Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = hypoxia induction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2762 KiB  
Article
The Role of GPX Enzymes, Lipid Profiles, and Iron Accumulation in Necrotizing Enterocolitis
by Grant H. Gershner, Chase Calkins, Alena Golubkova, Camille Schlegel, Aslan Massahi, Megan Lerner, Alex N. Frickenstein, Sarah Bonvicino, Martin-Paul Agbaga and Catherine J. Hunter
Int. J. Mol. Sci. 2025, 26(13), 6077; https://doi.org/10.3390/ijms26136077 - 25 Jun 2025
Viewed by 401
Abstract
Necrotizing enterocolitis (NEC) is a serious GI disease of premature infants, marked by intestinal inflammation and necrosis. Recent research has highlighted the potential role of oxidative stress (OS) and ferroptosis in its pathogenesis. We previously identified a deficiency in Glutathione Peroxidase (GPX) 4 [...] Read more.
Necrotizing enterocolitis (NEC) is a serious GI disease of premature infants, marked by intestinal inflammation and necrosis. Recent research has highlighted the potential role of oxidative stress (OS) and ferroptosis in its pathogenesis. We previously identified a deficiency in Glutathione Peroxidase (GPX) 4 and lipid radical accumulation, prompting further investigation. Human intestinal tissue from a prior study was processed, and it underwent RNA and protein isolation, Immunohistochemistry, Immunofluorescence, and acid digestion for iron and selenium analysis via Inductively coupled mass spectrometry (ICP-MS). NEC was induced in human enteroids using lipopolysaccharide (LPS) and hypoxia, followed by RNA/protein isolation and lipidomic analysis. Humans with NEC had significantly higher levels of GPX2 (p = 0.0003). Enteroids exposed to NEC conditions had significantly decreased amounts of NADPH compared to initial controls (p = 0.0091), but similar levels compared to post-24 h controls (p = 0.3520). Patients with NEC had significantly higher levels of iron compared to controls via the bathophenanthroline-based assay (p = 0.0102) and with ICP-MS (p = 0.0148). There were several significant alterations in lipid distribution between NEC and control patients, but not in the fatty acid profiles. Our study suggests that oxidative stress, iron dysregulation, and altered lipid metabolism contribute to NEC pathogenesis. Full article
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Evofosfamide Enhances Sensitivity of Breast Cancer Cells to Apoptosis and Natural-Killer-Cell-Mediated Cytotoxicity Under Hypoxic Conditions
by Shubhankar Das, Goutham Hassan Venkatesh, Walid Shaaban Moustafa Elsayed, Raefa Abou Khouzam, Ayda Shah Mahmood, Husam Hussein Nawafleh, Nagwa Ahmed Zeinelabdin, Rania Faouzi Zaarour and Salem Chouaib
Cancers 2025, 17(12), 1988; https://doi.org/10.3390/cancers17121988 - 14 Jun 2025
Viewed by 593
Abstract
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, [...] Read more.
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, to sensitize breast cancer cells to cell death. Evofosfamide is converted into bromo-isophosphoramide mustard, a potent DNA cross-linking agent that is expected to enhance the killing of cancer cells under hypoxic conditions, where these cells typically exhibit resistance. Methods: Representative breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with Evofosfamide under normoxia and hypoxia. Changes in cell viability and the mechanism of cell death were measured using neutral red dye uptake, Annexin-FITC/propidium iodide staining, and Western blot analysis of markers—PARP1 and caspase 3/7. We tested Evofosfamide’s ability to counteract hypoxic suppression of type I Interferon signaling genes using quantitative PCR (qPCR), as well as its capacity to trigger natural killer (NK)-cell-mediated cytotoxicity. Results: Evofosfamide enhanced cell killing in both MCF-7 and MDA-MB-231 cells under hypoxic conditions compared to normoxic conditions. Cell killing was accompanied by increased cellular reactive oxygen species (ROS), diminished mitochondrial membrane potential, and induction of apoptosis, as demonstrated by the fragmentation or laddering of genomic DNA, the activation of caspase 3/7, and the cleavage of PARP. qPCR analysis revealed that Evofosfamide was capable of restoring type I interferon signaling in hypoxic breast cancer cells, leading to the subsequent cytolytic activity of NK cells against the tumor cells. Conclusions: Thus, conditioning the breast cancer cells with Evofosfamide resulted in enhanced cell killing under hypoxia, further underscoring its potential as a sensitizer to target hypoxia-driven tumors. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

13 pages, 1827 KiB  
Article
Response of the Invasive Cyanobacterium Raphidiopsis raciborskii to Iron and Phosphorus Concentrations in the Habitat: Effects on Growth and Cellular Phosphorus Distribution
by Wenting Shen, Han Yang, Gaibian Ding, Bo Li, Xin Gan, Zijie Yuan, Liqing Wang and Wei Zhang
Diversity 2025, 17(6), 386; https://doi.org/10.3390/d17060386 - 30 May 2025
Viewed by 331
Abstract
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different [...] Read more.
Harmful Raphidiopsis raciborskii blooms threaten aquatic ecosystems via toxin production, hypoxia induction, and biodiversity loss. To elucidate the synergistic regulatory mechanisms of Fe3+ and phosphorus (P) in cyanobacterial growth, we used a sterile pure culture system under laboratory conditions. We set different phosphorus sources (organic phosphorus and inorganic phosphorus) and low phosphorus concentration of R. raciborskii culture medium for culture, and set different Fe3+ addition amount to determine the basic growth index of cyanobacteria cells and the phosphorus content of different components. The results revealed that under conditions of sufficient inorganic phosphorus, there was a logarithmic relationship between ferric ammonium citrate (Fe3+) and the specific growth rate of R. raciborskii. Fe3+ > 2 mg/L enhanced IPS enrichment and biomass accumulation. However, in oligotrophic or mesotrophic environments with low inorganic phosphorus concentrations, the effect of Fe3+ on the growth of R. raciborskii contrasted with that observed in high-IP (eutrophic) environments, exhibiting a pattern of ‘low promotion and high inhibition’. Under organic phosphorus conditions, R. raciborskii converted phosphorus by increasing alkaline phosphatase activity (APA), but this metabolic compensation failed to restore physiological functions, resulting in growth suppression and enhanced cellular phosphorus reserves. Our results establish quantitative linkages between Fe3+-P co-limitation thresholds and algal adaptive responses, providing mechanistic insights for controlling bloom dynamics through targeted manipulation of Fe-P bioavailability. Full article
Show Figures

Figure 1

22 pages, 9847 KiB  
Article
MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy
by Rita Alonaizan, Ujang Purnama, Sophia Malandraki-Miller, Mala Gunadasa-Rohling, Andrew Lewis, Nicola Smart and Carolyn Carr
J. Funct. Biomater. 2025, 16(4), 147; https://doi.org/10.3390/jfb16040147 - 21 Apr 2025
Viewed by 728
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key [...] Read more.
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

11 pages, 4815 KiB  
Article
Deletion of HIF-2α in Dendritic Cells Attenuates Anti-Glomerular Basement Membrane Nephritis
by Jiayi Miao, Junwen Qu, Dawei Li and Ming Zhang
Biomedicines 2025, 13(4), 888; https://doi.org/10.3390/biomedicines13040888 - 7 Apr 2025
Viewed by 470
Abstract
Background: Anti-glomerular basement membrane (anti-GBM) nephritis is mediated by autoantibodies and may progress to end-stage renal disease. Although its pathogenesis is not completely understood, dendritic cells (DCs) have been reported to play an important role in this process. Hypoxia-inducible factor-2α (HIF-2α) has been [...] Read more.
Background: Anti-glomerular basement membrane (anti-GBM) nephritis is mediated by autoantibodies and may progress to end-stage renal disease. Although its pathogenesis is not completely understood, dendritic cells (DCs) have been reported to play an important role in this process. Hypoxia-inducible factor-2α (HIF-2α) has been reported to have a regulatory effect on DCs under hypoxic conditions, while no research has investigated its role in autoimmune nephritis. Methods: Anti-GBM nephritis was induced in CD11c-specific HIF-2α-deficient and WT mice using nephrotoxic serum (NTS). All mice were divided into four groups: (i) WT+PBS, (ii) CD11c-Cre+ Hif2αfl/fl+PBS, (iii) WT+NTS and (iv) CD11c-Cre+ Hif2αfl/fl+NTS. Seven days after induction, renal function, immune cell infiltration and the expression levels of genes in the renal cortex were assessed in each group. Results: On day 7, the levels of serum creatinine and blood urea nitrogen and the urine albumin-to-creatinine ratio were lower for mice with DC-specific deletion of HIF-2α compared with their WT counterparts (p < 0.05). Histopathological analysis showed that there was less crescent formation in the renal cortex with conditional HIF-2α knockout, and the infiltration of DCs and macrophages was also suppressed (p < 0.05). Genes related to antigen processing and presentation were found to be expressed differentially between the two groups, and the activation of the MAPK pathway was affected (p < 0.05). Western blot analysis validated that HIF-2α knockout inhibited the phosphorylation of p38 MAPK (p < 0.05). Conclusions: In this study, we observed a pro-inflammatory effect of HIF-2α in DCs in early anti-GBM nephritis, and the results suggested a regulating effect of HIF-2α on p38 MAPK pathways. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 3375 KiB  
Review
Cancer Development and Progression Through a Vicious Cycle of DNA Damage and Inflammation
by Shosuke Kawanishi, Guifeng Wang, Ning Ma and Mariko Murata
Int. J. Mol. Sci. 2025, 26(7), 3352; https://doi.org/10.3390/ijms26073352 - 3 Apr 2025
Viewed by 891
Abstract
Infections and chronic inflammation play a crucial role in the development of cancer. During inflammatory processes, reactive oxygen and nitrogen species are generated by both inflammatory and epithelial cells, leading to the induction of oxidative and nitrative DNA damage, such as the formation [...] Read more.
Infections and chronic inflammation play a crucial role in the development of cancer. During inflammatory processes, reactive oxygen and nitrogen species are generated by both inflammatory and epithelial cells, leading to the induction of oxidative and nitrative DNA damage, such as the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitroguanine (8-nitroG). These DNA alterations can trigger mutations, which are believed to contribute to cancer formation driven by inflammation. The authors observed the generation of 8-nitroG through iNOS expression in human and animal tissues under inflammatory conditions, where cancer is likely to develop. 8-NitroG serves as a predictive and prognostic indicator for cancers linked to inflammation. Inflammation causes DNA damage, and the subsequent DNA damage response can create an inflammatory environment marked by hypoxia, with HMGB1 being a key factor. The interplay between HIF-1α, NF-ĸB, and HMGB1 sustains DNA damage and the accumulation of mutations, driving cancer progression and worsening prognosis. 8-NitroG is involved not only in the onset and advancement of cancer but also in its progression and conversion. Herein, the authors propose a vicious cycle of DNA damage and inflammation in cancer development (initiation and promotion) and progression, including conversion, via HMGB1. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Oncology 2024)
Show Figures

Figure 1

23 pages, 4239 KiB  
Article
Alginate–Gelatin Hydrogel Scaffold Model for Hypoxia Induction in Glioblastoma Embedded Spheroids
by Janette del Rocío Aguilera-Marquez, Alejandro Manzanares-Guzmán, Lorena García-Uriostegui, Alejandro A. Canales-Aguirre, Tanya A. Camacho-Villegas and Pavel H. Lugo-Fabres
Gels 2025, 11(4), 263; https://doi.org/10.3390/gels11040263 - 2 Apr 2025
Viewed by 1340
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor, characterized by hypoxia in its microenvironment, which drives its growth and resistance to treatments. Hypoxia-inducible factor 1 (HIF-1) plays a central role in GBM progression by regulating cellular adaptation to low oxygen availability, [...] Read more.
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor, characterized by hypoxia in its microenvironment, which drives its growth and resistance to treatments. Hypoxia-inducible factor 1 (HIF-1) plays a central role in GBM progression by regulating cellular adaptation to low oxygen availability, promoting processes such as angiogenesis and cell invasion. However, studying and modeling GBM under hypoxic conditions is complex, especially due to the limitations of animal models. In this study, we developed a glioma spheroid model using an alginate–gelatin hydrogel scaffold, which enabled the simulation of hypoxic conditions within the tumor. The scaffold-based model demonstrated high reproducibility, facilitating the analysis of HIF-1α expression, a key protein in the hypoxic response of GBM. Furthermore, cell viability, the microstructural features of the encapsulated spheroids, and the water absorption rate of the hydrogel were assessed. Our findings validate the three-dimensional (3D) glioblastoma spheroids model as a valuable platform for studying hypoxia in GBM and evaluating new therapies. This approach could offer a more accessible and specific alternative for studying the tumor microenvironment and therapeutic resistance in GBM. Full article
Show Figures

Graphical abstract

15 pages, 1733 KiB  
Article
Endoplasmic Reticulum-Dependent Apoptotic Response to Cellular Stress in Patients with Rheumatoid Arthritis
by Aleksandra Kucharska-Lusina, Maciej Skrzypek, Agnieszka Tokarczyk, Grzegorz Dragan and Ireneusz Majsterek
Int. J. Mol. Sci. 2025, 26(6), 2489; https://doi.org/10.3390/ijms26062489 - 11 Mar 2025
Viewed by 912
Abstract
Rheumatoid arthritis (RA) is a chronic, common autoimmune disease. It is characterized by inflammatory polyarthritis, which can lead to permanent disability in patients. Current treatment is mainly symptom-related, aiming to reduce pain and inflammation, but does not lead to a full recovery. This [...] Read more.
Rheumatoid arthritis (RA) is a chronic, common autoimmune disease. It is characterized by inflammatory polyarthritis, which can lead to permanent disability in patients. Current treatment is mainly symptom-related, aiming to reduce pain and inflammation, but does not lead to a full recovery. This treatment includes non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs). It has been shown that, due to chronic inflammation, reduced glucose levels and hypoxia, endoplasmic reticulum (ER) stress is induced in RA patients, leading to the activation of multiple signaling pathways, including the ER-dependent adaptation of the unfolded protein response (UPR) pathway. The aim of this study was to assess the level of apoptosis in patients diagnosed with RA. The study sought to investigate whether UPR response correlated with apoptosis induction could serve as a potential diagnostic marker or therapeutic target. In vitro studies have shown that UPR pathway activity can be observed in patients diagnosed with RA. The study group consisted of PBMC cells from 61 individuals, including a total of 31 rheumatoid arthritis patients and 30 healthy controls. In order to validate UPR activation, we estimated molecular markers of ER stress via RT-qPCR expression analysis. GAPDH expression was used as a standard control. Elevated levels of mRNA for the eIF2α (p-value = 0.001903), the BBC3 (PUMA) (p-value = 0.007457 × 10−7) and the TP53 (p-value = 0.002212) were confirmed in a group of RA patients. Further analysis showed that after the induction of apoptosis the percentage of DNA contained in the tail was 37.78% higher in RA patients than in the control group (p-value = 0.0003) measured by comet assay. The exogenous damage caused by hydrogen peroxide was found to be statistically elevated in RA patients and the caspase-3 level was calculated of 40.17% higher than in controls (p-value = 0.0028). It was also found that PBMC cells from RA patients were more sensitive to apoptotic induction. Our results were confirmed by flow cytometry. The most important finding from our data was the confirmation of elevated sensitivity to apoptosis induction in RA patients; the results showed a 40.23% higher percentage of cells in early apoptosis than in the control group (p-value = 0.0105). Our results may help to assess the feasibility of the application of early diagnosis and targeted therapy in the treatment of RA patients, including the ER signaling pathway via selected UPR-dependent molecular inhibitors. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

33 pages, 7980 KiB  
Review
PERK-Olating Through Cancer: A Brew of Cellular Decisions
by Laurent Mazzolini and Christian Touriol
Biomolecules 2025, 15(2), 248; https://doi.org/10.3390/biom15020248 - 8 Feb 2025
Viewed by 1452
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced [...] Read more.
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK’s intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein. Full article
(This article belongs to the Special Issue Feature Papers in Enzymology—2nd Edition)
Show Figures

Figure 1

25 pages, 775 KiB  
Review
The Heme Oxygenase/Biliverdin Reductase System and Its Genetic Variants in Physiology and Diseases
by Cesare Mancuso
Antioxidants 2025, 14(2), 187; https://doi.org/10.3390/antiox14020187 - 6 Feb 2025
Cited by 3 | Viewed by 2525
Abstract
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, [...] Read more.
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, constitutive and committed to the physiologic turnover of heme and in the intracellular oxygen sensing. Many studies have identified genetic variants of the HO/BVR system and suggested their connection in free radical-induced diseases. The most common genetic variants include (GT)n dinucleotide length polymorphisms and single nucleotide polymorphisms. Gain-of-function mutations in the HO-1 and HO-2 genes foster the ventilator response to hypoxia and reduce the risk of coronary heart disease and age-related macular degeneration but increase the risk of neonatal jaundice, sickle cell disease, and Parkinson’s disease. Conversely, loss-of-function mutations in the HO-1 gene increase the risk of type 2 diabetes mellitus, chronic obstructive pulmonary disease, and some types of cancers. Regarding BVR, the reported loss-of-function mutations increase the risk of green jaundice. Unfortunately, the physiological role of the HO/BVR system does not allow for the hypothesis gene silencing/induction strategies, but knowledge of these mutations can certainly facilitate a medical approach that enables early diagnoses and tailored treatments. Full article
Show Figures

Graphical abstract

28 pages, 2241 KiB  
Review
Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia
by Emmanuel Amabebe, Zheping Huang, Sukanta Jash, Balaji Krishnan, Shibin Cheng, Akitoshi Nakashima, Yitong Li, Zhixong Li, Ruizhi Wang, Ramkumar Menon, Xiao Zhen Zhou, Kun Ping Lu and Surendra Sharma
Biomedicines 2025, 13(1), 29; https://doi.org/10.3390/biomedicines13010029 - 26 Dec 2024
Viewed by 2729
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy [...] Read more.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer’s disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis–trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Preeclampsia)
Show Figures

Figure 1

18 pages, 6081 KiB  
Article
PLGA-Nano-Encapsulated Disulfiram Inhibits Cancer Stem Cells and Targets Non-Small Cell Lung Cancer In Vitro and In Vivo
by Kate Butcher, Zhipeng Wang, Sathishkumar Kurusamy, Zaixing Zhang, Mark R. Morris, Mohammad Najlah, Christopher McConville, Vinodh Kannappan and Weiguang Wang
Biomolecules 2024, 14(12), 1651; https://doi.org/10.3390/biom14121651 - 23 Dec 2024
Cited by 2 | Viewed by 1351
Abstract
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study [...] Read more.
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study demonstrated hypoxia-induced stemness and chemoresistance at levels comparable to those in typical CSC sphere culture. Activation of the NF-κB pathway (by transfection of NF-κB-p65) plays a key role in NSCLC CSCs and chemoresistance. Disulfiram (DS), an anti-alcoholism drug, showed a strong in vitro anti-CSC effect. It blocked cancer cell sphere reformation and clonogenicity, synergistically enhanced the cytotoxicity of four anti-NSCLC drugs (doxorubicin, gemcitabine, oxaliplatin and paclitaxel) and reversed hypoxia-induced resistance. The effect of DS on CSCs is copper-dependent. A very short half-life in the bloodstream is the major limitation for the translation of DS into a cancer treatment. Our team previously developed a poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated DS (DS-PLGA) with a long half-life in the bloodstream. Intra venous injection of DS-PLGA in combination with the oral application of copper gluconate has strong anticancer efficacy in a metastatic NSCLC mouse model. Further study may be able to translate DS-PLGA into cancer applications. Full article
Show Figures

Figure 1

14 pages, 2097 KiB  
Article
Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs
by Tan Ba Tran, Éva Sipos, Attila Csaba Bényei, Sándor Nagy, István Lekli and Péter Buglyó
Molecules 2024, 29(24), 5967; https://doi.org/10.3390/molecules29245967 - 18 Dec 2024
Viewed by 861
Abstract
Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)]3+ (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η6-p-cym)Ru]2+ (p-cym = p-cymene) entity have been synthesized and characterized [...] Read more.
Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)]3+ (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η6-p-cym)Ru]2+ (p-cym = p-cymene) entity have been synthesized and characterized by various analytical techniques. The reaction between PyPropHpH and [Co(4N)Cl]Cl2 resulted in the exclusive (O,O) coordination of the ligand to Co(III) yielding [Co(tren)PyPropHp](PF6)2 (1) and [Co(tpa)PyPropHp](PF6)2 (2). This binding mode was further supported by the molecular structure of [Co(tpa)PyPropHp]2(ClO4)3(OH)·6H2O (5) and [Co(tren)PyPropHpH]Cl(PF6)2·2H2O·C2H5OH (6), respectively, obtained via the slow evaporation of the appropriate reaction mixtures and analyzed using X-ray crystallography. Subsequent treatment of 1 or 2 with [Ru(η6-p-cym)Cl2]2 in a one-pot reaction afforded the corresponding heterobimetallic complexes, [Co(tren)PyPropHp(η6-p-cym)RuCl](PF6)3 (3) and [Co(tpa)PyPropHp(η6-p-cym)RuCl](PF6)3 (4), in which the piano-stool Ru core is coordinated by the (N,N) chelating set of the ligand. Cyclic voltammetric measurements revealed that the tpa complexes can be reduced at less negative potentials, suggesting their capability to be bioreductively activated under hypoxia (1% O2). Hypoxia activation of 2 and 4 was demonstrated by cytotoxicity studies on the MCF-7 human breast cancer cell line. PyPropHpH was shown to be a typical iron-chelating anticancer agent, raising the mRNA levels of TfR1, Ndrg1 and p21. Further qRT-PCR studies provided unambiguous evidence for the bioreduction of 2 after 72 h incubation under hypoxia, in which the characteristic gene induction profile caused by the liberated iron-sequestering PyPropHpH was observed. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 11552 KiB  
Article
Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD
by Andrija Vukovic, Danijela Karanovic, Nevena D Mihailovic-Stanojevic, Zoran Miloradovic, Predrag Brkic, Maja Zivotic, Jelena Nesovic Ostojic, Milan Ivanov, Sanjin Kovacevic, Una-Jovana Vajic, Djurdjica Jovovic and Silvio R. De Luka
Biomedicines 2024, 12(12), 2788; https://doi.org/10.3390/biomedicines12122788 - 9 Dec 2024
Cited by 1 | Viewed by 1502
Abstract
Background/Objectives: Chronic kidney disease (CKD) is a progressive pathological condition which results in the severe fibrosis of the kidneys. However, the mechanisms of CKD progression and fibrogenesis remain unclear. We wanted to examine the effects that apocynin and hyperbaric oxygen therapy (HBOT) have [...] Read more.
Background/Objectives: Chronic kidney disease (CKD) is a progressive pathological condition which results in the severe fibrosis of the kidneys. However, the mechanisms of CKD progression and fibrogenesis remain unclear. We wanted to examine the effects that apocynin and hyperbaric oxygen therapy (HBOT) have on renal function and structure in animals with CKD induced through 5/6 nephrectomy (5/6 Nx-L). Methods: Male Wistar rats were divided in 5 groups (n = 8/group) as follows: control—sham-operated rats; Nx-L—rats with 5/6 Nx-L; APO—5/6 Nx-L + apocynin treatment; HBOT—5/6 Nx-L + hyperbaric oxygen treatment, and APO+HBOT—5/6 Nx-L, treated with both treatments. All treatments started 4 weeks after the final step of CKD induction and lasted for 4 weeks. At the end of the experiment, urine samples were collected for the proteinuria assessment and the mean arterial pressure (MAP) was measured. Kidneys were collected for histopathological, Western blot, and immunohistochemical analyses. Results: All treatments significantly decreased MAP compared to the Nx-L group (p < 0.001). In the APO and APO+HBOT groups, the level of proteinuria was decreased compared to the Nx-L group (p < 0.05 and p < 0.01, respectively). All examined treatments significantly decreased the intensity of lesions in the kidney compared to those observed in the Nx-L group (p < 0.001). Isolated treatments with apocynin and HBOT induced a significant decrease in desmin expression compared to the Nx-L group (p < 0.05); meanwhile, they did not affect the levels of fibronectin (FN) and hypoxia-inducible factor-1α (HIF-1α). Combined treatment did not affect desmin expression levels; however, it induced a significant increase in fibronectin expression compared to Nx-L (p < 0.001). Conclusions: Apocynin treatment decreased BP and protein loss, and it improved renal morphology at least partly through the downregulation of desmin expression without changing FN and HIF-1α. Hyperbaric oxygen therapy improved hypertension but failed to significantly affect the level of proteinuria. Combined treatment (apocynin and HBOT) normalized blood pressure (BP) values, renal function, and improved kidney structure by modulating FN and HIF-1α, without affecting desmin protein expression. Further studies are needed to elucidate the mechanisms of slowing down the progression of CKD in this experimental model. Full article
Show Figures

Graphical abstract

17 pages, 51731 KiB  
Article
Hypoxia-Inducible Factor-2α Promotes Liver Fibrosis by Inducing Hepatocellular Death
by Raja Gopal Reddy Mooli, Dhanunjay Mukhi, Mikayla Watt, Veerababu Nagati, Sara M. Reed, Nikita K. Gandhi, Michael Oertel and Sadeesh K. Ramakrishnan
Int. J. Mol. Sci. 2024, 25(23), 13114; https://doi.org/10.3390/ijms252313114 - 6 Dec 2024
Cited by 2 | Viewed by 1477
Abstract
The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in [...] Read more.
The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in liver fibrosis has not been addressed. Hepatic HIF-2α expression was examined in mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. Conditional hepatocyte Hif-2α knockout mice were employed to investigate the role of hepatocyte HIF-2α in fibrosis. Markers of apoptosis, proliferation, inflammation, and fibrosis were assessed through biochemical, molecular, and histological analyses. We found an induction of HIF-2α in CCL4-injected liver injury and fibrosis mouse models. Hepatocyte-specific deletion of HIF-2α attenuated stellate cell activation and fibrosis, with no significant difference in inflammation. Disrupting hepatocyte HIF-2α led to reduced injury-mediated hepatocellular apoptosis. Surviving hepatocytes exhibited hypertrophy, which was strongly associated with the activation of c-JUN signaling. Our study demonstrates a direct role of hepatocyte HIF-2α in liver fibrosis by promoting hepatocyte apoptosis. The reduction in apoptosis and induction of hepatocyte hypertrophy following HIF-2α disruption is closely linked to enhanced c-JUN signaling, a survival mechanism in response to liver injury. These findings highlight HIF-2α as a potential therapeutic target for liver fibrosis. Full article
Show Figures

Figure 1

Back to TopTop