Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = hypothalamic paraventricular nucleus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 755 KB  
Case Report
Novel SIM1 Variants Expanding the Spectrum of SIM1-Related Obesity
by Idris Mohammed, Wesam S. Ahmed, Tara Al-Barazenji, Hajar Dauleh, Donald R. Love and Khalid Hussain
Int. J. Mol. Sci. 2026, 27(1), 533; https://doi.org/10.3390/ijms27010533 - 5 Jan 2026
Viewed by 93
Abstract
Monogenic forms of severe early-onset obesity often involve genetic disruptions in the hypothalamic leptin-melanocortin pathway. Pathogenic variants in the SIM1 gene, a key transcription factor required for the development of the paraventricular nucleus, are a known cause of Prader–Willi-like syndrome, characterized by hyperphagia, [...] Read more.
Monogenic forms of severe early-onset obesity often involve genetic disruptions in the hypothalamic leptin-melanocortin pathway. Pathogenic variants in the SIM1 gene, a key transcription factor required for the development of the paraventricular nucleus, are a known cause of Prader–Willi-like syndrome, characterized by hyperphagia, severe obesity, and developmental delay. We performed targeted next-generation sequencing of 52 obesity-associated genes on a cohort of pediatric patients with severe early-onset obesity. Identified variants were analyzed for population frequency and predicted pathogenicity using in silico tools. The structural impact of the novel missense variants was assessed using protein domain modeling with AlphaFold3. We identified five rare SIM1 variants in eleven patients. Four were heterozygous nonsynonymous variants: one frameshift in the bHLH domain (p.Ser18Ter), one frameshift in the Per-ARNT-Sim domain (p.His143Ter), and two missense variants, p.Pro30Ala and p.Ser663Leu. Structural modeling suggested that the missense variants are likely to disrupt critical protein–protein interactions. The fifth variant was a synonymous change, c.1173G>A, p.(Ser391Ser), which was detected in five unrelated patients. Bioinformatic analysis predicted that this variant could alter splicing. Structural modeling suggested that the missense variants interfere with SIM1 function. This study expands the mutational spectrum of SIM1-linked monogenic obesity, reporting novel likely pathogenic frameshift variants, a missense variant, and a recurrent synonymous variant with a potential splice-site effect. The majority of the variants are predicted to affect the SIM1 protein. Our findings strengthen the critical role of the SIM1 gene in hypothalamic development and energy homeostasis. The results underscore the importance of including the SIM1 gene in genetic testing panels for children with severe obesity and hyperphagia, enabling precise diagnosis and potential future personalized management. Functional in vitro or in vivo validation of these variants is required to confirm their pathogenicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1597 KB  
Article
Gut Microbiota Affects Mouse Social Behavior via Hippuric Acid Metabolism
by Momona Tsukui, Sosuke Yagishita, Shinji Tokunaga, Shuji Wakatsuki and Toshiyuki Araki
Neurol. Int. 2025, 17(11), 185; https://doi.org/10.3390/neurolint17110185 - 11 Nov 2025
Viewed by 751
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder typically characterized by impaired social communication. Previous reports have postulated gut microbiota to be an important non-genetic factor affecting ASD-like phenotypes in mice, as germ-free (GF) mice show impaired social communication. Results: In this [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder typically characterized by impaired social communication. Previous reports have postulated gut microbiota to be an important non-genetic factor affecting ASD-like phenotypes in mice, as germ-free (GF) mice show impaired social communication. Results: In this study, we identified hippuric acid (HA) as a metabolite generated via a gut microbiome-dependent mechanism that plays a role in the acquisition of social behavior during mouse development. We discovered that oral or intraperitoneal HA administration to GF mice normalizes their social behavior. Furthermore, HA administration restored oxytocin expression in the hypothalamic paraventricular nucleus and secretin expression in the subfornical organ, suggesting that HA may activate the secretin–oxytocin system to influence the social behavior of mice. Conclusions: These findings indicate that HA may serve as an important gut microbiome-dependent mediator affecting the brain mechanisms involved in regulating social behavior. Full article
Show Figures

