG), known for its antiviral properties, particularly against respiratory viruses, could offer new treatment strategies when combined with antiviral drugs like arbidol, especially for diseases such as Coronavirus disease. This study investigates the synergistic mechanisms between arbidol and components from TQG against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Methods: We identified compounds from TQG via existing data. Multi-ligand molecular docking, pharmacokinetic/toxicity screening, and preliminary simulations were performed to assess potential synergistic compounds with arbidol. UPLC-Q-Exactive Orbitrap-MS verified the presence of these compounds. Extended simulations and in vitro assays, including Luciferase and surface plasmon resonance, validated the findings. Results: Five compounds interacted with arbidol in synergy based on docking and preliminary dynamics simulation results. Only Baicalein (HQA004) could be identified in the herbal remedy by untargeted metabolomics, with ideal pharmacokinetic properties, and as a non-toxic compound. Extended simulations revealed that HQA004 enhanced arbidol’s antiviral activity via a “Far” Addition Mechanism #2, with an optimal 2:1 arbidol:HQA004 ratio. The movements of arbidol (diffusion and intramolecular conformational shifts) in the system were significantly reduced by HQA004, which may be the main reason for the synergism that occurred. In vitro experiments confirmed an increased inhibition of Mpro by the combination. Conclusions: HQA004 demonstrated synergistic potential with arbidol in inhibiting Mpro. The development of combination therapies integrating Western and herbal medicine is supported by these findings for effective antiviral treatments. Full article
(This article belongs to the Special Issue Antiviral Agents, 2024)
Show Figures

Graphical abstract

35 pages, 9217 KiB  
Article
Comparative Physicochemical and Pharmacotechnical Evaluation of Three Topical Gel-Cream Formulations
by Ramona Pârvănescu, Cristina Trandafirescu, Adina Magdalena Musuc, Emma Adriana Ozon, Daniela C. Culita, Raul-Augustin Mitran, Cristina-Ionela Stănciulescu and Codruța Șoica
Gels 2025, 11(7), 532; https://doi.org/10.3390/gels11070532 - 9 Jul 2025
Viewed by 532
Abstract
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control [...] Read more.
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control Cleanser (ACC), Acne Face Cream (AFC), and Gentle Cream Cleanser Serum Control, Regenerating, Hydrating, Calming (IRC). Each formulation is enriched with a specific blend of bioactive compounds, including botanical oils, vitamins, and proteins, designed to treat acne, to support skin regeneration, and to maintain the skin barrier. A multidisciplinary approach was used, including Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), differential scanning calorimetry (DSC), rheological evaluation, pH and density determination, spreadability analysis, and oxidative stability testing to evaluate the products. Antioxidant capacity was assessed through multiple in vitro assays. The results demonstrated that all three gel-cream formulations exhibit pseudoplastic rheological behaviour, suitable for topical application. AFC showed the highest oxidative stability and antioxidant activity, while IRC presented superior spreadability and cosmetic efficacy, likely due to its complex composition. ACC displayed faster absorption and was ideal for targeted use on oily or acne-prone skin. The differences observed in the stability and performance suggest that the ingredient synergy, base composition, and solubility profiles show notable variations in dermato-cosmetic formulations. These findings highlight the formulation–performance relationship in topical gel-cream formulations and support the development of new cosmetic products tailored for sensitive and acne-prone skin. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

21 pages, 6308 KiB  
Article
Revealing Serotonin Derivatives in Safflower Seed Meal as Potential Anti-Ulcerative Colitis Drugs: In Vitro and Computational Evidence
by Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu and Min Liu
Molecules 2025, 30(13), 2886; https://doi.org/10.3390/molecules30132886 - 7 Jul 2025
Viewed by 394
Abstract
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed [...] Read more.
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (1) and Bufoserotonin A (2) were identified in safflower seed meal for the first time. Compounds 1, 37 and 10 significantly reduced inflammatory factors, with N-feruloyl serotonin (4, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics. Full article
Show Figures

