Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = hygroscopicity of wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 - 2 Aug 2025
Viewed by 253
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 350
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 240
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 10118 KiB  
Article
A Comparative Study on the Effects of Heat Treatment on the Properties of Rubberwood Veneer
by Yayun Wu, He Sun, Zi You, Zhiwei He, Shiqi Zeng, Yuxing Han and Taian Chen
Forests 2025, 16(6), 1010; https://doi.org/10.3390/f16061010 - 16 Jun 2025
Viewed by 812
Abstract
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by [...] Read more.
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by the industry and is scarcely reported in research. In light of this, in this paper, rubber wood (Hevea brasiliensis) veneer is taken as the research subject to investigate the influences of heat treatment with hot air (HTHA) and heat treatment with superheated steam (HTSS) at different temperatures on the chemical properties, longitudinal tensile strength, color values, hygroscopicity, thermal degradation performance and microstructure of the wood. The results show that heat treatment alters the chemical properties of wood. Both heat treatments reduce the content of hemicellulose and other components in the veneer, and the characteristic peak of lignin in HTSS is slightly enhanced. The crystallinity of the veneer slightly increases after heat treatment, and the increase in HTSS is greater than that in HTHA. Through scanning electron microscopy, it is observed that heat treatment can effectively remove starch granules in rubber wood veneer, with HTSS being superior to HTHA, and the removal effect increases with the rise in temperature. The longitudinal tensile strength of the veneer decreased by 0.69%, 3.87%, and 24.98% respectively at 135~155 °C HTHA, and by 3.25%, 7.00%, and 18.47% respectively at 135~155 °C HTSS. Both heat treatments reduced the lightness of the veneer and increased the chroma index. At 155 °C, the color difference value of the veneer treated by HTSS was smaller than that treated by HTHA. The effects of heat treatment on the moisture absorption performance of the veneer were different. The equilibrium moisture content of the veneer treated at 135 °C HTHA and 135~155 °C HTSS was lower than that of the untreated material, indicating an improvement in moisture absorption stability. The maximum moisture sorption hysteresis of untreated material is 3.39%. The maximum moisture sorption hysteresis of 135 °C HTHA is not much different from that of untreated material. The values of 145 °C and 155 °C HTHA increase by 8.85% and 9.14% respectively. The values of 135 °C, 145 °C, and 155 °C HTSS increase by 22.42%, 25.37%, and 19.47% respectively. The moisture absorption hysteresis of the veneer increases after heat treatment, and the effect of HTSS improvement is more significant. From the TG and DTG curves, it can be seen that the residual mass percentage of the veneer after heat treatment is higher than that of the untreated material. The residual mass percentage of HTHA at 135 °C, 145 °C, and 155 °C increased by 3.13%, 3.07%, and 2.06% respectively, and that of HTSS increased by 5.14%, 7.21%, and 6.08% respectively. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 3010 KiB  
Article
Heat Transmittance and Weathering Performance of Thermally Modified Fir Wood Exposed Outdoors
by Anastasia Ioakeimidou, Vasiliki Kamperidou and Ioannis Barboutis
Forests 2025, 16(6), 945; https://doi.org/10.3390/f16060945 - 4 Jun 2025
Viewed by 431
Abstract
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have [...] Read more.
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have considerable added value. This study examines the performance of thermally treated (6 h at 170 °C and 200 °C) softwood species (fir wood) when exposed outdoors and applied on wooden building structures as cladding timber, among other structures. International standards were applied for the characterization of the untreated and thermally treated wooden boards after the treatments in terms of physical, hygroscopic, and surface properties. In contrast, all the boards (of dimensions 390 × 75 × 20 mm in length, width, thickness respectively) were exposed outdoors to direct sunlight and a combination of biotic and abiotic factors for a six-month period to mainly investigate the thermal properties (heat transfer analysis/insulation properties) using a real-time test in situ, as well as to investigate their potential resistance to natural weathering (color, surface roughness, visual inspection, etc.). Heat transfer in the thermally treated wood specimens was found to be much slower than that in the untreated specimens, which, combined with lower hygroscopicity and higher dimensional stability, reveals the high potential of thermally treated wood utilization in outdoor applications, such as cladding, facades, frames, and other outdoor elements. Full article
Show Figures

Figure 1

11 pages, 3733 KiB  
Article
Effect of Wet–Dry Cycles on the Shear Behavior of Compressed Wood Nails Compared to Steel Nails
by Wei Fan, Xinrui Zhu, Xinyu Hu and Hongguang Liu
Forests 2025, 16(6), 940; https://doi.org/10.3390/f16060940 - 3 Jun 2025
Viewed by 399
Abstract
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. [...] Read more.
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. However, systematic investigations on their shear performance under cyclic hygrothermal conditions remain limited. This study comparatively analyzed the shear behavior evolution of compressed wood nail and galvanized steel nail connections under wet-dry cycles. Distinct failure mechanisms were observed: wood nail connections exhibited characteristic brittle fracture patterns, whereas steel nail connections demonstrated ductile failure through pull-out deformation with nail bending. Notably, compressed wood nails displayed superior environmental stability, with significantly lower degradation rates in terms of load-bearing capacity (2.8% vs. 22.3%) and stiffness (16.3% vs. 38.0%) than their steel counterparts under identical hygrothermal exposure. These findings provide critical design references and data support for implementing wood-based fasteners in moisture-prone engineering applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 6349 KiB  
Article
Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate
by Qijun Huang, Wangting Wu, Yingzhu Wang and Jianrui Zha
Polymers 2025, 17(10), 1395; https://doi.org/10.3390/polym17101395 - 19 May 2025
Viewed by 515
Abstract
Due to compatibility issues between traditional reinforcing materials and the substrate of museum wooden artifacts, interface failure occurs after crack reinforcement, particularly under dry and wet cycling conditions. This significantly compromises the durability of reinforcement. To resolve this issue, dealkalized lignin was grafted [...] Read more.
Due to compatibility issues between traditional reinforcing materials and the substrate of museum wooden artifacts, interface failure occurs after crack reinforcement, particularly under dry and wet cycling conditions. This significantly compromises the durability of reinforcement. To resolve this issue, dealkalized lignin was grafted onto epoxy acrylate (LEA) to synthesize a novel consolidant with both humidity responsiveness and mechanical compatibility. The resulting LEA exhibited excellent multilayer adsorption capability and demonstrated synchronous and uniform hygroscopic expansion behavior, closely matching that of archeological wood. DMA revealed that LEA2 has an elastic modulus of 261.58 MPa and a Poisson’s ratio of 0.35, comparable to artificially degraded wood, effectively mitigating interface stress caused by rigidity differences. Furthermore, LEA effictively reinforced micron-scale cracks while maintaining the original microstructure of the wooden artifact. This material provides a promising solution to the compatibility challenges of traditional consolidants under humidity fluctuations and offers a new approach for the stable preservation of museum wooden artifacts. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 5184 KiB  
Article
Dual Flame-Retardant and Curing-Agent Effects of Phytic Acid–Guanazole as an Additive in Fire-Protective Coatings for Wood
by Xue Zheng, Yongjin Zou, Cuili Xiang, An Wei, Yuhong Wei and Lixian Sun
Polymers 2025, 17(9), 1169; https://doi.org/10.3390/polym17091169 - 25 Apr 2025
Viewed by 411
Abstract
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) [...] Read more.
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) as both a curing agent and flame retardant. The PO43 groups from phytic acid act as an acid source to accelerate char formation during combustion, while the −NH2 groups introduced by guanazole release non-combustible gases to dilute oxygen in the air, synergistically enhancing flame retardancy. Additionally, the hygroscopic PO43 groups absorb free water in the resin, reducing the curing temperature and accelerating coating solidification. The KH550 coupling agent improves compatibility between KUF and PG while introducing silicon, which forms SiO2 during combustion to strengthen the char layer and further enhance flame resistance. Evaluations showed that PG outperforms conventional tannic acid (TA) in curing efficiency and fire resistance. Comprehensive analyses, including Differential Scanning Calorimetry (DSC), Limiting Oxygen Index (LOI), vertical flame tests, and cone calorimetry, confirmed PG’s dual functionality. Scanning Electron Microscope (SEM) and Raman spectroscopy revealed that PG-modified coatings form denser post-combustion char layers, directly linked to improved fire resistance. As a multifunctional additive, PG eliminates the need for separate curing agents and utilizes bio-based phytic acid, offering cost-effective and sustainable advantages for industrial applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

6 pages, 1461 KiB  
Proceeding Paper
A Study of the Best Conditions for the Acetylation of P. taeda from Uruguay
by María Eugenia Cardozo, Pablo Raimonda and Claudia Marcela Ibáñez
Environ. Earth Sci. Proc. 2024, 31(1), 15; https://doi.org/10.3390/eesp2024031015 - 10 Jan 2025
Viewed by 443
Abstract
Chemical modification is an environmentally friendly option for wood preservation. It can improve the performance and dimensional stability of wood, increase its resistance to deterioration and ensure safe disposal once out of service. Wood acetylation is the esterification of accessible hydroxyl groups in [...] Read more.
Chemical modification is an environmentally friendly option for wood preservation. It can improve the performance and dimensional stability of wood, increase its resistance to deterioration and ensure safe disposal once out of service. Wood acetylation is the esterification of accessible hydroxyl groups in the cell wall with acetic anhydride, which reduces the hygroscopicity of wood. Acetic acid is obtained as a byproduct of the reaction. The aim of this work is to determine the best reaction conditions for the acetylation of Pinus taeda wood with acetic anhydride. The experimental design used was a 22 factorial design with three repetitions in the midpoints. Reaction temperature and reaction time were taken as independent variables, each at two levels. The weight gain percentage of wood (WPG) and its chemical changes were used as response variables. The durability of the wood acetylated under the best treatment conditions as determined before was tested against decay fungi (Gloeophyllum separium and Trametes versicolor). The results show that temperature was the most impactful variable on the WPG results. Higher WPGs were obtained at temperatures above 100 °C. The acetylated wood was highly resistant to fungal attack, with very low mass losses. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Forests)
Show Figures

Figure 1

21 pages, 3250 KiB  
Article
Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications
by Luiz Eduardo Nochi Castro, Tiago Linhares Cruz Tabosa Barroso, Vanessa Cosme Ferreira and Tânia Forster Carneiro
Waste 2025, 3(1), 4; https://doi.org/10.3390/waste3010004 - 9 Jan 2025
Cited by 2 | Viewed by 2843
Abstract
This study investigates the properties of Benitaka grape pomace (Vitis vinifera L.), a byproduct of the wine industry, focusing on its potential for applications in the circular economy and biorefinery processes. The analysis covers a range of physical, chemical, and structural characteristics, [...] Read more.
This study investigates the properties of Benitaka grape pomace (Vitis vinifera L.), a byproduct of the wine industry, focusing on its potential for applications in the circular economy and biorefinery processes. The analysis covers a range of physical, chemical, and structural characteristics, including the composition of proteins, moisture, lipids, ash, sugars, fiber fractions (such as neutral-detergent fiber, cellulose, lignin, and hemicellulose), pH, acidity, gross energy, as well as bioactive compounds such as total phenolics, flavonoids, anthocyanins, and antioxidant capacity. Advanced characterization techniques, such as nitrogen adsorption/desorption isotherms, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and high-performance liquid chromatography coupled with mass spectrometry, were employed. The results revealed an acidic pH of 4.05 and a titratable acidity of 1.25 g of tartaric acid per 100 g. The gross energy was 3764 kcal kg−1, indicating high energy capacity, similar to wood chips. The pomace exhibited high hygroscopicity (31 to 50 g of moisture per 100 g), high levels of fiber, cellulose, and lignin, as well as bioactive compounds with significant values of total phenolics (5956.56 mg GAE 100 g−1), flavonoids (1958.33 mg CAT 100 g−1), and anthocyanins (66.92 mg C3G 100 g−1). Antioxidant analysis showed promising results, with DPPH and FRAP values of 20.12 and 16.85 μmol TEAC g−1 of extract, respectively. This study not only validates existing data but also provides new insights into the composition of hemicellulose and lignocellulosic phase transitions, highlighting grape pomace as a promising resource for sustainability in industry and biorefinery processes. Full article
Show Figures

Figure 1

31 pages, 22480 KiB  
Article
Durability of Wood–Cement Composites with Modified Composition by Limestone and Stabilised Spruce Chips
by Tomáš Melichar, Amos Dufka, Karel Dvořák, Patrik Bayer, Silvestr Vasas, Iveta Novakova, Ivana Schwarzova and Jiří Bydžovský
Materials 2024, 17(24), 6300; https://doi.org/10.3390/ma17246300 - 23 Dec 2024
Cited by 2 | Viewed by 781
Abstract
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood–cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement [...] Read more.
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood–cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs. The test specimens were stored in a laboratory and exterior environment (Middle Europe) for up to 2 years. The density, strength, and modulus of elasticity were evaluated after 28 days, and then in 6-month periods. The hygroscopicity was analysed separately. The mineralogical composition and microstructure were analysed due to possible LS participation during hydration. SC synergic behaviour in CBPs was also studied. After 2 years, the microstructure of the CBP was more compact, and denser. Strong carbonatation contributes to the improvement of CBP properties. The products of carbonatation were present in both the matrix and wood chips. The hydration of the matrix was almost finished. LS has a positive effect on the matrix microstructure development. LS acts both as an active component participating in the formation of the cement matrix structure and as an inert microfiller, synergic with hydration products. SCs have a positive effect on the hygroscopic behaviour of CBPs and slightly negative effect on the tensile strength. Full article
Show Figures

Graphical abstract

23 pages, 10301 KiB  
Article
Nanocellulose-Based Films for Surface Protection of Wooden Artefacts
by Paulina Kryg, Bartłomiej Mazela, Waldemar Perdoch, Mariusz Jancelewicz and Magdalena Broda
Int. J. Mol. Sci. 2024, 25(24), 13333; https://doi.org/10.3390/ijms252413333 - 12 Dec 2024
Cited by 1 | Viewed by 1619
Abstract
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose [...] Read more.
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose nanopapers (CNPs) had a homogeneous and compact structure but were very brittle, stiff, and wavy. Functionalisation with silanes made their structure more packed and reduced their equilibrium moisture content by 87–96%, depending on the type and concentration of the silane. Silane functionalisation also slightly improved nanopapers’ resistance to moulds. Plasticisation with glycerol provided CNPs with higher flexibility and resistance to fracture and made them flatter and smoother, reducing the wettability of their surfaces but increasing their hygroscopicity (EMC values increased 1.7–3.5 times for pure CNPs and 5–33 times for functionalised CNPs) and vulnerability to mould infestation. All prepared nanopapers can be easily glued to the wood surface and colour-matched using a nitro wood stain, oil paint or waterborne acrylic paint. The research showed that cellulose nanopapers modified with silanes and plasticised with glycerol seem to be a promising solution for protecting the cracked surface of wooden artefacts against further degradation due to external conditions. Full article
(This article belongs to the Special Issue Nanocellulose: Recent Advances and Green Applications)
Show Figures

Graphical abstract

14 pages, 4751 KiB  
Article
Surface Treatment of Oak Wood with Silica Dioxide Nanoparticles and Paraloid B72
by Andromachi Mitani, Vasiliki Kamperidou and Paschalina Terzopoulou
Forests 2024, 15(11), 1842; https://doi.org/10.3390/f15111842 - 22 Oct 2024
Viewed by 1130
Abstract
Wood is a valuable material with incomparable advantages, though it is susceptible to biotic and abiotic factors action that affect it adversely and shorten its service life. In the current study, the surface modification of oak wood is carried out through brief immersion [...] Read more.
Wood is a valuable material with incomparable advantages, though it is susceptible to biotic and abiotic factors action that affect it adversely and shorten its service life. In the current study, the surface modification of oak wood is carried out through brief immersion in a solution of acrylic polymer Paraloid B72, in which silica dioxide nanoparticles in the form of nanopowder were dissolved at different contents (1, 2, 3, and 4% w/v of the solution) aiming at the elimination of wood material hygroscopicity, and the protection and improvement of other properties. Specifically, the modified and unmodified wood specimens were characterized in terms of physical characteristics (density, equilibrium moisture content, colour, and surface roughness), hygroscopic properties (swelling and absorption percentage) and accelerated weathering performance using xenon light and cycles of moisturizing and drying. The results revealed the dimensional stability of the samples and a significant increase in the hydrophobicity of the modified wood, as well as a significant increase in the resistance to the ageing/weathering factors of oak wood, which was proportional to the increase in the presence of nanoparticles in the Paraloid B72 solution. The colour of the treated samples slightly changed towards darker shades, more reddish and yellowish (with L* to decrease, while a* and b* to slightly increase), though the treated wood revealed higher colour stability. The surface roughness parameters (Ra, Rq, and Rz) increased significantly, restricting the wide application of the treated wood in indoor or outdoor applications where surface roughness constitutes a critical factor. The findings of the current work contribute not only to the production of longer-lasting wood and timber structures, but also to the conservation of the existing weathered heritage timber structures. Full article
(This article belongs to the Special Issue New Approaches to Wood Protection and Preservation)
Show Figures

Figure 1

13 pages, 8725 KiB  
Article
Menthol-Based Extraction of Fragile Wooden Coffin Lid (7–10th Centuries CE) in Laboratory Archaeology Excavation
by Yong Liu, Jiake Chen, Cunxin Li, Xiangna Han, Hao Wang, Jinsong Bai and Xiaohua Liu
Forests 2024, 15(10), 1830; https://doi.org/10.3390/f15101830 - 20 Oct 2024
Viewed by 1312
Abstract
Block lifting is a key step in stabilizing and removing fragile remains at archaeological excavation sites. Due to its favorable working properties and adhesive effect, menthol has recently been proposed as a volatile binding medium for temporary consolidation in archaeological conservation. This paper [...] Read more.
Block lifting is a key step in stabilizing and removing fragile remains at archaeological excavation sites. Due to its favorable working properties and adhesive effect, menthol has recently been proposed as a volatile binding medium for temporary consolidation in archaeological conservation. This paper presents a case study on the use of menthol in the extraction and restoration of a large wooden coffin lid, approximately 1.9 m long and 0.9 m wide, from tomb 11 (M11) at Xie’ertala, located east of a Xie’ertala town in Hailar City, Inner Mongolia, dating to the 7th to 10th centuries CE. This coffin lid had fragmented into numerous wooden pieces, and was preserved in a relatively arid steppe environment, necessitating the extraction of the lid as a consolidated block. The use of menthol for consolidating and lifting the highly fragmented wooden coffin lid was intended to preserve critical archaeological information while avoiding damage to the underlying objects. An analysis of the physicochemical properties of these wooden remains suggests that the timber used for the coffin lid belongs to a common pine species from the Hulunbuir region. The degradation of the coffin lid was relatively mild, as shown by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) results. Dynamic Vapor Sorption (DVS) tests indicated that the hygroscopicity of the archaeological wood was 23.4%, compared to 21.1% for the reference sample, demonstrating good environmental stability. The safety of menthol as a treatment for fragile wooden remains was evaluated by comparing changes in the morphological and porosity characteristics of the coffin lid before and after menthol treatment. After treatment, the widths of the fissures remained largely unchanged, with all relative variations being less than 1%, and the porosity as well as pore size distribution of the wood showed negligible changes. Gas Chromatography–Mass Spectrometry (GC-MS) results showed that only 0.6% of menthol residue remained after 8 days of sublimation. This pilot study demonstrates that menthol is a safe temporary consolidant for block lifting and offers a promising alternative to the widely used cyclododecane. In conclusion, this research provided a new approach for conservators to safely lift similarly large and fragile wood remains during archaeological excavations. Full article
(This article belongs to the Special Issue New Approaches to Wood Protection and Preservation)
Show Figures

Figure 1

31 pages, 4611 KiB  
Review
Composite Panels from Wood Waste: A Detailed Review of Processes, Standards, and Applications
by Isuri Tamura Amarasinghe, Yi Qian, Tharaka Gunawardena, Priyan Mendis and Benoit Belleville
J. Compos. Sci. 2024, 8(10), 417; https://doi.org/10.3390/jcs8100417 - 11 Oct 2024
Cited by 6 | Viewed by 5262
Abstract
The global demand for sustainable building materials has fuelled research into composite panels from wood waste. Despite their potential, the widespread adoption of this practice is hindered by the absence of quality standards, inconsistent material properties, and uncertainties about durability and strength. This [...] Read more.
The global demand for sustainable building materials has fuelled research into composite panels from wood waste. Despite their potential, the widespread adoption of this practice is hindered by the absence of quality standards, inconsistent material properties, and uncertainties about durability and strength. This paper critically reviews existing standards, manufacturing processes, and the suitability of panels from wood waste. A systematic review is conducted to identify the influencing processes and parameters affecting panel performance, from waste collection to the finishing stages. The findings indicate that incorporating 10–30% of wood waste can enhance the mechanical and physical properties, with particularly improved hygroscopic properties and greater dimensional stability. By establishing comprehensive standards and optimizing manufacturing processes, wood waste-based panels can emerge as a viable and eco-friendly alternative. Furthermore, the potential for repeated recycling in a closed-loop process offers promising environmental benefits, though it necessitates balancing resource conservation with product quality. By addressing these challenges, wood waste-based panels can significantly contribute to environmental conservation and resource management. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

Back to TopTop