Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Preparation of Blends
2.4. Preparation of Artificially Degraded Wood
2.5. Fourier Transform Infrared Spectrometer
2.6. Nuclear Magnetic Resonance Spectroscopy
2.7. Isothermal Hygroscopic Sorption Test
2.8. Contact Angle Measurement
2.9. Scanning Electron Microscope
2.10. Hygroscopic Expansion Coefficient Testing
2.11. Dynamic Mechanical Analysis
3. Results and Discussion
3.1. LEA Characterization
3.2. Application Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 1997, 385, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Bratasz, Ł. Allowable microclimatic variations for painted wood. Stud. Conserv. 2013, 58, 65–79. [Google Scholar] [CrossRef]
- Pan, J.; Han, Y.; Wang, C.; Du, J.; Wang, Y.; Chen, Y.; Huang, X.; Ma, K.; Zhang, Z.; Li, N. Analysis of microbial community and biodeterioration of maritime cultural relics (ironware, porcelain, axes, hull wood) from the Nanhai No. 1 shipwreck. Ann. Microbiol. 2023, 73, 8. [Google Scholar] [CrossRef]
- Fors, Y.; Nilsson, T.; Risberg, E.D.; Sandström, M.; Torssander, P. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. Int. Biodeterior. Biodegrad. 2008, 62, 336–347. [Google Scholar] [CrossRef]
- Sobon, M.; Bratasz, L. A method for risk of fracture analysis in massive wooden cultural heritage objects due to dynamic environmental variations. Eur. J. Wood Wood Prod. 2022, 80, 1201–1213. [Google Scholar] [CrossRef]
- Watkinson, D. Materials for Conservation; Organic Consolidants, Adhesives and Coatings. Stud. Conserv. 1988, 33, 160–161. [Google Scholar] [CrossRef]
- Yang, T.; Ma, E.; Cao, J. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions. Holzforschung 2018, 72, 943–950. [Google Scholar] [CrossRef]
- Yu, T.; Khaloian, A.; van de Kuilen, J.-W. An improved model for the time-dependent material response of wood under mechanical loading and varying humidity conditions. Eng. Struct. 2022, 259, 114116. [Google Scholar] [CrossRef]
- Schönemann, A.; Eisbein, M.; Unger, A.; Dell’mour, M.; Frenzel, W.; Kenndler, E. Historic Consolidants for Wooden Works of Art in Saxony—An Investigation by GC-MS and FTIR Analysis. Stud. Conserv. 2013, 53, 118–130. [Google Scholar] [CrossRef]
- Chiantore, O.; Lazzari, M. Photo-oxidative stability of paraloid acrylic protective polymers. Polymer 2001, 42, 17–27. [Google Scholar] [CrossRef]
- da Silva Bertolini, M.; de Macedo, L.B.; de Almeida, D.H.; Icimoto, F.H.; Rocco Lahr, F.A. Restoration of Structural Timber Elements Using Epoxy Resin: Analysis of Mechanical Properties. Adv. Mater. Res. 2013, 778, 582–587. [Google Scholar] [CrossRef]
- Vilches Casals, M.; Rodríguez Trujillo, V.; Labèrnia Badia, C. Timber Structure Repair of an Emblematic Catalan Industrial Building with Wood Grafts and Epoxy Resins. Adv. Mater. Res. 2013, 778, 1005–1998. [Google Scholar] [CrossRef]
- Chen, T.; Ma, Q.; Li, Y.; Li, G. Preparation and Characterization of Wood Composites for Wood Restoration. Forests 2023, 14, 1743. [Google Scholar] [CrossRef]
- Kotlík, P.; Doubravová, K.; Horálek, J.; Kubáč, L.; Akrman, J. Acrylic copolymer coatings for protection against UV rays. J. Cult. Heritage 2014, 15, 44–48. [Google Scholar] [CrossRef]
- Mankowski, P.; Andres, B. Compressive strength of wood Pinus sylvestris decayed by Coniophora puteana fungi and reinforced with Paraloid B-72. Wood Res. 2015, 60, 409–416. [Google Scholar]
- Cocca, M.; D’Arienzo, L.; D’Orazio, L.; Gentile, G.; Martuscelli, E. Polyacrylates for conservation: Chemico-physical properties and durability of different commercial products. Polym. Test. 2004, 23, 333–342. [Google Scholar] [CrossRef]
- Veronovski, N.; Verhovšek, D.; Godnjavec, J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci. Technol. 2012, 47, 317–328. [Google Scholar] [CrossRef]
- Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J. Mater. Sci. 2013, 49, 2035–2044. [Google Scholar] [CrossRef]
- Pedreño-Rojas, M.A.; Morales-Conde, M.J.; Rubio-de-Hita, P.; Pérez-Gálvez, F. Impact of Wetting–Drying Cycles on the Mechanical Properties and Microstructure of Wood Waste–Gypsum Composites. Materials 2019, 12, 1829. [Google Scholar] [CrossRef]
- Nuthanakanti, A.; Srivatsan, S.G. Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. Nanoscale Adv. 2020, 2, 4161–4171. [Google Scholar] [CrossRef]
- Wu, T.; Sugiarto, S.; Yang, R.; Sathasivam, T.; Weerasinghe, U.A.; Chee, P.L.; Yap, O.; Nyström, G.; Kai, D. From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. Mater. Horiz. 2025, 12, 2789–2819. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Chen, Q.; Sun, X. Functional conservation and preservation of waterlogged archaeological wood. BioResources 2023, 19, 10–12. [Google Scholar] [CrossRef]
- McHale, E.; Benneche, T.; Kutzke, H.; Christensen, M.; Braovac, S. Bio-inspired materials for the preservation of archaeological wood: Lignin. Natl. Marit. Mus. Gdan. 2015, 93–94. [Google Scholar]
- McHale, E.; Steindal, C.C.; Kutzke, H.; Benneche, T.; Harding, S.E. In situ polymerisation of isoeugenol as a green consolidation method for waterlogged archaeological wood. Sci. Rep. 2017, 7, 46481. [Google Scholar] [CrossRef]
- Blaiszik, B.J.; Caruso, M.M.; McIlroy, D.A.; Moore, J.S.; White, S.R.; Sottos, N.R. Microcapsules filled with reactive solutions for self-healing materials. Polymer 2009, 50, 990–997. [Google Scholar] [CrossRef]
- Gao, Z.; Lang, X.; Chen, S.; Zhao, C. Mini-Review on the Synthesis of Lignin-Based Phenolic Resin. Energy Fuels 2021, 35, 18385–18395. [Google Scholar] [CrossRef]
- Decker, C.; Nguyen Thi Viet, T.; Decker, D.; Weber-Koehl, E. UV-radiation curing of acrylate/epoxide systems. Polymer 2001, 42, 5531–5541. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, J. Preparation of low viscosity and high flexibility epoxy acrylate and its application in UV-curable coatings. J. Coat. Technol. Res. 2023, 21, 601–610. [Google Scholar] [CrossRef]
- Jebrane, M.; Fournier, T.; Bounia, N.E.E.; Charrier, F.; Bouhtoury, E. IRG/WP 16-40750 the international research group on wood protection Section 4 Processes and properties Fungal resistance and accelerated weathering of Wood-Plastic composites reinforced with Maritime pine wood flour Fungal resistance and accelerated weathe. In Proceedings of the 47th Annual Meeting of the International Research Group on Wood, Lisbon, Portugal, 15–19 May 2016. [Google Scholar]
- Lewicki, P.P. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- Aguerre, R.J.; Gabitto, J.F.; Chirife, J. Utilization of Fick’s second law for the evaluation of diffusion coefficients in food processes controlled by internal diffusion. Int. J. Food Sci. Technol. 1985, 20, 623–629. [Google Scholar] [CrossRef]
- ASTM D4440-20; Standard Test Method for Plastics: Dynamic Mechanical Properties in Shear by Sandwich Beam. ASTM International: West Conshohocken, PA, USA, 2020.
- Strehmel, V.; Scherzer, T. Structural investigation of epoxy amine networks by mid- and near-infrared spectroscopy. Eur. Polym. J. 1994, 30, 361–368. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023, 8, 17064–17076. [Google Scholar] [CrossRef] [PubMed]
- Sung, J. Design and Synthesis of Plant Oil-Based UV-Curable Acrylates for Sustainable Coating Applications; Kansas State University: Manhattan, KS, USA, 2018. [Google Scholar]
- Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.; GoÅ‚embiewski, R.; Gauden, P.; Czepirski, L. Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Res. Int. 2009, 42, 1203–1214. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Norton, A.; Newman, G. The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 2009, 112, 1524–1537. [Google Scholar] [CrossRef]
Number | DL (g) | Ethanol (mL) | Imidazole (g) | BPAEA (g) |
---|---|---|---|---|
LEA0 | 0 | 0 | 0 | 30 |
LEA1 | 1.0 | 78.5 | 0.3 | 30 |
LEA1.5 | 1.5 | 117.8 | 0.3 | 30 |
LEA2 | 2.0 | 157 | 0.3 | 30 |
LEA2.5 | 2.5 | 196.2 | 0.3 | 30 |
Wood | LEA0 | LEA0.5 | LEA1 | LEA1.5 | LEA2 | LEA2.5 | |
---|---|---|---|---|---|---|---|
M0 | 4.16 | 0.65 | 1.43 | 1.52 | 1.08 | 0.96 | 4.86 |
C | 9.43 | 0.17 | 0.29 | 0.35 | 0.39 | 0.81 | 0.90 |
K | 0.84 | 0.63 | 0.84 | 0.87 | 0.93 | 0.98 | 0.87 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Elastic Modulus (MPa) | Shear Modulus (MPa) | Loss Modulus (MPa) | Poisson’s Ratio | |
---|---|---|---|---|
LEA0 | 350.02 | 136.11 | 25.59 | 0.29 |
LEA0.5 | 314.72 | 113.21 | 25.49 | 0.39 |
LEA1 | 285.33 | 102.64 | 26.19 | 0.39 |
LEA1.5 | 268.92 | 98.87 | 26.11 | 0.36 |
LEA2 | 261.58 | 96.88 | 27.25 | 0.35 |
LEA2.5 | 189.86 | 65.47 | 30.65 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Wu, W.; Wang, Y.; Zha, J. Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate. Polymers 2025, 17, 1395. https://doi.org/10.3390/polym17101395
Huang Q, Wu W, Wang Y, Zha J. Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate. Polymers. 2025; 17(10):1395. https://doi.org/10.3390/polym17101395
Chicago/Turabian StyleHuang, Qijun, Wangting Wu, Yingzhu Wang, and Jianrui Zha. 2025. "Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate" Polymers 17, no. 10: 1395. https://doi.org/10.3390/polym17101395
APA StyleHuang, Q., Wu, W., Wang, Y., & Zha, J. (2025). Preparation and Application of Humidity-Adaptive Wooden Artifact Crack Consolidants Based on Lignin–Epoxy Acrylate. Polymers, 17(10), 1395. https://doi.org/10.3390/polym17101395