Figure 1

46 pages, 3719 KiB  
Article
Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial
by Gissel Garcia, Josanne Soto, Carmen Valenzuela, Mirka Bernal, Jesús Barreto, María de la C. Luzardo, Raminta Kazlauskaite, Neil Waslidge, Charles Bavington and Raúl de Jesús Cano
Microorganisms 2025, 13(7), 1545; https://doi.org/10.3390/microorganisms13071545 - 30 Jun 2025
Viewed by 689
Abstract
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to [...] Read more.
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to beneficially modulate the gut microbiome, with this paper specifically reporting on microbial diversity, taxonomic shifts, and functional pathway outcomes. Ninety-one participants received either a low dose (125 mg), high dose (500 mg), or placebo twice daily for four weeks. The primary endpoint was the microbiome composition assessed via 16S rRNA sequencing (V3–V4 region), with secondary outcomes including surveys, adverse event monitoring, and clinical evaluations. High-dose supplementation resulted in dose-dependent improvements in the microbial diversity; increased abundance of beneficial taxa, including Bifidobacterium, Faecalibacterium, and Lachnospiraceae; and reductions in inflammation-associated taxa, such as Enterobacteriaceae and Pseudomonadota. A functional pathway analysis showed enhancement in short-chain fatty acid biosynthesis and carbohydrate metabolism. The low-dose group showed modest benefits, primarily increasing Bifidobacterium, with limited functional changes. In vitro colonic simulations further demonstrated a dose-dependent increase in short-chain fatty acids and postbiotic metabolite production following SLE-F exposure. SLE-F was well tolerated, with only mild, nonspecific adverse events reported. These findings support the potential of SLE-F as a safe and effective microbiome-modulating agent, warranting further study of the long-term use and synergy with dietary interventions. Full article
Show Figures

Figure 1

19 pages, 6683 KiB  
Article
Bioinspired Co-Assembled Hydrogels Constructed from Marine Self-Assembling Peptides and Polyphenol Network: Antioxidant and Infected Wound Healing
by Chuhan Wang, Dingyi Yu, Wen Liu, Xiang Zhu, Hanzhe Zhang, Shuang Zheng and Jingdi Chen
Antioxidants 2025, 14(7), 785; https://doi.org/10.3390/antiox14070785 - 26 Jun 2025
Viewed by 511
Abstract
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling [...] Read more.
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling peptides (AAPs). The resultant PTDP hydrogel formed an intricate hydrogen-bonded network that enhanced mechanical robustness and substrate adhesion. TP and PDA synergistically confer potent antioxidant properties: TP scavenges radicals via phenolic hydroxyl groups while PDA enhances responsiveness to diverse radicals in hypoxic environments. Integrated with AAPs’ pro-regenerative functions and PDA’s broad-spectrum antimicrobial efficacy, this system generates therapeutic synergy. Characterization revealed outstanding physicochemical properties including tunable plasticity, high swelling ratios, and sustained hydration retention. In vitro studies demonstrated potent antioxidant activity, efficient inhibition of Staphylococcus aureus and Escherichia coli proliferation, and cytocompatibility facilitating endothelial cell migration/proliferation. In murine full-thickness infected wound models, the PTDP hydrogel significantly accelerated wound closure, enhanced neovascularization, and improved collagen deposition, underscoring its potential as an innovative therapeutic platform for infected and chronic wounds with strong translational prospects. Full article
Show Figures

Figure 1

13 pages, 1966 KiB  
Article
In Vitro Evaluation of Antimicrobial Synergy Against Multidrug-Resistant Gram-Negative Paediatric Bloodstream Pathogens in South Africa
by Prenika Jaglal, Sithembiso Christopher Velaphi, Colin Nigel Menezes and Khine Swe Swe-Han
Antibiotics 2025, 14(7), 630; https://doi.org/10.3390/antibiotics14070630 - 20 Jun 2025
Viewed by 351
Abstract
Background: In vitro synergy testing (ST) is a useful means to gauge the performance ofantibiotic combinations against multidrug-resistant (MDR) Gram-negative bacteria (GNB). This study aimed to determine synergy of antibiotics against paediatric bloodstream (BS) carbapenem-resistant Enterobacterales (CRE) and extremely drug-resistant (XDR) Acinetobacter [...] Read more.
Background: In vitro synergy testing (ST) is a useful means to gauge the performance ofantibiotic combinations against multidrug-resistant (MDR) Gram-negative bacteria (GNB). This study aimed to determine synergy of antibiotics against paediatric bloodstream (BS) carbapenem-resistant Enterobacterales (CRE) and extremely drug-resistant (XDR) Acinetobacter species. Methods: This cross-sectional study was conducted at a public tertiary hospital in South Africa, from January 2023 to December 2023. Sixty-eight isolates from children with bloodstream infections (BSI), comprising 55.9% (38/68) CRE and 44.1% (30/68) XDR Acinetobacter species, were performed ST using the fixed-ratio Epsilometer-test method. Combinations of colistin and meropenem, colistin and fosfomycin, colistin and tigecycline, meropenem and fosfomycin, meropenem and tigecycline, and fosfomycin and tigecycline were tested. Results: In vitro synergy for CRE was best demonstrated with tigecycline and meropenem, at 92.1% (35/38), and fosfomycin and meropenem at 73.7% (28/38). Among the XDR Acinetobacter species, the highest rates of synergy of 76.7% (23/30) were observed with tigecycline and meropenem. The absence of synergy was noted with colistin and meropenem for the CRE, with many displaying indifference and antagonism at rates of 65.8% and 22%. Most XDR Acinetobacter species (56.7%; 17/30) expressed indifference to colistin and meropenem with synergy and antagonism displayed in 23.3% and 10% of isolates. Conclusions: This study highlights tigecycline and meropenem displaying impressive in vitro synergy when compared to the in-use colistin and meropenem for CRE and XDR Acinetobacter species. Tigecycline and meropenem may be a viable salvage therapeutic option for MDR Gram-negative paediatric infections. Future research is warranted to confirm in vivo synergy clinically. Full article
(This article belongs to the Special Issue Combination Therapy against Multidrug-Resistant Pathogens)
Show Figures