Graphical abstract

50 pages, 3304 KB  
Review
Perspective for Modulation of Hypothalamic Neurogenesis: Integrating Anatomical Insights with Exercise and Dietary Interventions
by Javier Choquet de Isla, Manuel Bández-Ruiz, Ignacio Rosety-Rodríguez, Inmaculada Pérez-López, Miguel Ángel Rosety-Rodríguez, Cristina Verástegui-Escolano, Ismael Sánchez-Gomar and Noelia Geribaldi-Doldán
Int. J. Mol. Sci. 2025, 26(22), 10914; https://doi.org/10.3390/ijms262210914 - 11 Nov 2025
Viewed by 1810
Abstract
Adult neurogenesis is well established in canonical niches—the dentate gyrus and the subventricular zone, where aerobic exercise reliably enhances progenitor proliferation, survival, and synaptic integration via increased cerebral blood flow, neurotrophins (e.g., BDNF, IGF-1), neurotransmitter regulation, and reduced neuroinflammation. Nutraceuticals (e.g., polyphenols, omega-3, [...] Read more.
Adult neurogenesis is well established in canonical niches—the dentate gyrus and the subventricular zone, where aerobic exercise reliably enhances progenitor proliferation, survival, and synaptic integration via increased cerebral blood flow, neurotrophins (e.g., BDNF, IGF-1), neurotransmitter regulation, and reduced neuroinflammation. Nutraceuticals (e.g., polyphenols, omega-3, creatine, vitamins) further support neuroplasticity and neuronal survival through convergent trophic, anti-inflammatory, and metabolic pathways. By contrast, the hypothalamus, a metabolically pivotal, non-canonical niche, remains comparatively understudied. Here, we synthesize anatomical and functional features of hypothalamic neural stem cells, primarily tanycytes (α1, α2, β1, β2), which line the third ventricle and differentially contribute to neuronal activity regulation, metabolic signaling, and cerebrospinal fluid–portal vasculature coupling, thereby linking neurogenesis to endocrine control. Notably, tanycytes can form neurospheres in vitro, enabling mechanistic interrogation. Although evidence for adult hypothalamic neurogenesis in humans is debated due to methodological constraints, animal data suggest potential relevance to disorders characterized by neuronal loss, metabolic dysregulation, and impaired neuroendocrine function. We propose that an integrative framework is timely: exercise and diet likely interact in the hypothalamic niche through shared mediators (BDNF, IGF-1, CNTF, GPR40) and exercise-derived signals (e.g., lactate, IL-6) that may be complemented by defined nutraceuticals. Yet critical uncertainties persist, including the extent of bona fide hypothalamic neurogenesis, nucleus-specific responses (arcuate nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus), and the mechanistic integration of lifestyle signals in this region. To address these gaps, we outline actionable priorities: (i) single-cell and lineage-tracing studies of tanycyte subtypes under distinct training modalities (aerobic, high-intensity interval training, resistance); (ii) combinatorial interventions pairing structured exercise with nutraceuticals to test synergy on progenitor dynamics and inflammation; and (iii) multi-omics and translational studies to identify biomarkers and establish clinical relevance. Clarifying these interactions will determine whether lifestyle and supplementation strategies can synergistically modulate hypothalamic neurogenesis and inform therapies for neurological, neuropsychiatric, and metabolic disorders. Full article
Show Figures

Figure 1

17 pages, 844 KB  
Article
Expression of Neurotrophin Genes in the Hypothalamus of Stressed and Allopregnanolone-Infused Sheep
by Patrycja Młotkowska, Bartosz Osuch, Elżbieta Marciniak, Katarzyna Roszkowicz-Ostrowska and Tomasz Misztal
Int. J. Mol. Sci. 2025, 26(20), 10062; https://doi.org/10.3390/ijms262010062 - 16 Oct 2025
Viewed by 496
Abstract
The hypothalamus is a key regulator of fundamental physiological processes and a site of adult neurogenesis. Allopregnanolone (ALLO) is a neurosteroid that mitigates the adverse effects of stress on the central nervous system and also affects neurogenesis. This study examined the effects of [...] Read more.
The hypothalamus is a key regulator of fundamental physiological processes and a site of adult neurogenesis. Allopregnanolone (ALLO) is a neurosteroid that mitigates the adverse effects of stress on the central nervous system and also affects neurogenesis. This study examined the effects of acute stress and ALLO administration (separately or in combination) into the third brain ventricle on the expression of neurotrophins and Trkβ receptor in distinct hypothalamic areas of sexually active female sheep. Expression of genes encoding brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4) and the Trkβ receptor was analyzed in the medial basal hypothalamus (MBH), arcuate nucleus (ARC), anterior hypothalamus (AHA), paraventricular nucleus (PVN), and preoptic area (POA). Acute stress stimulated the expression of neurotrophins (BDNF, NGF, and NT-3) in the ARC and PVN, while inhibitory effects predominated in the MBH, AHA and POA. ALLO alone mainly suppressed neurotrophins expression, while stimulatory effects were limited to the BDNF–Trkβ system in the ARC and Trkβ in the AHA. When combined with stress, ALLO either counteracted stress-induced increases in neurotrophins expression or produced no effect. The results demonstrate that acute stress can differentially modify neurotrophins mRNA expression in hypothalamic regions, activating neurotrophic activity in specific nuclei. The predominant inhibitory effect of ALLO on neurotrophin synthesis, particularly under conditions of acute stress, may help prevent excessive neuronal activation. Conversely, the upregulation of the BDNF-Trkβ system in the ARC indicates a positive relationship between this neurosteroid and hypothalamic adult neurogenesis. Full article
(This article belongs to the Special Issue Steroids in Human Disease and Health)
Show Figures

