Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = implantable pressure sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 442 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 315
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

38 pages, 2149 KiB  
Review
Implantable Medical Electronic Devices: Sensing Mechanisms, Communication Methods, and the Biodegradable Future
by Zhengdao Chu, Yukai Zhou, Saite Li, Qiaosheng Xu and Lijia Pan
Appl. Sci. 2025, 15(13), 7599; https://doi.org/10.3390/app15137599 - 7 Jul 2025
Viewed by 796
Abstract
In the context of the relentless pursuit of precision, intelligence, and personalization within the realm of medical technology, the real-time monitoring of human physiological signals has assumed heightened significance. Implantable wireless sensor devices have exhibited extraordinary capabilities in tracking internal physiological parameters, including [...] Read more.
In the context of the relentless pursuit of precision, intelligence, and personalization within the realm of medical technology, the real-time monitoring of human physiological signals has assumed heightened significance. Implantable wireless sensor devices have exhibited extraordinary capabilities in tracking internal physiological parameters, including intraocular pressure, blood glucose levels, electrocardiographic activity, and arterial blood pressure. These devices are characterized by elevated temporal continuity and exceptional measurement accuracy. This paper undertakes an in-depth investigation into the key technologies underlying biodegradable implantable sensing devices. Initially, it expounds on diverse sensing mechanisms employed in implantable devices. Additionally, it presents common data transmission and power supply strategies for wireless sensing systems. Finally, it introduces biodegradable materials suitable for human implantation and their respective application domains and enumerates several implantable devices that are either under development or have already been commercialized. Through an in-depth and comprehensive discourse on the current state of development and extant challenges in this domain, the development trajectory of biodegradable devices is put forward. Moreover, this paper also serves as a valuable reference for the design and selection of implantable medical devices. Full article
Show Figures

Figure 1

14 pages, 5585 KiB  
Article
Experimental Study on Distributed Measurement of Internal Pressure in Lithium-Ion Batteries Using Thin-Film Sensors
by Qingyun Liu, Xiuwu Wang, Jiangong Zhu, Guiwen Jiang, Xuezhe Wei and Haifeng Dai
World Electr. Veh. J. 2025, 16(5), 270; https://doi.org/10.3390/wevj16050270 - 14 May 2025
Viewed by 893
Abstract
With the rapid development of electric vehicles, the safety and reliability of lithium-ion batteries (LIBs), as their core energy storage units, have become increasingly prominent. The variation in internal battery pressure is closely related to critical issues such as thermal runaway, mechanical deformation, [...] Read more.
With the rapid development of electric vehicles, the safety and reliability of lithium-ion batteries (LIBs), as their core energy storage units, have become increasingly prominent. The variation in internal battery pressure is closely related to critical issues such as thermal runaway, mechanical deformation, and lifespan degradation. The non-uniform distribution of internal pressure may trigger localized hot spots or even thermal runaway, posing significant threats to vehicle safety. However, traditional external monitoring methods struggle to accurately reflect internal pressure data, and single-point external pressure measurements fail to capture the true internal state of the battery, particularly within battery modules. This limitation hinders efficient battery management. Addressing the application needs of electric vehicle power batteries, this study integrates thin-film pressure sensors into LIBs through the integrated functional electrode (IFE), enabling distributed in situ monitoring of internal pressure during long-term cycling. Compared to non-implanted benchmark batteries, this design does not compromise electrochemical performance. By analyzing the pressure distribution and evolution data during long-term cycling, the study reveals the dynamic patterns of internal pressure changes in LIBs, offering new solutions for safety warnings and performance optimization of electric vehicle power batteries. This research provides an innovative approach for the internal state monitoring of power batteries, significantly enhancing the safety and reliability of electric vehicle battery systems. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Diagnosis: Health and Safety)
Show Figures

Figure 1

24 pages, 7739 KiB  
Article
Continuous Intracranial Pressure Monitoring in Children with ‘Benign’ External Hydrocephalus
by Maria A. Poca, Diego Lopez-Bermeo, Paola Cano, Federica Maruccia, Carolina Fajardo, Ignacio Delgado, Francisca Munar, Anna Garcia-Merino and Juan Sahuquillo
J. Clin. Med. 2025, 14(9), 3042; https://doi.org/10.3390/jcm14093042 - 28 Apr 2025
Viewed by 824
Abstract
Background/Objectives: This study aimed to evaluate the results of continuous intracranial pressure (ICP) monitoring in children with macrocephaly or rapidly increasing head circumference (HC) diagnosed as benign external hydrocephalus (BEH). Here, we report the absolute ICP measurements, ICP pulsatility, and slow ICP waves [...] Read more.
Background/Objectives: This study aimed to evaluate the results of continuous intracranial pressure (ICP) monitoring in children with macrocephaly or rapidly increasing head circumference (HC) diagnosed as benign external hydrocephalus (BEH). Here, we report the absolute ICP measurements, ICP pulsatility, and slow ICP waves after at least 48 h of continuous monitoring in a cohort of 36 children diagnosed with BEH. Methods: A prospective study of continuous ICP monitoring was performed in 36 consecutive children with macrocephaly (HC above the 97.5th percentile) or rapidly increasing HC (at least crossing two percentile curves), diagnosed with BEH (22 boys and 14 girls with a mean age of 23.6 ± 13.3 months, minimum: 6, maximum 65), using an epidural sensor. For the first four children in the study, hard copies of the ICP values were obtained using an analog recorder. Starting from the fifth patient, the ICP signal was sampled at 200 Hz and stored on a computer using a computer-based data acquisition and analysis system (LabChart v8.1 software). Results: Clinical signs or symptoms were identified in 20 patients (55.6%). Delayed motor or language development was noted in 18 (50%) and 20 (55.6%) patients, respectively. In 13 patients, the enlargement of the subarachnoid spaces was found to be associated with an additional condition. The median of mean ICP values for the entire cohort was 17 mmHg, with a minimum of 6.7 mmHg and a maximum of 29 mmHg. All patients exhibited a percentage of B waves exceeding 20% during the night, with a median value of 47.4% (min: 23.2, max: 75). Three children had nocturnal plateau waves. At night, regular ICP recordings alternated with periods of significant increases in ICP, often exceeding 10 mmHg above baseline values. High-amplitude B waves were noted during these episodes, and the amplitude of the cardiac waveform at the peak of the B waves was consistently greater than 5 mmHg, displaying an abnormal morphology (P2 > P1). A ventriculoperitoneal shunt was implanted in 30 of the 36 patients. Conclusions: Patients with BEH may present significant abnormalities in ICP. Monitoring this variable in certain cases can assist in determining the necessity for surgical treatment. Full article
(This article belongs to the Special Issue State of the Art in Pediatric Neurosurgery)
Show Figures

Graphical abstract

15 pages, 8617 KiB  
Article
Integrated Sensors Based on Low-Temperature Co-Fired Ceramic Technology for the Inside Pressure and Temperature Monitoring of Lithium-Ion Batteries
by Wanjia Han, Mingsheng Ma, Yitong Guo, Zexi Yang, Zeyan Liu, Feng Liu, Jingjing Feng, Faqiang Zhang, Yingchun Lyu, Shigang Lu, Yongxiang Li, Jianjiang Bian and Zhifu Liu
Sensors 2025, 25(7), 2095; https://doi.org/10.3390/s25072095 - 27 Mar 2025
Cited by 1 | Viewed by 2838
Abstract
Monitoring internal pressure and temperature in lithium-ion batteries is essential for investigating internal chemical reactions, failure mechanisms, and providing early warnings of thermal runaway. The existing sensors face challenges in withstanding the high temperatures and corrosive electrolytes inside lithium-ion batteries. This work develops [...] Read more.
Monitoring internal pressure and temperature in lithium-ion batteries is essential for investigating internal chemical reactions, failure mechanisms, and providing early warnings of thermal runaway. The existing sensors face challenges in withstanding the high temperatures and corrosive electrolytes inside lithium-ion batteries. This work develops an integrated sensor with high robustness using low-temperature co-fired ceramic (LTCC) technology, which incorporates a multilayer ceramic circuit board, a digital pulse temperature sensor, a MEMS pressure sensor, and a microcontroller. It offers the real-time monitoring of pressure and temperature with digital output and calibrated accuracy, achieving a pressure resolution of 1 kPa with 0.085% F.S. accuracy and a temperature resolution of 0.1 °C with deviations under 0.5 °C. The pressure and temperature signals are independently output with drift below 0.067 kPa/°C. The integrated sensors were implanted into a pouch and prototype lithium-ion battery, respectively, for charge–discharge cycle monitoring. The results demonstrated that the integrated sensors could detect cyclic variations in pressure and temperature during charging and discharging until battery failure. Furthermore, the integrated sensors showed high stability after being immersed 60 days in the corrosive electrolyte, suggesting their potential as a novel method for monitoring the internal pressure and temperature of lithium-ion batteries. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

17 pages, 808 KiB  
Article
Repackaging and Performance Analysis of Implantable Pressure Sensor
by Liu Cui, Shuangkui Wang, Kai Zhao and Zhisen Si
Sensors 2025, 25(3), 651; https://doi.org/10.3390/s25030651 - 22 Jan 2025
Viewed by 1160
Abstract
In recent years, repackaging technology has been widely used in miniaturized implantable pressure sensors. However, the current packaging structure still has significant problems regarding biocompatibility, environmental adaptability, and measurement accuracy, which greatly limits its application in vivo measurement systems. In this paper, we [...] Read more.
In recent years, repackaging technology has been widely used in miniaturized implantable pressure sensors. However, the current packaging structure still has significant problems regarding biocompatibility, environmental adaptability, and measurement accuracy, which greatly limits its application in vivo measurement systems. In this paper, we report a method for implantable pressure sensor repackaging based on silicone oil, polydimethylsiloxane (PDMS) film, and polymer (parylene) coating. A systematic investigation using finite element analysis is conducted to assess the impact of packaging components on sensor performance, providing a solid theoretical foundation for packaging optimization. Experimental results demonstrate that when the parylene coating thickness is below 30 µm, the sensors exhibit superior linearity, repeatability, and reliability, along with exceptional stability and dynamic response across clinically relevant pressure ranges. This research provides valuable insights into the packaging design of implantable pressure sensors, facilitating the development of more stable, reliable, and cost-effective sensors for in vivo measurement systems. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 1597 KiB  
Article
Case Series Evaluating the Relationship of SGLT2 Inhibition to Pulmonary Artery Pressure and Non-Invasive Cardiopulmonary Parameters in HFpEF/HFmrEF Patients—A Pilot Study
by Ester Judith Herrmann, Michael Guckert, Dimitri Gruen, Till Keller, Khodr Tello, Werner Seeger, Samuel Sossalla and Birgit Assmus
Sensors 2025, 25(3), 605; https://doi.org/10.3390/s25030605 - 21 Jan 2025
Viewed by 2892
Abstract
The initiation of sodium–glucose cotransporter 2 (SGLT2) inhibitor treatment was shown to reduce pulmonary artery pressure (PAP) in New York Heart Association (NYHA) class III heart failure (HF) patients with an implanted PAP sensor. We aimed to investigate the impact of SGLT2-I initiation [...] Read more.
The initiation of sodium–glucose cotransporter 2 (SGLT2) inhibitor treatment was shown to reduce pulmonary artery pressure (PAP) in New York Heart Association (NYHA) class III heart failure (HF) patients with an implanted PAP sensor. We aimed to investigate the impact of SGLT2-I initiation on pulmonary vascular resistance (PVR), pulmonary capillary wedge pressure (PCWP), pulmonary arterial capacitance (PAC), and right ventricle (RV) to PA (RV-PA) coupling in a pilot cohort of HF with preserved/mildly reduced ejection fraction (HFpEF/HFmrEF) patients and whether PVR and PCWP can be serially calculated non-invasively using PAP sensor data during follow-up. Methods: Right heart catheterization parameters (PVR, PCWP, and PAC) were obtained at sensor implantation and echocardiographic assessments (E/E’, RV-PA coupling, and RV cardiac output) were made at baseline and every 3 months. SGLT2 inhibition was initiated after 3 months of telemedical care. Three methods for calculating PVR and PCWP were compared using Bland–Altman plots and Spearman’s correlation. Results: In 13 HF patients (mean age 77 ± 4 years), there were no significant changes in PAP, PVR, PCWP, RV-PA coupling, or PAC over 9 months (all p-values > 0.05), including after SGLT2-I initiation. PVR values were closely correlated across the three methods (PVRNew and PVRNew Tedford (r = 0.614, p < 0.001), PVREcho and PVRNew Tedford (r = 0.446, p = 0.006), and PVREcho and PVRNew (r = 0.394, p = 0.016)), but PCWP methods lacked reliable association (PCWPEcho and PCWPNew (r = 0.180, p = 0.332). Conclusions: No changes in cardiopulmonary hemodynamics were detected after hemodynamic telemonitoring either prior to or following SGLT2-I initiation. Different PVR assessment methods yielded comparable results, whereas PCWP methods were not associated with each other. Further investigations with larger cohorts including repeated right heart catheterization are planned. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Clinical Characteristics and Outcomes in Heart Failure Patients with Implantable Pulmonary Artery Pressure Monitors: A Single Centre Irish Experience
by Niall Leahy, Cillian O’Brien, Sara Essa Alsubai, Eileen Coen, Darragh Murphy and Faisal Sharif
J. Cardiovasc. Dev. Dis. 2025, 12(1), 25; https://doi.org/10.3390/jcdd12010025 - 14 Jan 2025
Viewed by 2821
Abstract
Background: Hospitalisation for acute decompensated heart failure (HF) portends a poor prognosis. Fluid retention manifesting in dyspnoea and oedema are important clinical features of decompensated heart failure and drive hospital admissions. Intracardiac and pulmonary artery pressure (PAP) monitoring can help predict heart failure [...] Read more.
Background: Hospitalisation for acute decompensated heart failure (HF) portends a poor prognosis. Fluid retention manifesting in dyspnoea and oedema are important clinical features of decompensated heart failure and drive hospital admissions. Intracardiac and pulmonary artery pressure (PAP) monitoring can help predict heart failure decompensation, as changes in these haemodynamics occur before clinical congestion manifests. Methods: A retrospective single centre analysis of patients who underwent insertion of the Cordella™ PA Sensor System (Endotronix, Inc., Chicago, IL, USA) in University Hospital Galway, Ireland, as part of three separate clinical trials—SIRONA 1, SIRONA 2, PROACTIVE HF, was performed. The primary clinical outcome assessed was the difference between HF hospitalisation pre- and post-sensor implantation. Results: In total, there were 33 patients with symptomatic HF who underwent device insertion between 2018 and 2023. All patients had NYHA class 3 heart failure, and 48.5% (n = 16) of patients had HF with reduced ejection fraction. Only one device-related complication was noted, and no pressure sensor failures occurred. In total, there were 26 admissions for HF decompensation 1-year pre-device insertion and only three admissions post-insertion. The difference in the mean number of HF hospitalisations per patient pre- and post-device insertion was 0.70 (p < 0.0001). The difference in mean NYHA class score pre- and post-insertion was 1.0 (p < 0.001). Conclusions: Data from this single-centre cohort study have shown that the insertion of the Cordella™ PA Sensor System in symptomatic HF patients was safe and resulted in statistically significant improvements in HF hospitalisations and NYHA class. Full article
Show Figures

Figure 1

34 pages, 15971 KiB  
Review
MEMS Acoustic Sensors: Charting the Path from Research to Real-World Applications
by Qingyi Wang, Yang Zhang, Sizhe Cheng, Xianyang Wang, Shengjun Wu and Xufeng Liu
Micromachines 2025, 16(1), 43; https://doi.org/10.3390/mi16010043 - 30 Dec 2024
Cited by 3 | Viewed by 6480
Abstract
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read [...] Read more.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal’s information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring. Through different sensing mechanisms, they can be used to detect sound energy density, acoustic pressure distribution, and sound wave direction. This article focuses on piezoelectric, piezoresistive, capacitive, and optical MEMS acoustic sensors, showcasing their development in recent years, as well as innovations in their structure, process, and design methods. Then, this review compares the performance of devices with similar working principles. MEMS acoustic sensors have been increasingly widely applied in various fields, including traditional advantage areas such as microphones, stethoscopes, hydrophones, and ultrasound imaging, and cutting-edge fields such as biomedical wearable and implantable devices. Full article
(This article belongs to the Special Issue Recent Advances in Silicon-Based MEMS Sensors and Actuators)
Show Figures

Figure 1

18 pages, 10549 KiB  
Article
Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses
by Dmitrii Burovikhin, Panagiota Kitsopoulos, Michael Lauxmann and Karl Grosh
Sensors 2024, 24(24), 8084; https://doi.org/10.3390/s24248084 - 18 Dec 2024
Cited by 1 | Viewed by 715
Abstract
In this study, a method for determining the optimal location and orientation of an implantable piezoelectric accelerometer on the short process of the incus is presented. The accelerometer is intended to be used as a replacement for an external microphone to enable totally [...] Read more.
In this study, a method for determining the optimal location and orientation of an implantable piezoelectric accelerometer on the short process of the incus is presented. The accelerometer is intended to be used as a replacement for an external microphone to enable totally implantable auditory prostheses. The optimal orientation of the sensor and the best attachment point are determined based on two criteria—maximum pressure sensitivity sum and minimum loudness level sum. The best location is determined to be near the incudomalleolar joint. We find that the angular orientation of the sensor is critical and provide guidelines on that orientation. The method described in this paper can be used to further optimize the design and performance of the accelerometer. Full article
(This article belongs to the Special Issue Novel Implantable Sensors and Biomedical Applications)
Show Figures

Figure 1

18 pages, 7507 KiB  
Article
Fabrication of an Integrated, Flexible, Wireless Pressure Sensor Array for the Monitoring of Ventricular Pressure
by Natiely Hernández-Sebastián, Daniela Diaz-Alonso, Bernardino Barrientos-García, Francisco Javier Renero-Carrillo and Wilfrido Calleja-Arriaga
Micromachines 2024, 15(12), 1435; https://doi.org/10.3390/mi15121435 - 28 Nov 2024
Cited by 1 | Viewed by 1691
Abstract
This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form [...] Read more.
This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set. The proposed arrangement (capacitor array and dual-layer coil) allows us to optimize the operation pressure range and sensing distance. The use of polyimide as both the flexible substrate and the passivation material is a key feature, ensuring a biocompatible, implantable set that is mechanically flexible and can be folded to a compact size to achieve minimally invasive implantation. An external readout device has also been developed using a discrete printed circuit board (PCB) approach to support pressure measurements. The pressure responsivity of the sensor was validated to the laboratory level using a controlled pressure chamber. The results obtained show that the capacitance value of the sensor changed from 5.68 pF to 33.26 pF as the pressure varied from 0 to 300 mmHg. Correspondingly, the resonance frequency of the implantable set shifted from 12.75 MHz to 5.27 MHz. The sensitivity of the capacitive sensor was approximately 0.58 pF/mmHg and the typical response time was 220 ms. The wireless system performance was evaluated in both air and synthetic biological tissue using a Maxwell–Wien bridge circuit. The results showed a sensing distance longer than 3.5 cm, even under moderate misalignment conditions (up to 1.5 cm). The output voltage was successfully measured, ranging from 502.54 mV to 538.29 mV, throughout the full pressure range, with a measurement error of ±2.2 mV. Full article
(This article belongs to the Special Issue Flexible Intelligent Sensors: Design, Fabrication and Applications)
Show Figures

Figure 1

14 pages, 4196 KiB  
Article
Edge Computing and Fault Diagnosis of Rotating Machinery Based on MobileNet in Wireless Sensor Networks for Mechanical Vibration
by Yi Huang, Shuang Liang, Tingqiong Cui, Xiaojing Mu, Tianhong Luo, Shengxue Wang and Guangyong Wu
Sensors 2024, 24(16), 5156; https://doi.org/10.3390/s24165156 - 9 Aug 2024
Cited by 4 | Viewed by 2100
Abstract
With the rapid development of the Industrial Internet of Things in rotating machinery, the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for rotating machinery have escalated, necessitating enhanced real-time [...] Read more.
With the rapid development of the Industrial Internet of Things in rotating machinery, the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for rotating machinery have escalated, necessitating enhanced real-time data processing capabilities. Conventional methods, reliant on experiential approaches, have proven inefficient in meeting these evolving challenges. To this end, a fault detection method for rotating machinery based on mobileNet in MvWSNs is proposed to address these intractable issues. The small and light deep learning model is helpful to realize nearly real-time sensing and fault detection, lightening the communication pressure of MvWSNs. The well-trained deep learning is implanted on the MvWSNs sensor node, an edge computing platform developed via embedded STM32 microcontrollers (STMicroelectronics International NV, Geneva, Switzerland). Data acquisition, data processing, and data classification are all executed on the computing- and energy-constrained sensor node. The experimental results demonstrate that the proposed fault detection method can achieve about 0.99 for the DDS dataset and an accuracy of 0.98 in the MvWSNs sensor node. Furthermore, the final transmission data size is only 0.1% compared to the original data size. It is also a time-saving method that can be accomplished within 135 ms while the raw data will take about 1000 ms to transmit to the monitoring center when there are four sensor nodes in the network. Thus, the proposed edge computing method shows good application prospects in fault detection and control of rotating machinery with high time sensitivity. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Condition Monitoring)
Show Figures

Figure 1

12 pages, 3219 KiB  
Article
Fluid–Solid Interaction Analysis for Developing In-Situ Strain and Flow Sensors for Prosthetic Valve Monitoring
by Silvia Puleo, Salvatore Pasta, Francesco Scardulla and Leonardo D’Acquisto
Sensors 2024, 24(15), 5040; https://doi.org/10.3390/s24155040 - 4 Aug 2024
Cited by 1 | Viewed by 1666
Abstract
Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant [...] Read more.
Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid–solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration. Full article
(This article belongs to the Special Issue Feature Papers in Wearables 2024)
Show Figures

Figure 1

11 pages, 3581 KiB  
Article
All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring
by Zeyi Tang, Jinming Jian, Mingxin Guo, Shangjian Liu, Shourui Ji, Yilong Li, Houfang Liu, Tianqi Shao, Jian Gao, Yi Yang and Tianling Ren
Sensors 2024, 24(14), 4580; https://doi.org/10.3390/s24144580 - 15 Jul 2024
Cited by 3 | Viewed by 3486
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on [...] Read more.
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin’s irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))−1 cm−2, a broad detection range (1–30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

13 pages, 1733 KiB  
Article
Wireless and Battery-Free Sensor for Interstitial Fluid Pressure Monitoring
by Chengyang Qian, Fan Ye, Junye Li, Peter Tseng and Michelle Khine
Sensors 2024, 24(14), 4429; https://doi.org/10.3390/s24144429 - 9 Jul 2024
Cited by 2 | Viewed by 4980
Abstract
Congestive heart failure (CHF) is a fatal disease with progressive severity and no cure; the heart’s inability to adequately pump blood leads to fluid accumulation and frequent hospital readmissions after initial treatments. Therefore, it is imperative to continuously monitor CHF patients during its [...] Read more.
Congestive heart failure (CHF) is a fatal disease with progressive severity and no cure; the heart’s inability to adequately pump blood leads to fluid accumulation and frequent hospital readmissions after initial treatments. Therefore, it is imperative to continuously monitor CHF patients during its early stages to slow its progression and enable timely medical interventions for optimal treatment. An increase in interstitial fluid pressure (IFP) is indicative of acute CHF exacerbation, making IFP a viable biomarker for predicting upcoming CHF if continuously monitored. In this paper, we present an inductor-capacitor (LC) sensor for subcutaneous wireless and continuous IFP monitoring. The sensor is composed of inexpensive planar copper coils defined by a simple craft cutter, which serves as both the inductor and capacitor. Because of its sensing mechanism, the sensor does not require batteries and can wirelessly transmit pressure information. The sensor has a low-profile form factor for subcutaneous implantation and can communicate with a readout device through 4 layers of skin (12.7 mm thick in total). With a soft silicone rubber as the dielectric material between the copper coils, the sensor demonstrates an average sensitivity as high as –8.03 MHz/mmHg during in vitro simulations. Full article
(This article belongs to the Special Issue Wearable Sensors for Physical Activity and Healthcare Monitoring)
Show Figures

Figure 1

Back to TopTop