Graphical abstract

20 pages, 4826 KiB  
Article
The Antibacterial and Anti-Inflammatory Potential of Cinnamomum camphora chvar. Borneol Essential Oil In Vitro
by Shanshan Xiao, Hang Yu, Yahui Guo, Yuliang Cheng and Weirong Yao
Plants 2025, 14(12), 1880; https://doi.org/10.3390/plants14121880 - 19 Jun 2025
Viewed by 758
Abstract
Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol) is a by-product obtained during the steam distillation process used to produce natural crystalline borneol (NCB, 98.4% purity). This study aimed to compare the antibacterial activity of BEO and NCB against Staphylococcus epidermidis, [...] Read more.
Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol) is a by-product obtained during the steam distillation process used to produce natural crystalline borneol (NCB, 98.4% purity). This study aimed to compare the antibacterial activity of BEO and NCB against Staphylococcus epidermidis, and to evaluate the anti-inflammatory effect of BEO in vitro. Minimum inhibitory concentrations (MICs), determined by broth microdilution, were identical for both BEO and NCB (0.5 mg/mL). Despite this, BEO exhibited stronger antibacterial activity, suggesting synergistic enhancement by other components. Mechanistic studies revealed that BEO disrupted the bacterial cell wall, causing leakage of nucleic acids and proteins, and ultimately bacterial death. In LPS-induced RAW 264.7 macrophages, BEO dose-dependently reduced the production of TNF-α, IL-1β, and IL-6 (r = −0.9847, −0.9456, −0.9315). Network pharmacology, combined with primary and secondary factor analysis, was employed to identify anti-inflammatory pathways and key active compounds. Borneol contributed over 50% to the anti-inflammatory effect, followed by β-caryophyllene, limonene, camphor, and γ-terpinene. These findings highlight the potential enhanced bioactivity of BEO due to multi-component synergy. Full article
Show Figures

Graphical abstract

16 pages, 1424 KiB  
Article
Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis
by Kameliya Anichina, Galya Popova-Daskalova, Dimitar Vuchev, Maya Guncheva, Denitsa Yancheva and Nikolai Georgiev
Appl. Sci. 2025, 15(12), 6758; https://doi.org/10.3390/app15126758 - 16 Jun 2025
Viewed by 586
Abstract
Here we presented the synthesis of two groups of heterocyclic benzimidazole derivatives—methanimines 4ac and hydrazones 6ac. In vitro biological activity screening of the compounds was performed on isolated encapsulated muscle larvae of Trichinella spiralis. All tested compounds [...] Read more.
Here we presented the synthesis of two groups of heterocyclic benzimidazole derivatives—methanimines 4ac and hydrazones 6ac. In vitro biological activity screening of the compounds was performed on isolated encapsulated muscle larvae of Trichinella spiralis. All tested compounds showed higher efficacy than albendazole, with compound 4a demonstrating activity comparable to ivermectin. Structure–activity relationship (SAR) analysis revealed that methanimines 4ac, containing a thiophene moiety, were more effective than their hydrazone counterparts, highlighting the beneficial synergy between benzimidazole and thiophene pharmacophores. However, replacing the -N=CH- linker in compound 4a with -NH-N=CH- (as in compound 6a) led to a 23% reduction in activity, suggesting that methaniamines possess superior larvicidal potency under equivalent structural conditions. The ability of the studied compounds to interfere with the tubulin polymerization was studied spectrophotometrically on purified porcine brain. Of note, the tested benzimidazoles 4ab and 6ab had no discernible effect on tubulin polymerization. An in silico study of the physicochemical and pharmacokinetic characteristics of the novel synthesized heterocyclic benzimidazoles showed that they were characterized by a significant degree of drug-likeness and optimal properties for antineurotrichinellosis agents. Full article
(This article belongs to the Special Issue Next-Generation Drug Delivery Technology and Drug Design)
Show Figures

Figure 1

13 pages, 776 KiB  
Article
In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli
by Ali Atoom, Bayan Alzubi, Dana Barakat, Rana Abu-Gheyab, Dalia Ismail-Agha, Awatef Al-Kaabneh and Nawfal Numan
Antibiotics 2025, 14(6), 603; https://doi.org/10.3390/antibiotics14060603 - 13 Jun 2025
Viewed by 891
Abstract
Background: Urinary tract infections (UTIs) caused by the multidrug resistance (MDR) phenotype termed extended-spectrum beta lactamase (ESBL)-producing E. coli is a significant and growing global health concern. In response to the rising prevalence, the novel Beta Lactam-Beta Lactamase inhibitor (BL/BLI) combinations have been [...] Read more.
Background: Urinary tract infections (UTIs) caused by the multidrug resistance (MDR) phenotype termed extended-spectrum beta lactamase (ESBL)-producing E. coli is a significant and growing global health concern. In response to the rising prevalence, the novel Beta Lactam-Beta Lactamase inhibitor (BL/BLI) combinations have been introduced in recent years. While these agents have shown efficacy, their clinical utility is constrained by high cost, limited availability, and emerging resistance mechanisms. The rational of this study was to test the in vitro activity of a cost-effective alternative to currently available BL–BLI combinations against ESBL-producing E. coli isolated from urinary tract infections (UTIs). Objective: This study investigates the in vitro antimicrobial activity of cefaclor (CFC), both as monotherapy and in combination with the β-lactamase inhibitors clavulanic acid (CA) and sulbactam (SUL), against 52 ESBL-producing E. coli isolates derived from urine cultures of patients diagnosed with UTIs. Methods: The susceptibility ranges were measured by disk diffusion and minimal inhibitory concentration (MIC) methods. In addition, the Time kill assay and disk approximation method were performed to measure the synergistic and bactericidal activity of the approached combination. Results: The MIC50 and MIC90 for CFC were improved from more than 128 µg/mL to 8/4 µg/mL when CFC was combined with either CA or SUL. The triple combination format of CFC/CA/SUL showed MIC50 and MIC90 values at 8/4/4 µg/mL and 64/32/32 µg/mL, respectively. The recovered susceptibility percentages were 54%, 54%, and 58% for CFC/CA, CFC/SUL, and CFC/CA/SUL combinations, respectively. Disk approximation and time–kill assay results revealed synergy and bactericidal effects when CFC combined with CA or SUL for isolates that showed susceptibility restorations of CFC when coupled with CA or SUL by the disk diffusion and MIC method. Conclusions: This study proposes a cost-effective combination that could mitigate resistance development and offer a sparing option to last resort treatment choices including carbapenems. However, testing efficacy in a clinical setting is crucial. Full article
Show Figures

Figure 1

20 pages, 6775 KiB  
Article
Novel Type I/II Carbazole/Benzindole Photosensitizers Achieve Chemo-Photodynamic Synergistic Therapy for Suppressing Solid Tumors and Drug-Resistant Bacterial Infections
by Zihao Wang, Xiao Liu, Yifan Ma, Jiaxin Zheng, Ke Xu, Yingxue Chang, Zhaoyan Ye, Yong Ling and Lei Wang
Molecules 2025, 30(12), 2560; https://doi.org/10.3390/molecules30122560 - 12 Jun 2025
Viewed by 442
Abstract
To address the clinical challenges posed by symbiotic drug-resistant bacterial infections and tumor microenvironments, this study designed and synthesized novel carbazole/benzindole-based photosensitizers A1A4, systematically evaluating their antitumor and antibacterial therapeutic potential through chemo-photodynamic therapy. Especially, compound A4 demonstrated potent Type [...] Read more.
To address the clinical challenges posed by symbiotic drug-resistant bacterial infections and tumor microenvironments, this study designed and synthesized novel carbazole/benzindole-based photosensitizers A1A4, systematically evaluating their antitumor and antibacterial therapeutic potential through chemo-photodynamic therapy. Especially, compound A4 demonstrated potent Type I/II reactive oxygen species (ROS) generation capabilities. In vitro experiments revealed that A4 concentration-dependently inhibited HT-29 cells under hypoxic conditions (IC50 = 0.89 μM) with a prominent photodynamic index (PI > 9.23), and substantially promoted cancer cell programmed death. In antibacterial evaluations, A4 achieved the complete eradication of dermal MRSA infections within 7 days through ROS-mediated membrane disruption under illumination. In the HT-29 xenograft model, the PDT–chemotherapy synergy strategy achieved a tumor suppression rate of 96%. This work establishes an innovative strategy for the combinatorial management of multidrug-resistant infections and solid tumors. Full article
Show Figures

Figure 1

Back to TopTop