Figure 1

20 pages, 4947 KB  
Article
Engineered Liposomal Delivery of Human ACE2 Across the Blood–Brain Barrier Attenuated Neurogenic Hypertension
by Yue Shen, Richard Nii Lante Lamptey, Gowthami Reddy Mareddy, Bivek Chaulagain, Jagdish Singh and Chengwen Sun
Pharmaceutics 2025, 17(10), 1329; https://doi.org/10.3390/pharmaceutics17101329 - 14 Oct 2025
Viewed by 961
Abstract
The blood–brain barrier (BBB) restricts the entry of therapeutic agents into the brain cardiovascular regulatory region, potentially contributing to drug-resistant hypertension. Objective: The objective of this study was to overcome this limitation by modifying PEGylated liposomes with transferrin (Tf) to facilitate Tf [...] Read more.
The blood–brain barrier (BBB) restricts the entry of therapeutic agents into the brain cardiovascular regulatory region, potentially contributing to drug-resistant hypertension. Objective: The objective of this study was to overcome this limitation by modifying PEGylated liposomes with transferrin (Tf) to facilitate Tf receptor binding at the BBB and penetratin (Pen), a cell-penetrating peptide, to enhance neuronal uptake. Methods: This study evaluated the efficacy of Tf-Pen-liposomes in delivering angiotensin-converting enzyme 2 (ACE2) or EGFP (control) genes across the BBB in rats. In addition, the therapeutic effect of intravenous administration of Tf-Pen-Lip carrying plasmid DNA encoding ACE2 (Tf-Pen-Lip-pACE2) was tested in a neurogenic hypertension model induced by intracerebroventricular (ICV) infusion of angiotensin II (Ang II) via osmotic pump implantation and brain cannulation. Results: Conjugation with Tf and Pen significantly enhanced liposome-mediated gene transfection in cultured cells and increased transport across an in vitro BBB model. In vivo, intravenous administration of Tf-Pen-Lip-pACE2 or Tf-Pen-Lip-pGFP successfully elevated ACE2 or EGFP expression, respectively, in the hypothalamic paraventricular nucleus (PVN). Chronic ICV infusion of Ang II produced a sustained increase in blood pressure and heart rate, accompanied by sympathetic overactivation and elevated arginine vasopressin (AVP) secretion, hallmarks of neurogenic hypertension. Notably, intravenous Tf-Pen-Lip-pACE2 treatment dramatically attenuated Ang II–induced neurogenic hypertension, whereas Tf-Pen-Lip-pGFP had no effect on pressor responses, sympathetic activity, or AVP secretion. Conclusions: This dual-functionalized liposomal delivery system effectively transported the ACE2 gene across the BBB into the brain, increased ACE2 expression, and markedly attenuated neurogenic hypertension following systemic administration. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

34 pages, 4897 KB  
Article
Long-Term Effects of Stress During Adolescence on the Sex-Dependent Responses of Thyroid Axis and Target Tissues to Exercise in Male and Female Wistar Rats
by Marco Parra-Montes de Oca, Lorraine Jaimes-Hoy, Karen Garduño, Rodrigo García-Herrera, Jean-Louis Charli and Patricia Joseph-Bravo
Int. J. Mol. Sci. 2025, 26(19), 9425; https://doi.org/10.3390/ijms26199425 - 26 Sep 2025
Viewed by 1219
Abstract
The response of the hypothalamic–pituitary–thyroid (HPT) axis to energy demands is perturbed by previous chronic stress perceived during the neonatal or adult periods. We examined the effects of chronic variable stress (CVS) during adolescence on the responses of the HPT axis and target [...] Read more.
The response of the hypothalamic–pituitary–thyroid (HPT) axis to energy demands is perturbed by previous chronic stress perceived during the neonatal or adult periods. We examined the effects of chronic variable stress (CVS) during adolescence on the responses of the HPT axis and target tissues of adult rats to 14 days of voluntary wheel running (Ex) or pair-feeding (PF) to match the reduced food intake of exercised rats. CVS increased the expression of Gr in the paraventricular nucleus (PVN) and of Npy in the mediobasal hypothalamus (MBH) in males; serum corticosterone concentration increased (1.5×), MBH Dio2 and PVN Trh decreased (40%) in both sexes, serum fT4 increased only in males, while T3 and fT3 increased (2×) in females. Exercise decreased Cort and increased PVN Trh expression only in males. In both sexes, it increased MBH Pomc and Dio2 (2×), skeletal muscle Dio2 and Pgc1a (2×), inguinal and perigonadal white adipose tissue (WAT) Adrb3, Dio2, Pparg, Hsl (1.5×), and brown adipose tissue Adrb3, Dio2, and Ucp1. All exercise-induced changes were repressed in CVS-Ex, except Hsl in inguinal WAT of both sexes, or BAT Dio2 in females, which, in contrast, was stimulated (1.5×). PF had lower values than sedentary in most parameters. These results support the idea that adolescent stress affects adult metabolic and neuroendocrine responses to exercise in a sex-specific manner. Full article
Show Figures

Figure 1

34 pages, 1598 KB  
Review
Neuroendocrine Regulation and Neural Circuitry of Parenthood: Integrating Neuropeptides, Brain Receptors, and Maternal Behavior
by Philippe Leff-Gelman, Gabriela Pellón-Díaz, Ignacio Camacho-Arroyo, Nadia Palomera-Garfias and Mónica Flores-Ramos
Int. J. Mol. Sci. 2025, 26(18), 9007; https://doi.org/10.3390/ijms26189007 - 16 Sep 2025
Viewed by 2234
Abstract
Maternal behavior encompasses a range of biologically driven responses whose expression and duration vary across species. Maternal responses rely on robust adaptive changes in the female brain, enabling mothers to engage in caregiving, nourishing, and offspring protection. Morphological and functional changes in the [...] Read more.
Maternal behavior encompasses a range of biologically driven responses whose expression and duration vary across species. Maternal responses rely on robust adaptive changes in the female brain, enabling mothers to engage in caregiving, nourishing, and offspring protection. Morphological and functional changes in the maternal brain enhance sensitivity to offspring cues, eliciting maternal behaviors, rewarding responses, and social processing stimuli essential for parenting. Maternal behavior comprises a range of biological responses that extend beyond basic actions, reflecting a complex, evolutionarily shaped neurobiological adaptation. These behaviors can be broadly categorized into direct behaviors, which are explicitly aimed at the care of the offspring, and indirect behaviors that, overall, ensure the protection, nourishment, and survival of the newborn. The secretion of main neuropeptide hormones, such as oxytocin (OT), prolactin (PRL), and placental lactogens (PLs), during the peripartum period, is relevant for inducing and regulating maternal responses to offspring cues, including suckling behavior. Although PRL is primarily associated with reproductive and parental functions in vertebrates, it also modulates distinct neural functions during pregnancy that extend from lactogenesis to adult neurogenesis, neuroprotection, and neuroplasticity, all of which contribute to preparing the maternal brain for motherhood and parenting interactions. Parvocellular OT-containing neurons in the paraventricular nucleus (PVN) and in the anterior hypothalamic nucleus (AHN) project axon collaterals to the medial preoptic area, which, in turn, projects to the nucleus accumbens (NACC) and lateral habenula (lHb) via the retrorubral field (RRF) and the ventral tegmental area (VTA), which mediate the motivational aspects of maternal responses to offspring cues. The reshaping process of the brain and neural networks implicated in motherhood depends on several factors, such as up- and downregulation of neuronal gene expression of bioactive peptide hormones (i.e., OT, PRL, TIP-39, galanin, spexin, pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH), peptide receptors, and transcription factors (i.e., c-fos and pSTAT)) in target neurons in hypothalamic nuclei, mesolimbic areas, the hippocampus, and the brainstem, which, overall, regulate the expression of maternal behavior to offspring cues, as shown in postpartum female rodents. In this review, we describe the modulatory neuropeptides, the neural networks underlying peptide transmission systems, and cell signaling involved in parenthood. We highlight the dysregulation of neuropeptide hormones and their receptors in the central nervous system in relation to psychiatric disorders. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

40 pages, 1569 KB  
Review
Cell Type-Specific Expression of Purinergic P2X Receptors in the Hypothalamus
by Jana Cihakova, Milorad Ivetic and Hana Zemkova
Int. J. Mol. Sci. 2025, 26(11), 5007; https://doi.org/10.3390/ijms26115007 - 22 May 2025
Cited by 1 | Viewed by 2793
Abstract
Purinergic P2X receptors (P2X) are ATP-gated ion channels that are broadly expressed in the brain, particularly in the hypothalamus. As ionic channels with high permeability to calcium, P2X play an important and active role in neural functions. The hypothalamus contains a number of [...] Read more.
Purinergic P2X receptors (P2X) are ATP-gated ion channels that are broadly expressed in the brain, particularly in the hypothalamus. As ionic channels with high permeability to calcium, P2X play an important and active role in neural functions. The hypothalamus contains a number of small nuclei with many molecularly defined types of peptidergic neurons that affect a wide range of physiological functions, including water balance, blood pressure, metabolism, food intake, circadian rhythm, childbirth and breastfeeding, growth, stress, body temperature, and multiple behaviors. P2X are expressed in hypothalamic neurons, astrocytes, tanycytes, and microvessels. This review focuses on cell-type specific expression of P2X in the most important hypothalamic nuclei, such as the supraoptic nucleus (SON), paraventricular nucleus (PVN), suprachiasmatic nucleus (SCN), anteroventral periventricular nucleus (AVPV), anterior hypothalamic nucleus (AHN), arcuate nucleus (ARC), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus (DMH), tuberomammillary nucleus (TMN), and lateral hypothalamic area (LHA).> The review also notes the possible role of P2X and extracellular ATP in specific hypothalamic functions. The literature summarized here shows that purinergic signaling is involved in the control of the hypothalamic-pituitary endocrine system, the hypothalamic–neurohypophysial system, the circadian systems and nonendocrine hypothalamic functions. Full article
(This article belongs to the Special Issue Ion Channels in the Nervous System)
Show Figures

Figure 1

29 pages, 9570 KB  
Article
Neurotransmission Sex Dichotomy in the Rat Hypothalamic Paraventricular Nucleus in Healthy and Infantile Spasm Model
by Dumitru Andrei Iacobas, Jana Veliskova, Tamar Chachua, Chian-Ru Chern, Kayla Vieira, Sanda Iacobas and Libor Velíšek
Curr. Issues Mol. Biol. 2025, 47(5), 380; https://doi.org/10.3390/cimb47050380 - 21 May 2025
Cited by 2 | Viewed by 1214
Abstract
We profiled the gene expressions in the hypothalamic paraventricular nuclei of 12 male and 12 female pups from a standard rat model of infantile spasms to determine the sex dichotomy of the neurotransmission genomic fabrics. Infantile spasms were triggered in rat pups prenatally [...] Read more.
We profiled the gene expressions in the hypothalamic paraventricular nuclei of 12 male and 12 female pups from a standard rat model of infantile spasms to determine the sex dichotomy of the neurotransmission genomic fabrics. Infantile spasms were triggered in rat pups prenatally primed with two doses of betamethasone followed by the postnatal repeated administration of N-methyl-D-aspartic acid to induce spasms. Publicly available microarray data were used to characterize each gene in each condition for both sexes by the independent transcriptomic features: average expression level, control of the transcript abundance, and expression correlation with every other gene. This study revealed substantial sex differences in the expression level, control, and inter-coordination of the investigated genes among the studied groups. The transcriptomic differences assist in providing a molecular explanation of the behavioral differences and development of infantile epilepsy spasm syndrome in the two sexes. Full article
(This article belongs to the Special Issue Molecules at Play in Neurological Diseases)
Show Figures

Figure 1

12 pages, 2106 KB  
Article
Differences in GIP Receptor Expression by Feeding Status in the Mouse Brain
by Do Kyeong Song, Narae Jung, Yeon-Ah Sung, Young Sun Hong and Hyejin Lee
Int. J. Mol. Sci. 2025, 26(3), 1142; https://doi.org/10.3390/ijms26031142 - 28 Jan 2025
Cited by 1 | Viewed by 3346
Abstract
Gastric inhibitory polypeptide (GIP) contributes to energy metabolism regulation. We investigated differences in GIP receptor expression in the brain by feeding status among lean and obese mice and the effect of acute central GIP administration on the expression of appetite-regulating hypothalamic neuropeptides. We [...] Read more.
Gastric inhibitory polypeptide (GIP) contributes to energy metabolism regulation. We investigated differences in GIP receptor expression in the brain by feeding status among lean and obese mice and the effect of acute central GIP administration on the expression of appetite-regulating hypothalamic neuropeptides. We divided the mice into four groups: fed/lean, fasted/lean, fed/obese, and fasted/obese. The arcuate nucleus (ARC), paraventricular nucleus of the hypothalamus, and nucleus of the solitary tract in the brainstem were harvested. GIP (6 nmol) or saline was injected for the acute intracerebroventricular administration test, followed by the collection of hypothalamic tissue after 2 h. Fed/obese mice had higher ARC GIP receptor mRNA levels than fasted/obese and lean mice. This difference was not observed among lean mice by feeding status. Obese mice had higher blood GIP levels than lean mice. Fed/obese mice had higher blood GIP levels than fasted/obese mice. This difference was not observed among lean mice by feeding status. GIP administration significantly increased proopiomelano-cortin (Pomc) mRNA levels (GIP: 7.59 ± 0.14; saline: 3.44 ± 1.38 arbitrary units; p = 0.030). Increased GIP receptor expression in the ARC in obese mice indicates its central nervous system involvement in energy balance regulation. GIP potentially regulates POMC-mediated appetite regulation in the hypothalamus. It is possible that POMC neurons are targets of GIP action in the brain. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 1311 KB  
Review
An Overview on Renal and Central Regulation of Blood Pressure by Neuropeptide FF and Its Receptors
by Hewang Lee, Jun B. Feranil and Pedro A. Jose
Int. J. Mol. Sci. 2024, 25(24), 13284; https://doi.org/10.3390/ijms252413284 - 11 Dec 2024
Viewed by 2840
Abstract
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed [...] Read more.
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation. However, the expressions of NPFF and its receptors are not restricted within the central nervous system but are also found in peripheral organs, including the kidneys. Both NPFFR1 and NPFFR2 mainly couple to Gαi/o, which inhibits cyclic adenosine monophosphate (cAMP) production. NPFF also weakly binds to other RFamide receptors and the Mas receptor. Relevant published articles were searched in PubMed, Google Scholar, Web of Science, and Scopus. Herein, we review evidence for the role of NPFF in the regulation of blood pressure, in the central nervous system, particularly within the hypothalamic paraventricular nucleus and the brainstem, and the kidneys. NPFF is a potential target in the treatment of hypertension. Full article
(This article belongs to the Special Issue Recent Research on Hypertension and Related Complications)
Show Figures

Figure 1

17 pages, 3000 KB  
Article
PTSD Increases Risk for Hypertension Development Through PVN Activation and Vascular Dysfunction in Sprague Dawley Rats
by Xinqian Chen, Xin Yan, Chunxiu Yu, Qing-hui Chen, Lanrong Bi and Zhiying Shan
Antioxidants 2024, 13(11), 1423; https://doi.org/10.3390/antiox13111423 - 20 Nov 2024
Cited by 2 | Viewed by 2306
Abstract
This study investigates the impact of single prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD), on cardiovascular responses, hypothalamic paraventricular nucleus (PVN) activity, and vascular function to elucidate the mechanisms linking traumatic stress to hypertension. Although SPS did not directly cause [...] Read more.
This study investigates the impact of single prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD), on cardiovascular responses, hypothalamic paraventricular nucleus (PVN) activity, and vascular function to elucidate the mechanisms linking traumatic stress to hypertension. Although SPS did not directly cause chronic hypertension in male Sprague Dawley (SD) rats, it induced acute but transient increases in blood pressure and heart rate and significantly altered the expression of hypertension-associated genes, such as vasopressin, angiotensin II type 1 receptor (AT1R), and FOSL1 in the PVN. Notably, mitochondrial reactive oxygen species (mtROS) were predominantly elevated in the pre-autonomic regions of the PVN, colocalizing with AT1R- and FOSL1-expressing cells, suggesting that oxidative stress may amplify sympathetic activation and stress responses. SPS also increased mRNA levels of pro-inflammatory cytokines (TNFα and IL1β) and inducible nitric oxide synthase (iNOS) in the aorta, and impaired vascular reactivity to vasoconstrictor and vasodilator stimuli, reflecting compromised vascular function. These findings suggest that SPS-sensitize neuroendocrine, autonomic, and vascular pathways create a state of cardiovascular vulnerability that could predispose individuals to hypertension when exposed to additional stressors. Understanding these mechanisms provides critical insights into the pathophysiology of stress-related cardiovascular disorders and underscores the need for targeted therapeutic interventions that address oxidative stress and modulate altered PVN pathways to mitigate the cardiovascular impact of PTSD and related conditions. Full article
Show Figures

Figure 1

16 pages, 5341 KB  
Article
Sex Differences in the Neuroendocrine Stress Response: A View from a CRH-Reporting Mouse Line
by Krisztina Horváth, Pál Vági, Balázs Juhász, Dániel Kuti, Szilamér Ferenczi and Krisztina J. Kovács
Int. J. Mol. Sci. 2024, 25(22), 12004; https://doi.org/10.3390/ijms252212004 - 8 Nov 2024
Cited by 2 | Viewed by 3212
Abstract
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in [...] Read more.
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in activation of the hypothalamic–pituitary–adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual. Because of the technical difficulties of localizing CRH neurons throughout the rodent brain, several CRH reporter mouse lines have recently been developed. In this study, we used Crh-IRES-Cre;Ai9 reporter mice to examine whether CRH neurons are recruited in a stressor- or sex-specific manner, both within and outside the hypothalamus. In contrast to the clear sexual dimorphism of CRH-mRNA-expressing neurons, quantification of CRH-reporting, tdTomato-positive neurons in different stress-related brain areas revealed only subtle differences between male and female subjects. These results strongly imply that sex differences in CRH mRNA expression occur later in development under the influence of sex steroids and reflects the limitations of using genetic reporter constructs to reveal the current physiological/transcriptional status of a specific neuron population. Next, we compared the recruitment of stress-related, tdTomato-expressing (putative CRH) neurons in male and female Crh-IRES-Cre;Ai9 reporter mice that had been exposed to predator odor. In male mice, fox odor triggered more c-Fos in the CRH neurons of the paraventricular hypothalamic nucleus, central amygdala, and anterolateral bed nucleus of the stria terminalis compared to females. These results indicate that male mice are more sensitive to predator exposure due to a combination of hormonal, environmental, and behavioral factors. Full article
(This article belongs to the Special Issue Emerging Molecular Views in Neuroendocrinology)
Show Figures

Figure 1

18 pages, 2508 KB  
Article
Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause
by Garrett Sommer, Claudia Rodríguez López, Adi Hirschkorn, Gianna Calimano, Jose Marques-Lopes, Teresa A. Milner and Michael J. Glass
Biology 2024, 13(10), 819; https://doi.org/10.3390/biology13100819 - 12 Oct 2024
Cited by 4 | Viewed by 2095
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in [...] Read more.
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

16 pages, 5342 KB  
Article
Puerarin Alleviates Blood Pressure via Inhibition of ROS/TLR4/NLRP3 Inflammasome Signaling Pathway in the Hypothalamic Paraventricular Nucleus of Salt-Induced Prehypertensive Rats
by Hong-Li Gao, Yu Yang, Hua Tian, Shen-Liang Xu, Bo-Wen Li, Li-Yan Fu, Kai-Li Liu, Xiao-Lian Shi, Yu-Ming Kang and Xiao-Jing Yu
Nutrients 2024, 16(16), 2580; https://doi.org/10.3390/nu16162580 - 6 Aug 2024
Cited by 12 | Viewed by 2984
Abstract
Background: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. Purpose: [...] Read more.
Background: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. Purpose: The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. Methods: Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. Results: We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. Conclusion: We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop