Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (290)

Search Parameters:
Keywords = hysteretic behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14898 KiB  
Article
SSI Effects on Constant-Ductility Inelastic Displacement Ratio and Residual Displacement of Self-Centering Systems Under Pulse-Type Ground Motions
by Muberra Eser Aydemir
Appl. Sci. 2025, 15(15), 8661; https://doi.org/10.3390/app15158661 - 5 Aug 2025
Viewed by 165
Abstract
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and [...] Read more.
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and residual displacement ratio are used to analyze the seismic response of interacting structures. These structural response parameters are calculated based on the nonlinear dynamic analyses of SDOF systems subjected to 56 near-fault pulse-type ground motions. Analyses are conducted for varying values of ductility, energy dissipation coefficient, strain hardening ratio, aspect ratio, structural period, and normalized vibration period by pulse period of the record. New formulas to estimate the inelastic displacement ratio and residual displacement of self-centering SDOF systems with soil–structure interaction are developed based on a statistical analysis of the findings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 195
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

20 pages, 2100 KiB  
Article
Enantioseparation of Proton Pump Inhibitors by HPLC on Polysaccharide-Type Stationary Phases: Enantiomer Elution Order Reversal, Thermodynamic Characterization, and Hysteretic Effect
by Máté Dobó, Gergely Molnár, Ali Mhammad, Gergely Dombi, Arash Mirzahosseini, Zoltán-István Szabó and Gergő Tóth
Int. J. Mol. Sci. 2025, 26(15), 7217; https://doi.org/10.3390/ijms26157217 - 25 Jul 2025
Viewed by 218
Abstract
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 [...] Read more.
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 and -4). Different alcohols, such as methanol, ethanol, 1-propanol, 2-propanol, and their combinations, were used as eluents. After method optimization, semi-preparative enantioseparation was successfully applied for the three proton pump inhibitors to collect the individual enantiomers. A detailed investigation was conducted into elution order reversal, thermodynamic parameters, the effect of eluent mixtures, and the hysteresis of retention time and selectivity. Using Chiralpak AS, containing the amylose tris[(S)-α-methylbenzylcarbamate] chiral selector, the separation of the investigated enantiomers was achieved in all four neat eluents, with methanol providing the best results. In many cases, a reversal of the enantiomer elution order was observed. In addition to chiral-selector-dependent reversal, eluent-dependent reversal was also observed. Notably, even replacing methanol with ethanol altered the enantiomer elution order. Both enthalpy- and entropy-controlled enantioseparation were also observed in several cases; however, temperature-dependent elution order reversal was not. The hysteresis of retention and selectivity was further investigated on amylose-type columns in methanol–2-propanol and methanol–ethanol eluent mixtures. The phenomenon was observed on all amylose columns regardless of the eluent mixtures employed. Hystereticity ratios were calculated and used to compare the hysteresis behaviors of different systems. Multivariate statistical analysis revealed that Chiralpak AS exhibited the most distinct enantioselective behavior among the tested columns, likely due to the absence of a direct connection between the carbamate moiety and the aromatic substituent. The present study aided in understanding the mechanisms leading to enantiomer recognition, which is crucial for developing new chiral stationary phases and chiral HPLC method development in general. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

23 pages, 9795 KiB  
Article
Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
by Zafira Nur Ezzati Mustafa, Ryo Majima and Taiki Saito
Appl. Sci. 2025, 15(15), 8185; https://doi.org/10.3390/app15158185 - 23 Jul 2025
Viewed by 201
Abstract
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy [...] Read more.
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy dissipation capacity of VE and RF dampers, and (2) shake table testing of a large-scale CSW structure equipped with these dampers under the white noise, sinusoidal and Kokuji waves. The experimental results are validated through numerical analysis using STERA 3D (version 11.5), a nonlinear finite element software, to simulate the dynamic response of the damped CSW system. Key performance indicators, including inter-story drift, base shear, and energy dissipation, are compared between experimental and numerical results, demonstrating strong correlation. The findings reveal that VE dampers effectively control high-frequency vibrations, while RF dampers provide stable energy dissipation across varying displacement amplitudes. The validated numerical model facilitates the optimization of damper configurations for performance-based seismic design. This study provides valuable insights into the selection and implementation of supplemental damping systems for CSW structures, contributing to improved seismic resilience in buildings. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

25 pages, 10024 KiB  
Article
Forecasting with a Bivariate Hysteretic Time Series Model Incorporating Asymmetric Volatility and Dynamic Correlations
by Hong Thi Than
Entropy 2025, 27(7), 771; https://doi.org/10.3390/e27070771 - 21 Jul 2025
Viewed by 276
Abstract
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the [...] Read more.
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the model to account for both asymmetric volatility and evolving correlation patterns over time. We adopt a fully Bayesian inference approach using adaptive Markov chain Monte Carlo (MCMC) techniques, allowing for the joint estimation of model parameters, Value-at-Risk (VaR), and Marginal Expected Shortfall (MES). The accuracy of VaR forecasts is assessed through two standard backtesting procedures. Our empirical analysis involves both simulated data and real-world financial datasets to evaluate the model’s effectiveness in capturing downside risk dynamics. We demonstrate the application of the proposed method on three pairs of daily log returns involving the S&P500, Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS), present the results obtained, and compare them against the original model framework. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

21 pages, 4377 KiB  
Article
Superelasticity in Shape Memory Alloys—Experimental and Numerical Investigations of the Clamping Effect
by Jakub Bryła and Adam Martowicz
Materials 2025, 18(14), 3333; https://doi.org/10.3390/ma18143333 - 15 Jul 2025
Viewed by 465
Abstract
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. [...] Read more.
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. Hysteretic properties were studied to elucidate the superelastic behavior of the tested and modeled samples. The conducted tensile tests considered two configurations of grips, i.e., the standard one, where the jaws transversely clamp a specimen, and the customized bollard grip solution, which the authors developed to reduce local stress concentration in a specimen. The characteristic impact of the boundary conditions on the solid phase transformation in shape memory alloys, present due to the specific clamping scheme, was studied using a thermal camera and extensometer. Martensitic transformation and the plateau region in the nonlinear stress–strain characteristics were observed. The results of the numerical simulation converged to the experimental outcomes. This study explains the complex nature of the phase changes in shape memory alloys under specific boundary conditions induced by a given clamping scheme. In particular, variation in the martensitic transformation course is identified as resulting from the stress distribution observed in the specimen’s clamping area. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 350
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 1070 KiB  
Article
Modeling Hysteretically Nonlinear Piezoelectric Composite Beams
by Abdulaziz H. Alazemi and Andrew J. Kurdila
Vibration 2025, 8(3), 37; https://doi.org/10.3390/vibration8030037 - 6 Jul 2025
Viewed by 286
Abstract
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. [...] Read more.
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. This paper develops a cascade model that integrates a high-dimensional linear piezoelectric composite beam representation with a nonlinear Krasnosel’skii–Pokrovskii (KP) hysteresis operator. The resulting system is formulated using a state-space model where the input voltage undergoes a history-dependent transformation. Through modal expansion and discretization of the Preisach plane, we derive a tractable numerical implementation that preserves essential nonlinear phenomena. Numerical investigations demonstrate how system parameters, including the input voltage amplitude, and hysteresis parameters significantly influence the dynamic response, particularly the shape and amplitude of limit cycles. The results reveal that while the model accurately captures memory-dependent nonlinearities, it depends on numerous real and distributed parameters, highlighting the need for efficient reduced-order modeling approaches. This work provides a foundation for understanding and predicting the complex behavior of piezoelectric systems with hysteresis, with potential applications in vibration control, energy harvesting, and precision actuation. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 311
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Viewed by 500
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

11 pages, 675 KiB  
Article
High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought
by Victoria M. Donovan, Allie V. Schiltmeyer, Carissa L. Wonkka, Jacob Wagner, Devan A. McGranahan, William E. Rogers, Urs P. Kreuter and Dirac Twidwell
Fire 2025, 8(7), 242; https://doi.org/10.3390/fire8070242 - 21 Jun 2025
Viewed by 464
Abstract
The almost complete eradication of fire from grasslands in North America has led to non-linear hysteretic transitions to shrub- and woodlands that the reintroduction of low-intensity fire is unable to reverse. We explore the ability of the extreme ends of variation in fire [...] Read more.
The almost complete eradication of fire from grasslands in North America has led to non-linear hysteretic transitions to shrub- and woodlands that the reintroduction of low-intensity fire is unable to reverse. We explore the ability of the extreme ends of variation in fire behavior to help overcome hysteretic threshold behaviors in huisache (Vachellia farnesiana) encroached grasslands. We contrasted experimental fire treatments with unburned control areas to assess the ability of extreme fires burned during drought to alter the density and structure of huisache. We found that extreme fires reduced the density of huisache by over 30% compared to control plots, both through driving huisache mortality and reducing the number of new recruits following treatments. For instance, extreme fire drove 48% huisache mortality compared to 4% in control treatments. For surviving plants, the number of stems increased but the crown area did not significantly change. Prescribed fire, conducted under the right conditions, can drive high mortality in one of the most notorious encroaching species in the southern U.S. Great Plains. With the fire conditions observed in this study likely to increase under future climate projections, utilizing extreme fire as a management tool for huisache will help scale up management to meet the growing extent of woody encroachment into grasslands. Full article
Show Figures

Figure 1

17 pages, 2341 KiB  
Article
Continuous Proximal Monitoring of Diameter Variation from Root to Fruit
by Arash Khosravi, Enrico Maria Lodolini, Veronica Giorgi, Francesco Belluccini, Adriano Mancini and Davide Neri
Horticulturae 2025, 11(6), 635; https://doi.org/10.3390/horticulturae11060635 - 5 Jun 2025
Viewed by 434
Abstract
Proximal plant-based monitoring provides high-resolution data about trees, leading to more precise orchard management and in-depth knowledge about tree physiology. The present work focuses on continuous real-time monitoring of olive cv. ‘Ascolana tenera’ over hourly intervals during the third stage of fruit growth [...] Read more.
Proximal plant-based monitoring provides high-resolution data about trees, leading to more precise orchard management and in-depth knowledge about tree physiology. The present work focuses on continuous real-time monitoring of olive cv. ‘Ascolana tenera’ over hourly intervals during the third stage of fruit growth (mesocarp cell expansion) under mild water stress conditions (ψStem above −2 MPa). This is achieved by mounting dendrometers on the root, trunk, branch, and fruit to assess and model the behavior of each organ. The diameter variation in each organ over different time intervals (daily, two-weeks, and throughout the entire experiment), as well as their hysteretic patterns relative to each other and vapor pressure deficit, are demonstrated. The results show different correlations between various organs, ranging from very weak to strongly positive. However, the trend of fruit versus root consistently shows a strong positive relationship throughout the entire experiment (R2 = 0.83) and a good one across various two-week intervals (R2 ranging from 0.54 to 0.93). Additionally, different time lags in dehydration and rehydration between organs were observed, suggesting that the branch is the most reactive organ, regulating dehydration and rehydration in the tree. Regarding the hysteretic pattern, different rotational patterns and characteristics (shape) were observed among the organs and in relation to vapor pressure deficit. This research provides valuable insight into flow dynamics within a tree, models plant water relations and time lags in terms of water storage and transport, and could be implemented for precise olive tree water status detection. Full article
(This article belongs to the Special Issue Fruit Tree Physiology, Sustainability and Management)
Show Figures

Figure 1

24 pages, 4049 KiB  
Article
Analysis of Seismic Performance for Segmentally Assembled Double-Column Bridge Structures Based on Equivalent Stiffness
by Huixing Gao, Wenjing Xia and Guoqing Liu
Buildings 2025, 15(11), 1919; https://doi.org/10.3390/buildings15111919 - 2 Jun 2025
Cited by 1 | Viewed by 366
Abstract
Double-column self-centering segmentally assembled bridges (SC-SABs) present greater design complexity compared to single-column systems, primarily due to vertical stiffness discontinuities at segmental spandrel abutments, which critically affect the refinement of their seismic design methods. To address these challenges, this study conducts a systematic [...] Read more.
Double-column self-centering segmentally assembled bridges (SC-SABs) present greater design complexity compared to single-column systems, primarily due to vertical stiffness discontinuities at segmental spandrel abutments, which critically affect the refinement of their seismic design methods. To address these challenges, this study conducts a systematic investigation into the mechanical behavior and seismic performance of double-column SC-SAB. First, leveraging fundamental mechanical principles and stress-strain relationships, the coupling mechanism between the two columns is analytically established. An analytical expression for the elastic stiffness of a double-column SC-SAB, when simplified to an equivalent single-column system, is derived. This establishes the equivalent stiffness conditions for reducing a double-column system to a single-column model, and the overall equivalent stiffness of the double-column system is formulated. To validate the theoretical framework, a finite element model of the double-column SC-SAB is developed using OpenSees (1.0.0.1 version). An equivalent single-column model is constructed based on the derived stiffness equivalence conditions. By comparing the peak displacement and bearing capacity between the double-column and equivalent single-column models, the accuracy and feasibility of the simplification approach are confirmed. The numerical results further validate the derived overall equivalent stiffness, providing a robust theoretical foundation for simplified engineering applications. Additionally, pushover analysis and hysteretic response analysis are performed to systematically evaluate the influence of key design parameters on the seismic performance of double-column SC-SAB. The results demonstrate that the prestressed twin-column system exhibits excellent self-centering capability, effectively controlling residual displacements, aligning with seismic resilience goals. This research advances the seismic design methodology for SC-SAB by resolving critical challenges in stiffness equivalence and joint behavior quantification. The findings of this study can be utilized to derive equivalent damping ratios and equivalent periods. Based on the displacement response spectrum, the pier-top displacement and maximum force can be determined, thereby enabling a displacement-based seismic design approach. This research holds significant theoretical and practical value for advancing seismic design methodologies for self-centering segmental bridge piers and enhancing the seismic safety of bridge structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4901 KiB  
Article
Study on Seismic Performance of Reinforced Concrete Columns Reinforced with Steel Strip Composite Ultra–High–Performance Concrete
by Xianhui Liu, Wenlong Chang, Zihang Wang and Meiqing Pan
Buildings 2025, 15(11), 1762; https://doi.org/10.3390/buildings15111762 - 22 May 2025
Viewed by 591
Abstract
To enhance the seismic performance of existing reinforced concrete (RC) columns, this study proposes a novel strengthening method that combines steel strips with ultra–high–performance concrete (UHPC). The seismic behavior of the proposed method is investigated through quasi–static cyclic tests conducted on four strengthened [...] Read more.
To enhance the seismic performance of existing reinforced concrete (RC) columns, this study proposes a novel strengthening method that combines steel strips with ultra–high–performance concrete (UHPC). The seismic behavior of the proposed method is investigated through quasi–static cyclic tests conducted on four strengthened columns and one control column. The experimental parameters include the type of reinforcement (UHPC–only and UHPC combined with steel strips) and the thickness of the UHPC strengthening layer. The failure modes, hysteretic behavior, energy dissipation capacity, and stiffness degradation of the specimens are systematically analyzed. The results show that, compared to the unstrengthened column, the UHPC–strengthened columns achieved maximum increases of 73.73% in peak load and 23.68% in ductility coefficient, while the columns strengthened with composite steel strips achieved further improvements of up to 84.79% and 50.23%, respectively. The composite strengthening method significantly improved the failure mode, with crack distribution changing from localized crushing to multiple fine cracks. The displacement ductility coefficient reached as high as 6.28, and the hysteretic curve fullness and cumulative energy dissipation increased by a factor of two to three. Finally, based on moment equilibrium theory, a theoretical formula is proposed to calculate the lateral ultimate flexural capacity of RC columns strengthened with steel strip–UHPC composites, which shows good agreement with the experimental results. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 6812 KiB  
Article
Experimental Behavior and FE Modeling of Buckling Restrained Braced Frame with Slip-Critical Connection
by Huseyin Sogut, Ramazan Ozcelik, Kagan Sogut and Ferhat Erdal
Appl. Sci. 2025, 15(10), 5626; https://doi.org/10.3390/app15105626 - 18 May 2025
Cited by 1 | Viewed by 651
Abstract
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the [...] Read more.
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the BRB exhibited significant yield without severe damage. Although the BRB inside the steel frame was subjected to 2.69% strain of the CP under the axial compression demands, the local and global deformations were not observed. The FE model was developed and validated. The numerical investigations of hysteretic behavior of the BRBF in the literature are generally focused on the friction between the core plate (CP) and the casing member (CM). The results suggest that the behavior of the BRBF is significantly affected not only by the friction between CP and CM but also by the pretension load on the bolts and the friction between the contact surfaces of steel plates of slip-critical connections in the steel frame. The FE analysis showed that pretension loads of 35 kN and 75 kN gave accurate predictions for cyclic responses of BRBF under tension and compression demands, respectively. Moreover, the FE predictions were in good agreement with the test results when the friction coefficient is 0.05 between CP and CM and it is 0.20 between steel plates. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop