Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,876)

Search Parameters:
Keywords = immune–inflammatory markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1246 KB  
Article
The Role of NLR, PLR, SII and CRP Pre- and Post-Treatment with Infliximab in Rheumatoid Arthritis
by Diellor Rizaj, Avni Kryeziu, Artidon Kelmendi, Behar Raci, Shend Kryeziu and Visar Baftijari
Biomedicines 2026, 14(1), 255; https://doi.org/10.3390/biomedicines14010255 (registering DOI) - 22 Jan 2026
Abstract
Background: Inflammatory activity in rheumatoid arthritis can be determined by normal blood count ratios such as Neutrophil Lymphocyte Ratio (NLR), Platelet Lymphocyte Ratio (PLR), Systemic Immune Inflammation Index (SII), and C-reactive Protein (CRP). Objective: The aim of this research is to [...] Read more.
Background: Inflammatory activity in rheumatoid arthritis can be determined by normal blood count ratios such as Neutrophil Lymphocyte Ratio (NLR), Platelet Lymphocyte Ratio (PLR), Systemic Immune Inflammation Index (SII), and C-reactive Protein (CRP). Objective: The aim of this research is to determine how these markers change after therapy and whether their pre- and post-treatment differences follow patterns that allow for simple parametric analyses. Methods: A prospective cohort of 52 RA patients (30 females and 22 males) was examined. The patients’ blood samples were tested at baseline and at the end of their 6-month Infliximab treatment. Hematologic markers such as NLR, PLR, and SII were calculated from the complete blood count (CBC), and CRP levels were measured. The statistical methods of Shapiro–Wilk (SW), Kolmogorov–Smirnov (KS), and Anderson–Darling (AD) were used, and later, paired t-tests were used to generate statistics where necessary. Results: Post-treatment measurements were consistently lower for all four biomarkers. QQ-plots and formal tests revealed that the differences between findings were essentially normal, allowing for paired t-tests. The mean decreases were as follows: NLR −1.10 (95% CI −1.48 to −0.71), PLR −43.0 (−55.4 to −30.7), SII −299 (−388 to −211), and CRP −11.36 (−13.18 to −9.54), all p < 0.001. CRP showed the greatest drop, with significant decreases in PLR and SII and a moderate decline in NLR, indicating therapy-related attenuation of systemic inflammation. Conclusion: The study shows that six months of infliximab therapy results in a consistent post-treatment decrease in all four biomarkers: NLR, PLR, SII, and CRP. Because the pre-post differences were roughly normal, CRP revealed the greatest decrease, with significant decreases in PLR and SII and a moderate decrease in NLR, consistent with systemic inflammation reduction. When combined, the CBC-derived indices track with CRP and can serve as practical, low-cost markers for monitoring therapy response in RA, despite the single-arm design. Full article
13 pages, 929 KB  
Article
Effect of Bladder Injections of Botulinum Neurotoxin A on Biomarkers Associated with Inflammation and Urinary Infections in Patients with Neurogenic Detrusor Overactivity-Associated Incontinence: A Pilot, Prospective, Human Study
by Sotirios Gatsos, Elena Constantinou, Dimitrios Koutsoumparis, Michael Samarinas, Konstantinos Drosos, Maria Papaioannou, Andigoni Malousi, Eudoxia G. Hatzivassiliou and Apostolos Apostolidis
Int. J. Mol. Sci. 2026, 27(2), 1110; https://doi.org/10.3390/ijms27021110 (registering DOI) - 22 Jan 2026
Abstract
Conflicting data exist regarding the effect of intradetrusor BoNT/A on the incidence of urinary tract infections (UTIs) in patients with neurogenic detrusor overactivity (NDO), contrary to the increase in UTIs noted in patients with idiopathic OAB. Associations between UTIs, chronic inflammation, and bladder [...] Read more.
Conflicting data exist regarding the effect of intradetrusor BoNT/A on the incidence of urinary tract infections (UTIs) in patients with neurogenic detrusor overactivity (NDO), contrary to the increase in UTIs noted in patients with idiopathic OAB. Associations between UTIs, chronic inflammation, and bladder overactivity are acknowledged, albeit not fully understood. Chronic bladder inflammation is common in both NDO and OAB patients, and both animal and human studies suggest a beneficial effect of BoNT/A on both urinary and systemic levels of inflammatory markers. To explore whether intradetrusor BoNT/A injections affect the background for the incidence of UTIs in humans, we investigated in parallel the effect of intradetrusor BoNT/A on the incidence of UTIs and on the urine mRNA levels of urinary pathogen-detecting Toll-like receptors TLR2, TLR4, and TLR5 and of factors acting as intermediates of immune response and promoters of inflammatory reactions (IL1β, IL6, TNFα, and PGE2). For this purpose, we recruited 22 patients with NDO-associated incontinence who received at least one bladder BoNT/A injection. Urine specimens for the study of UTIs were obtained before the procedure and at routine urodynamic follow-ups at 4–6 weeks, 6 and 12 months post-BoNT/A, and at clinical relapse, while urine specimens for the study of biomarkers were collected at the time of BoNT/A injection and at the abovementioned follow-ups thereafter. Urine specimens from 10 adult healthy volunteers with no OAB symptoms served as the control group in the biomarker study. The genes of interest in the urine were studied by RNA isolation, reverse transcription, and real-time PCR. The urine mRNAs of all biomarkers tested appeared to be upregulated in the patients’ samples compared with the controls, albeit only TLR2 and TLR5 mRNA increases were statistically significant. A progressive downregulation of TLR2, TLR5, IL1β, and IL6 urine mRNAs was noted at one and six months post-BoNT/A. TNFα and PGE2 mRNAs showed a transient increase at one month post-BoNT/A followed by a dramatic drop at the six months’ follow-up. A similar trend for progressive decline was also noticed in the prevalence of both positive urine cultures and symptomatic UTIs in the same timepoints and additionally at 12 months post-treatment in patients who still benefited from the BoNT/A treatment. Upon clinical relapse, the mRNA levels of PGE2, IL1β, and IL6 increased in parallel with an increase in the prevalence of UTIs, while the levels of TLRs and TNF-α did not follow the same trend. In summary, intradetrusor BoNT/A injections achieved significant decreases in the urine mRNA levels of pathogen-detecting TLRs, immune response, and inflammation mediator cytokines and PGE2 in our cohort of patients with NDO-associated incontinence. In parallel, decreases were noted in both the incidence of symptomatic UTIs and rates of positive urine cultures. At the time of clinical relapse, the markers of inflammation and immune response, but not TLRs, were upregulated in parallel with the increased incidence of UTIs, suggesting that the studied genes PGE2, IL1β, and IL6 could be further explored as potential biomarkers for inflammation/immune response and UTIs in the neurogenic population. Full article
Show Figures

Figure 1

22 pages, 3223 KB  
Article
Inhibition of the T2R/α-Defensin Pathway Mediates Nauclea officinalis-Induced Intestinal Barrier Dysfunction and Microbiota Alterations
by Xiaoman Li, Yao Yi, Tegele Si, Lianqian Wang, Zhiyong Hu, Jiayue Xiong, Xuemei Bao, Jun Jun, Sachurula Bao, Xiaoping Ji and Minghai Fu
Toxics 2026, 14(1), 99; https://doi.org/10.3390/toxics14010099 (registering DOI) - 21 Jan 2026
Abstract
Clinical reports have shown that administration of Nauclea officinalis (Danmu in Chinese, DM) preparations may cause significant gastrointestinal discomfort. This study aimed to systematically evaluate the adverse effects of DM and its primary active constituent, strictosamide, on gastrointestinal motility, intestinal barrier integrity, and [...] Read more.
Clinical reports have shown that administration of Nauclea officinalis (Danmu in Chinese, DM) preparations may cause significant gastrointestinal discomfort. This study aimed to systematically evaluate the adverse effects of DM and its primary active constituent, strictosamide, on gastrointestinal motility, intestinal barrier integrity, and gut microbiota homeostasis. Furthermore, we sought to investigate the potential role of the bitter taste receptor (T2R) signaling pathway in mediating these effects. In vitro cell cultures and ex vivo intestinal tissues were employed to assess cell viability and molecular alterations. In vivo studies involved short-term (2 weeks) gavage of DM (0.54 and 1.08 g/kg) and long-term (16 weeks) intervention (0.4, 0.8, and 1.2 g/kg) in rodents. Evaluations included histopathological examination, serum levels of cytokines and oxidative stress markers (ELISA), expression of tight junction proteins (Western blot and qPCR), and 16S rDNA sequencing of cecal microbiota. Mechanistic analyses focused on α-defensin secretion and T2R-associated gene and protein expression. Administration of DM resulted in significant gastrointestinal dysfunction, characterized by delayed intestinal propulsion and increased gastric retention. Dose-dependent histopathological damage, disruption of the intestinal barrier (reduced occludin and claudin-1 expression), and elevated levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β), oxidative stress markers (MDA, SOD, and GSH-Px), and immune mediators (IFN-γ) were observed. Gut microbiota analysis revealed dysbiosis, marked by a decline in beneficial genera (e.g., Mucispirillum, Butyricicoccus, Roseburia) and an increase in potentially pathogenic bacteria (e.g., Citrobacter, Helicobacter). Mechanistically, DM suppressed α-defensin secretion and downregulated the expression of TAS2R108, TAS2R138, and Gα-gustducin both in vitro and in vivo. DM and strictosamide disrupt gut microbiota composition and compromise intestinal barrier function, likely through inhibition of the T2R/α-defensin pathway. These findings provide important mechanistic insights into drug-induced gastrointestinal toxicity and underscore the potential risks associated with prolonged use of DM-containing preparations. Full article
(This article belongs to the Special Issue Mechanisms of Toxicity of Chemical Compounds and Natural Compounds)
Show Figures

Graphical abstract

15 pages, 2617 KB  
Article
Mucin Biology as a Local Diagnostic and Promising Therapeutic Target in Endometriosis: Expression and Glycosylation Profiling
by Renata V. Velho, Christoph Schüßler, Lisa Strey, Stefanie Weigel, Susanne Thomsen, Franziska Ebert, Jonathan Pohl, Sylvia Mechsner and Maria Maares
Int. J. Mol. Sci. 2026, 27(2), 1010; https://doi.org/10.3390/ijms27021010 - 20 Jan 2026
Abstract
Endometriosis (EM) is a chronic inflammatory disease characterized by the growth of endometrial-like tissue outside the uterus, yet its molecular mechanisms remain poorly understood. This study investigated the expression of mucins (MUC1, MUC2, MUC5AC, MUC6, MUC16) and their O-glycans in endometriotic lesions, [...] Read more.
Endometriosis (EM) is a chronic inflammatory disease characterized by the growth of endometrial-like tissue outside the uterus, yet its molecular mechanisms remain poorly understood. This study investigated the expression of mucins (MUC1, MUC2, MUC5AC, MUC6, MUC16) and their O-glycans in endometriotic lesions, given their roles in epithelial protection, adhesion, and immune modulation. Using immunohistochemistry, Western blotting, lectin profiling, histochemical staining, and transcriptomic analysis, we compared mucin levels and glycosylation patterns in eutopic and ectopic tissues from women with and without endometriosis and measured mucin-derived tumor markers in serum (CA 125/MUC16 and CA 15-3/MUC1) and peritoneal fluid (CA 125/MUC16). The results showed significant upregulation of all mucins in EM biopsies, with increased MUC1 transcript levels, while MUC6 and MUC16 protein levels did not always align with transcripts. Yet, tumor markers CA 125 and CA 15-3 showed no significant differences between groups. Looking at mucin distribution in biopsies of peritoneal (pEM), deep infiltrating and ovarian EM, MUC1 was significantly overexpressed in lesions of all EM forms, while MUC5AC was significantly elevated in pEM. Lectin analysis revealed specific glycan changes, including elevated core-1 O-glycans and α(1-2)-linked fucosylation, while sialylation remained unchanged. These findings demonstrate consistent mucin dysregulation and glycan alterations, implicating their roles in epithelial adhesion, immune evasion, and lesion persistence. Mucin biology thus emerges as a promising target for diagnostic and therapeutic strategies in endometriosis. Full article
Show Figures

Figure 1

19 pages, 785 KB  
Article
Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis
by Biljana Stankovic, Mihajlo Stasuk, Vladimir Gasic, Bojan Ristivojevic, Ivana Grubisa, Branka Zukic, Aleksandar Toplicanin, Olgica Latinovic Bosnjak, Brigita Smolovic, Srdjan Markovic, Aleksandra Sokic Milutinovic and Sonja Pavlovic
Biomedicines 2026, 14(1), 203; https://doi.org/10.3390/biomedicines14010203 - 17 Jan 2026
Viewed by 231
Abstract
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical [...] Read more.
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical framework. Methods: DNA from 63 CD patients treated with VDZ as first-line advanced therapy underwent whole-exome sequencing. Clinical response at week 14 classified patients as optimal responders (ORs) or suboptimal responders (SRs). Sequencing data were processed using GATK Best Practices, annotated with variant effect predictors, and filtered for rare damaging variants (damaging missense and high-confidence loss-of-function; minor allele frequency < 0.05). Variants were mapped to genes specific for SRs and ORs, and analyzed for pathway enrichment using the Reactome database. Rare-variant burden and composition differences were assessed with Fisher’s exact test and SKAT-O gene-set association analysis. Results: Suboptimal VDZ response was associated with pathways related to membrane transport (ABC-family proteins, ion channels), L1–ankyrin interactions, and bile acid recycling, while optimal response was associated with pathways involving MET signaling. SKAT-O identified lipid metabolism-related pathways as significantly different—SRs harbored variants in pro-inflammatory lipid signaling and immune cell trafficking genes (e.g., PIK3CG, CYP4F2, PLA2R1), whereas ORs carried variants in fatty acid oxidation and detoxification genes (e.g., ACADM, CYP1A1, ALDH3A2, DECR1, MMUT). Conclusions: This study underscores the potential of exome-based rare-variant analysis to stratify CD patients and guide precision medicine approaches. The identified genes and pathways are potential PGx markers for CD patients treated with VDZ. Full article
Show Figures

Figure 1

12 pages, 471 KB  
Article
The Impact of the COVID-19 Pandemic on the Clinical Course of Influenza in Hospitalised Children in the Years 2017–2025
by Zuzanna Wasielewska, Justyna Franczak, Krystyna Dobrowolska, Justyna Moppert, Małgorzata Sobolewska-Pilarczyk and Małgorzata Pawłowska
Life 2026, 16(1), 154; https://doi.org/10.3390/life16010154 - 17 Jan 2026
Viewed by 105
Abstract
Background: The COVID-19 pandemic substantially altered the epidemiology of respiratory infections. Its impact on the clinical course of influenza in hospitalised children remains insufficiently characterised. Objectives: We aimed to compare the clinical course, complications, and selected laboratory parameters of influenza in children before, [...] Read more.
Background: The COVID-19 pandemic substantially altered the epidemiology of respiratory infections. Its impact on the clinical course of influenza in hospitalised children remains insufficiently characterised. Objectives: We aimed to compare the clinical course, complications, and selected laboratory parameters of influenza in children before, during, and after the COVID-19 pandemic. Methods: This single-centre retrospective study included 553 children hospitalised with laboratory-confirmed influenza between September 2017 and August 2025. Patients were divided into three groups: pre-pandemic, pandemic, and post-pandemic. Clinical complications and inflammatory markers (CRP, PCT, neutrophil counts) were analysed. Results: Influenza-related complications occurred in 59.5% of patients and were significantly more frequent after the pandemic compared to the pre-pandemic period (64.3% vs. 52.9%, p = 0.02). Pneumonia was the most common complication across all groups, but its incidence was lowest during the pandemic. Myositis occurred most frequently during the pandemic and appears to coincide with a higher proportion of influenza B infections. No significant differences were observed in CRP, PCT concentrations, or neutropenia rates between groups. Conclusions: The COVID-19 pandemic influenced the clinical presentation of influenza in children, with a post-pandemic increase in complications. These findings may reflect delayed access to healthcare and the phenomenon of immunity debt, highlighting the need for continued surveillance and preventive strategies. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

13 pages, 963 KB  
Article
Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques
by Mar M. Sanchez, Kaitlyn Love, Alex van Schoor, Kelly Bailey, Trina Jonesteller, Jocelyne Bachevalier, Maria C. Alvarado, Kelly F. Ethun, Mark E. Wilson and Jessica Raper
Biomolecules 2026, 16(1), 159; https://doi.org/10.3390/biom16010159 - 16 Jan 2026
Viewed by 216
Abstract
Low social status leads to chronic social stress that predicts risk for physical and mental illness, especially when it starts early in life. To examine the longitudinal effects of low social status on the immune system, this study assessed the effects of low [...] Read more.
Low social status leads to chronic social stress that predicts risk for physical and mental illness, especially when it starts early in life. To examine the longitudinal effects of low social status on the immune system, this study assessed the effects of low social status on developmental secretory patterns of pro- and anti-inflammatory markers under baseline conditions, as well as in response to an immune challenge (lipopolysaccharide (LPS)-induced activation of pro- and anti-inflammatory cytokines) in a translational rhesus monkey model of lifelong social subordination stress. Baseline blood samples were collected in 27 socially housed female rhesus monkeys (13 dominants, DOM, and 14 subordinates, SUB) during infancy (6 months), the juvenile pre-pubertal period (16 months), and adulthood (9–10 years) to examine the longitudinal effects of social status on inflammatory markers in unstimulated versus LPS-stimulated conditions mimicking exposure to bacterial infection. Basal levels of the stress hormone cortisol in blood were measured to examine associations between inflammation and activity of the hypothalamic–pituitary–adrenal (HPA) axis throughout the life span. Basal peripheral levels of inflammatory markers (e.g., IL-6) increased across development in both SUB and DOM animals with no significant differences. Basal cortisol levels were significantly higher in infancy as compared to adulthood, but no significant effects of social rank were detected. However, in adulthood, SUB animals showed a cytokine-specific immune response to ex vivo LPS stimulation with significantly higher secretions of IL-1β, IL-2, and IL-10 compared to DOM animals, whereas IL-8 response to LPS was lower in SUB animals than in DOMs. This cytokine-specific response to an immune challenge that mimics bacterial infection could reflect dysregulated immune cells that may have short-term adaptation, but at the cost of longer-term risks for low-grade chronic inflammation and accelerated immune aging for socially subordinate female macaques. Full article
Show Figures

Graphical abstract

14 pages, 3478 KB  
Article
Recombinant Macrophage Migration Inhibitory Factor Derived from Trichinella spiralis Suppresses Obesity by Reducing Body Fat and Inflammation
by Seo Yeong Choi, Mi-Kyung Park, Yu Jin Jeong, Dong Gyu Han, Chaeeun Jin, Chang Woo Han, Se Bok Jang, Shin Ae Kang and Hak Sun Yu
Int. J. Mol. Sci. 2026, 27(2), 887; https://doi.org/10.3390/ijms27020887 - 15 Jan 2026
Viewed by 156
Abstract
Obesity, an escalating global health crisis, is characterized by adipose tissue hypertrophy and chronic low-grade inflammation. Although anti-obesity drugs can induce weight loss, their use is limited by adverse effects, underscoring the need for safer therapeutic strategies. In this study, we generated a [...] Read more.
Obesity, an escalating global health crisis, is characterized by adipose tissue hypertrophy and chronic low-grade inflammation. Although anti-obesity drugs can induce weight loss, their use is limited by adverse effects, underscoring the need for safer therapeutic strategies. In this study, we generated a recombinant form of Trichinella spiralis-derived macrophage migration inhibitory factor (rTs-MIF) and investigated its anti-inflammatory and anti-obesity effects via immunometabolic regulation. Male C57BL/6 mice fed a 45% high-fat diet were orally administered rTs-MIF, and its effects were evaluated by measuring fat mass, glucose metabolism, serum cytokines, liver histology, and adipose tissue parameters. In 3T3-L1 cells, we examined the effects of rTs-MIF on adipocyte differentiation, obesity-related gene expression, and intracellular signaling pathways. Oral rTs-MIF suppressed body weight gain, reduced fat mass, improved glucose levels, and decreased the food efficiency ratio. It also lowered pro-inflammatory cytokines and increased markers associated with M2 macrophages. In 3T3-L1 cells, rTs-MIF inhibited adipocyte differentiation and reduced the expression of lipogenic transcription factors and mouse Mif while modulating AKT and p44/42 MAPK signaling. These findings identify rTs-MIF as a potential bioactive candidate that ameliorates obesity by regulating the immune–metabolic axis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Obesity and Metabolic Diseases)
Show Figures

Figure 1

15 pages, 647 KB  
Review
Optimizing Drug Positioning in IBD: Clinical Predictors, Biomarkers, and Practical Approaches to Personalized Therapy
by Irene Marafini, Silvia Salvatori, Antonio Fonsi and Giovanni Monteleone
Biomedicines 2026, 14(1), 191; https://doi.org/10.3390/biomedicines14010191 - 15 Jan 2026
Viewed by 310
Abstract
Inflammatory Bowel Diseases (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, immune-mediated disorders marked by persistent and recurrent inflammation of the gastrointestinal tract. Over the past two decades, major advances in understanding the immunologic and molecular pathways that drive [...] Read more.
Inflammatory Bowel Diseases (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, immune-mediated disorders marked by persistent and recurrent inflammation of the gastrointestinal tract. Over the past two decades, major advances in understanding the immunologic and molecular pathways that drive intestinal injury have transformed the therapeutic landscape. This progress has enabled the development of novel biologics and small-molecule agents that more precisely target dysregulated immune responses, thereby improving clinical outcomes and quality of life for many patients. Despite these therapeutic advances, IBD remains a highly heterogeneous condition. Patients differ widely in disease phenotype, progression, and response to specific treatments. Consequently, selecting the most effective therapy for an individual patient requires careful consideration of clinical features, molecular markers, and prior treatment history. The shift toward personalized, prediction-based treatment strategies aims to optimize the timing and choice of therapy, minimize unnecessary exposure to ineffective drugs, and ultimately alter the natural course of disease. In this review, we provide a comprehensive overview of current evidence guiding drug positioning in IBD, with particular emphasis on biologic therapies and small-molecule inhibitors. We also examine emerging biomarkers, clinical predictors of response, and real-world factors that influence therapeutic decision-making. Finally, we discuss the challenges and limitations that continue to hinder widespread implementation of personalized strategies, underscoring the need for further research to integrate precision medicine into routine IBD care. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Viewed by 193
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

17 pages, 1975 KB  
Article
Comparative Longitudinal Evaluation of Systemic Inflammatory Markers in Type 2 Diabetes Treated with Four Oral Antidiabetic Drug Classes
by Mehmet Yamak, Serkan Çakır, Sami Uzun, Egemen Cebeci, Özlem Menken and Savas Ozturk
J. Clin. Med. 2026, 15(2), 688; https://doi.org/10.3390/jcm15020688 - 15 Jan 2026
Viewed by 131
Abstract
Background: Systemic inflammation plays a central role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Hematologic inflammatory indices-such as the Systemic Immune-Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Monocyte-to-Lymphocyte Ratio (MLR)-have emerged as accessible markers of chronic [...] Read more.
Background: Systemic inflammation plays a central role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Hematologic inflammatory indices-such as the Systemic Immune-Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Monocyte-to-Lymphocyte Ratio (MLR)-have emerged as accessible markers of chronic inflammation, yet longitudinal comparisons across oral antidiabetic therapies remain limited. This study uniquely integrates longitudinal correlation and network analyses in a large real-world T2DM cohort, allowing assessment of the temporal stability and class-specific inflammatory patterns across four oral antidiabetic therapies. Methods: This retrospective, longitudinal study analyzed 13,425 patients with T2DM treated with Biguanidines, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Sodium–Glucose Cotransporter-2 (SGLT-2) inhibitors or Thiazolidinediones (TZDs) between 2020 and 2024. Data were retrieved from the Probel® Hospital Information System and included baseline, early (30–180 days), and late (180–360 days) follow-up laboratory results. Systemic inflammatory indices were computed from hematologic parameters, and correlations among inflammatory and biochemical markers were assessed using Spearman’s coefficients. Results: At baseline, all hematologic indices were strongly intercorrelated (SII–NLR r = 0.83, p < 0.001; SII–PLR r = 0.73, p < 0.001), with moderate associations to C-reactive protein (CRP; r ≈ 0.3–0.4) and weak or no correlations with Ferritin (r ≈ −0.1). These relationships remained stable throughout follow-up, confirming reproducibility of systemic inflammatory coupling. Longitudinally, SII and NLR showed modest early increases followed by significant declines at one year (p < 0.05), while PLR and MLR remained stable. Class-specific differences were observed: SGLT-2 inhibitors and TZDs demonstrated stronger and more integrated anti-inflammatory networks, whereas Biguanidines and DPP-4 inhibitors exhibited moderate coherence. Principal Component Analysis (PCA) explained 62.4% of total variance and revealed distinct clustering for TZD and SGLT-2 groups, reflecting class-specific inflammatory modulation. Conclusions: Systemic inflammatory indices (SII, NLR, PLR) provide reproducible and accessible measures of low-grade inflammation in T2DM. Despite overall inflammation reduction with treatment, drug-specific patterns emerged-SGLT-2 inhibitors and TZDs showed greater anti-inflammatory coherence, while Biguanidines and DPP-4 inhibitors maintained moderate effects. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

13 pages, 986 KB  
Article
Systemic Inflammatory and Oxidative–Metabolic Alterations in Rosacea: A Cross-Sectional Case–Control Study
by Mustafa Esen, Abdullah Demirbaş, Esin Diremsizoglu and Revşa Evin Canpolat Erkan
Diagnostics 2026, 16(2), 246; https://doi.org/10.3390/diagnostics16020246 - 12 Jan 2026
Viewed by 186
Abstract
Background/Objectives: Rosacea increasingly appears to involve systemic immune and metabolic disturbances rather than isolated cutaneous inflammation. To evaluate inflammatory, platelet, and oxidative–metabolic biomarkers in rosacea and explore their interrelations. Methods: 90 patients with rosacea and 90 healthy controls were evaluated for hematologic inflammatory [...] Read more.
Background/Objectives: Rosacea increasingly appears to involve systemic immune and metabolic disturbances rather than isolated cutaneous inflammation. To evaluate inflammatory, platelet, and oxidative–metabolic biomarkers in rosacea and explore their interrelations. Methods: 90 patients with rosacea and 90 healthy controls were evaluated for hematologic inflammatory indices—neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune–inflammation index (SII), pan-immune–inflammation value (PIV), mean platelet volume (MPV), and C-reactive protein (CRP)—along with oxidative–metabolic regulators including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), visfatin, and irisin. Logistic regression and receiver operating characteristic (ROC) analyses were used to identify independent predictors of rosacea, while inter-marker associations were evaluated using Spearman’s rank correlation. Results: Rosacea patients showed higher NLR, PLR, SII, PIV, MPV, CRP, and LDL cholesterol (p < 0.05) and lower SIRT1, SIRT3, visfatin, and irisin (p < 0.01). MPV independently predicted rosacea (OR = 7.24; AUC = 0.827), whereas SIRT1 inversely correlated with disease risk. SIRT1, SIRT3, and visfatin showed inverse correlations with HbA1c and waist-to-height ratio, while fasting glucose and HOMA-IR remained within normal ranges. Conclusions: Rosacea exhibits dual systemic activation, an inflammatory–platelet and an oxidative–metabolic axis bridging immune dysregulation, mitochondrial stress, and vascular dysfunction. Recognition of these pathways highlights the potential of redox-targeted and metabolic interventions beyond symptomatic treatment. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

17 pages, 2898 KB  
Article
Human Alpha-1 Antitrypsin Suppresses Melanoma Growth by Promoting Tumor Differentiation and CD8+ T-Cell-Mediated Immunity
by Takeshi Yamauchi, Yuchun Luo, Dinoop Ravindran Menon, Kasey Couts, Sana Khan, Aanchal Goel, Charles A. Dinarello, Zili Zhai and Mayumi Fujita
Biomolecules 2026, 16(1), 122; https://doi.org/10.3390/biom16010122 - 12 Jan 2026
Viewed by 199
Abstract
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor with potent anti-inflammatory and immunomodulatory properties, but its role in cancer is context-dependent across tumor types. We integrated transcriptomic analyses of human melanoma cohorts, in vivo studies using AAT-transgenic (hAAT-TG) mice, and in vitro assays [...] Read more.
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor with potent anti-inflammatory and immunomodulatory properties, but its role in cancer is context-dependent across tumor types. We integrated transcriptomic analyses of human melanoma cohorts, in vivo studies using AAT-transgenic (hAAT-TG) mice, and in vitro assays in murine and human melanoma cells to define the biological functions of AAT in melanoma. SERPINA1 expression increased progressively from normal skin to nevi and metastatic melanoma, yet higher intratumoral levels correlated with improved overall survival in metastatic disease. In hAAT-TG mice, melanoma growth was markedly inhibited compared with wild-type controls, and the inhibitory effect required CD8+ T cells and was enhanced by CD4+ T-cell depletion, demonstrating that AAT promotes cytotoxic T-cell activity while attenuating regulatory T-cell suppression. Histologic analysis showed heavily pigmented tumors in hAAT-TG mice. In vitro, hAAT upregulated melanocytic differentiation markers (MITF, TYR, PMEL, MART-1) and increased melanin production in murine and human melanoma lines, suggesting enhanced tumor immunogenicity. In conclusion, hAAT exerts antitumor effects in melanoma indirectly by reprogramming the tumor microenvironment toward differentiation and immune activation. These findings highlight a previously unrecognized role for AAT as a dual immunoregulatory and differentiation-promoting factor and support AAT as a potential immunoregulatory adjuvant in melanoma. Full article
(This article belongs to the Special Issue Roles of Alpha-1 Antitrypsin in Human Health and Disease Models)
Show Figures

Figure 1

22 pages, 5690 KB  
Article
Cancer Immunomodulatory Effect of Bidens pilosa L. in Mice: Suppression of Tumor-Associated Macrophages and Regulatory T Cells
by Meihua Zhu, Jiayan Xiong, Ruyi Zhang, Xingyan Yang, Weiqing Sun, Ziyi Yang, Yuhan Chai, Yang Tao, Yu-Qiang Zhao, Baomin Fan and Guangzhi Zeng
Cells 2026, 15(2), 126; https://doi.org/10.3390/cells15020126 - 10 Jan 2026
Viewed by 207
Abstract
Bidens pilosa L., a traditional Chinese medicinal herb, has been used in clinical practice for the treatment of inflammatory diseases and cancer. BPA, an extract derived from the whole herb of B. pilosa L., has been shown to possess potent immunomodulatory properties [...] Read more.
Bidens pilosa L., a traditional Chinese medicinal herb, has been used in clinical practice for the treatment of inflammatory diseases and cancer. BPA, an extract derived from the whole herb of B. pilosa L., has been shown to possess potent immunomodulatory properties by regulating tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) within the tumor microenvironment (TME) in a mouse syngeneic colorectal cancer (CRC) model. RT-PCR and flow cytometry analyses showed that BPA, together with its flavonoid and polyacetylene constituents, effectively suppressed the differentiation of M2-TAMs and Tregs by downregulating Arg-1 and CD25 expression. They had minimal effects on the expression of markers associated with M1-TAMs and promoted the proliferation of CD4+ T cells that were inhibited by M2-TAMs and Tregs. In mice, BPA markedly inhibited the growth of syngeneic CRC tumors, accompanied by decreased serum levels of the immunosuppressive cytokine IL-10 and reduced expression of the proliferative marker Ki67 in tumor tissues. Moreover, BPA downregulated the mRNA expression of markers associated with M2-TAMs and Tregs, while increasing markers associated with M1-TAMs. Western blot analyses of tumor tissues revealed that BPA reduced the expression of marker proteins associated with M2-TAMs and Tregs, while increasing the expression of the immune-stimulatory markers CD80, GITR and CD4. In addition, combined treatment with BPA and 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent for CRC, notably enhanced the anti-tumor effect in mice. These findings indicate that BPA, an active extract of B. pilosa L., showed antitumor activity in mice by suppressing the differentiation of pro-tumorigenic TAMs and Tregs within the TME. Full article
Show Figures

Figure 1

15 pages, 4610 KB  
Article
Cancer-Associated Fibroblast Heterogeneity Shapes Prognosis and Immune Landscapes in Head and Neck Squamous Cell Carcinoma
by Hideyuki Takahashi, Hiroyuki Hagiwara, Hiroe Tada, Miho Uchida, Toshiyuki Matsuyama and Kazuaki Chikamatsu
Cancers 2026, 18(2), 215; https://doi.org/10.3390/cancers18020215 - 9 Jan 2026
Viewed by 332
Abstract
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is a biologically heterogeneous malignancy with poor outcomes in advanced disease. Increasing evidence indicates that the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays an important role in tumor progression and immune regulation. However, the [...] Read more.
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is a biologically heterogeneous malignancy with poor outcomes in advanced disease. Increasing evidence indicates that the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays an important role in tumor progression and immune regulation. However, the diversity of CAF subsets and their clinical relevance in HNSCC remain incompletely understood. This study aimed to characterize CAF heterogeneity and assess the prognostic significance of CAF subset-specific transcriptional programs. Methods: Single-cell RNA sequencing data from HNSCC tumors were analyzed to identify CAF subsets based on differentially expressed genes. CAF subset-specific gene signatures were used to construct prognostic risk models for overall survival (OS) and progression-free survival (PFS) in The Cancer Genome Atlas HNSCC cohort, with validation in an independent dataset. CAF-driven prognostic groups were defined, and their immune landscapes and biological pathways were evaluated. Bulk RNA sequencing of primary CAF cultures was performed for validation. Results: Six CAF subsets were identified, including myofibroblastic (myCAF), inflammatory (iCAF), antigen-presenting, and extracellular matrix-related CAFs. Risk scores derived from inflammatory CAF subsets consistently predicted shorter OS across independent cohorts, whereas PFS prediction showed greater cohort dependency. CAF-based stratification identified patient subgroups with distinct immune profiles and pathway enrichment patterns. These results were supported by validation analyses and by bulk RNA sequencing of primary CAFs, demonstrating preservation of myCAF- and iCAF-like transcriptional programs ex vivo. Conclusions: CAF heterogeneity has important prognostic and immunological implications in HNSCC. Inflammatory CAF-related transcriptional programs represent robust markers of patient survival and may complement tumor-intrinsic biomarkers. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop