Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = hydroxylated fullerene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4032 KiB  
Article
Synthesis and Characterization of a Water-Soluble Nanomaterial via Deep Nitration of Light Fullerene C60
by Natalya Kulenova, Marzhan Sadenova, Bagdat Azamatov, Bauyrzhan Maratuly, Nikolay Charykov, Mikhail Arshinov and Nail Beisekenov
Inorganics 2025, 13(7), 212; https://doi.org/10.3390/inorganics13070212 - 24 Jun 2025
Viewed by 393
Abstract
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, [...] Read more.
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, energy-dispersive X-ray spectroscopy, infrared (IR) and electron spectroscopy, nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), and thermogravimetric analysis (TGA). A detailed investigation of the physicochemical properties of aqueous solutions of C60(NO2)18(OH)2 demonstrated that the synthesized compound is a previously undescribed mixed polynitro-hydroxyl adduct of light fullerene C60, featuring a high degree of nitration (18 nitro groups per fullerene core). The composition and structure of the adduct were confirmed by spectroscopic and refractometric analyses. In terms of redox behavior, the compound exhibits significant reducing and antioxidant properties. These physicochemical characteristics suggest the potential of C60(NO2)18(OH)2 for further development as a biocompatible nanomaterial suitable for medical applications. Full article
Show Figures

Figure 1

17 pages, 5810 KiB  
Article
Near-Infrared Responsive Composites of Poly-3,4-Ethylenedioxythiophene with Fullerene Derivatives
by Oxana Gribkova, Varvara Kabanova, Ildar Sayarov, Alexander Nekrasov and Alexey Tameev
Polymers 2025, 17(1), 14; https://doi.org/10.3390/polym17010014 - 25 Dec 2024
Viewed by 763
Abstract
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl [...] Read more.
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains. The near-IR photoconductivity results from the generation of charge carriers due to electron transfer from the photoexcited PEDOT molecule to the fullerene acceptor. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

25 pages, 1747 KiB  
Article
Life Cycle Assessment (LCA) of the Impact on the Environment of a Cosmetic Cream with Gold Nanoparticles and Hydroxylated Fullerene Ingredients
by Rebeka Rudolf, Peter Majerič, Zorka Novak Pintarič, Andrej Horvat and Damjan Krajnc
Appl. Sci. 2024, 14(24), 11625; https://doi.org/10.3390/app142411625 - 12 Dec 2024
Cited by 4 | Viewed by 3093
Abstract
This review provides a comprehensive Life Cycle Assessment (LCA) of a cosmetic cream to assess the environmental impacts throughout its entire life cycle, from raw material extraction to disposal, using the methodology according to international standards. The LCA was performed using the OpenLCA [...] Read more.
This review provides a comprehensive Life Cycle Assessment (LCA) of a cosmetic cream to assess the environmental impacts throughout its entire life cycle, from raw material extraction to disposal, using the methodology according to international standards. The LCA was performed using the OpenLCA 2.0.1 software, with data from the Ecoinvent 3.8 database and relevant literature. The assessment focused on multiple impact categories, including climate change, acidification, eutrophication (freshwater, marine and terrestrial), ecotoxicity (freshwater), human toxicity (cancer and non-cancer), ionizing radiation, land use, ozone depletion, photochemical ozone formation, resource use (fossils, minerals and metals), and water use. The LCA of a cosmetic cream containing gold nanoparticles revealed significant environmental impacts across critical categories. The total climate change potential was 2596.95 kg CO2 eq., driven primarily by nanoparticle synthesis (60.7%) and electricity use (31.9%). Eutrophication of freshwater had the highest normalized result (3.000), with nanoparticle synthesis contributing heavily, indicating the need for improved wastewater treatment. The resource use (minerals and metals) scored 1.856, while the freshwater ecotoxicity reached 80,317.23 CTUe, both driven by the nanoparticle production. The human toxicity potentials were 1.39 × 10−6 CTUh (cancer) and 7.45 × 10−5 CTUh (non-cancer), linked to emissions from synthesis and energy use. The LCA of the cosmetic cream revealed several critical areas of environmental impact. The most significant impacts are associated with gold nanoparticle synthesis and electricity use. Addressing these impacts through optimized synthesis processes, improved energy efficiency, and alternative materials can enhance the product’s sustainability profile significantly. Full article
Show Figures

Figure 1

17 pages, 2541 KiB  
Article
Analyzing Chemical Decay in Environmental Nanomaterials Using Gamma Distribution with Hybrid Censoring Scheme
by Hanan Haj Ahmad, Dina A. Ramadan and Mohamed Aboshady
Mathematics 2024, 12(23), 3737; https://doi.org/10.3390/math12233737 - 27 Nov 2024
Viewed by 676
Abstract
This study addresses the challenges of estimating decay times for chemical components, focusing on hydroxylated fullerene C60(OH)29, which poses potential environmental risks due to its persistence and transformation in soil. Given the complexities of real-world experiments [...] Read more.
This study addresses the challenges of estimating decay times for chemical components, focusing on hydroxylated fullerene C60(OH)29, which poses potential environmental risks due to its persistence and transformation in soil. Given the complexities of real-world experiments such as limited sample availability, time constraints, and the need for efficient resource use, a framework using the Gamma distribution based on hybrid Type-II censoring schemes was developed to model the decay time. The Gamma distribution’s flexibility and mathematical properties make it well-suited for reliability and decay analysis, capturing variable hazard rates and accommodating different censoring structures. We employ maximum likelihood estimation (MLE) and Bayesian methods to estimate the model’s parameters, consequently estimating the reliability and hazard functions. The large sample theory for MLE is used to approximate variances for constructing asymptotic confidence intervals. Additionally, we utilize the Markov chain Monte Carlo technique within the Bayesian framework to ensure robust parameter estimation. Through simulation studies and statistical tests—such as Chi-Square, Kolmogorov–Smirnov, and others—we assess the Gamma distribution’s fit and compare its performance with other distributions, validating the proposed model’s effectiveness. Full article
Show Figures

Figure 1

22 pages, 14059 KiB  
Article
Comparative Studies of the Structural and Physicochemical Properties of the First Fullerene Derivative FD-C60 (Fullerenol) and Second Fullerene Derivate SD-C60 (3HFWC)
by Djuro Koruga, Ivana Stanković, Lidija Matija, Dietmar Kuhn, Bastian Christ, Sofia Dembski, Nenad Jevtić, Jelena Janać, Vladimir Pavlović and Bart De Wever
Nanomaterials 2024, 14(5), 480; https://doi.org/10.3390/nano14050480 - 6 Mar 2024
Cited by 3 | Viewed by 2023
Abstract
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in [...] Read more.
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10–30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was −25.85 mV, while it was −43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Theranostic Applications)
Show Figures

Figure 1

14 pages, 4533 KiB  
Article
Glucose Biosensor Based on Glucose Oxidase Immobilized on BSA Cross-Linked Nanocomposite Modified Glassy Carbon Electrode
by Yang-Yang Li, Xin-Xin Ma, Xin-Yan Song, Lin-Lin Ma, Yu-Ying Li, Xin Meng, Yu-Jie Chen, Ke-Xin Xu, Ali Akbar Moosavi-Movahedi, Bao-Lin Xiao and Jun Hong
Sensors 2023, 23(6), 3209; https://doi.org/10.3390/s23063209 - 17 Mar 2023
Cited by 13 | Viewed by 4191
Abstract
Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy [...] Read more.
Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy carbon electrode (GCE) modified by a composite of hydroxy fullerene (HFs) and multi-walled carbon nanotubes (MWCNTs) and protected with a glutaraldehyde (GLA)/Nafion (NF) composite membrane to prepare a novel glucose biosensor. The modified materials were analyzed by UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The prepared MWCNTs-HFs composite has excellent conductivity, the addition of BSA regulates MWCNTs-HFs hydrophobicity and biocompatibility, and better immobilizes GOD on MWCNTs-HFs. MWCNTs-BSA-HFs plays a synergistic role in the electrochemical response to glucose. The biosensor shows high sensitivity (167 μA·mM−1·cm−2), wide calibration range (0.01–3.5 mM), and low detection limit (17 μM). The apparent Michaelis–Menten constant Kmapp is 119 μM. Additionally, the proposed biosensor has good selectivity and excellent storage stability (120 days). The practicability of the biosensor was evaluated in real plasma samples, and the recovery rate was satisfactory. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

16 pages, 4907 KiB  
Article
Melanoma Cell Reprogramming and Awakening of Antitumor Immunity as a Fingerprint of Hyper-Harmonized Hydroxylated Fullerene Water Complex (3HFWC) and Hyperpolarized Light Application In Vivo
by Milica Markelić, Marija Mojić, Dijana Bovan, Sanja Jelača, Zorana Jović, Milica Purić, Djuro Koruga, Sanja Mijatović and Danijela Maksimović-Ivanić
Nanomaterials 2023, 13(3), 372; https://doi.org/10.3390/nano13030372 - 17 Jan 2023
Cited by 7 | Viewed by 2204
Abstract
In our recent study, we showed that in vitro treatment of melanoma cells with hyperpolarized light (HPL) as well as with the second derivative of fullerene, hyper-harmonized hydroxylated fullerene water complex (3HFWC) reduced viability of cells by decreasing their proliferative capacity and inducing [...] Read more.
In our recent study, we showed that in vitro treatment of melanoma cells with hyperpolarized light (HPL) as well as with the second derivative of fullerene, hyper-harmonized hydroxylated fullerene water complex (3HFWC) reduced viability of cells by decreasing their proliferative capacity and inducing senescence and reprogramming towards a normal, melanocytic phenotype. Therefore, we wanted to determine whether these effects persisted in vivo in the syngeneic mouse melanoma model with a combined treatment of HPL irradiation and 3HFWC per os. Our results demonstrated the potent antitumor effects of 3HFWC nanosubstance assisted by HPL irradiation. These effects were primarily driven by the stimulation of melanoma cell growth arrest, the establishment of a senescent phenotype, and melanocytic differentiation on the one hand, and the awakening of the antitumor immune response on the other. In addition, the combined treatment reduced the protumorigenic activity of immune cells by depleting T regulatory cells, myeloid-derived suppressors, and M2 macrophages. The support of the 3HFWC substance by HPL irradiation may be the axis of the new approach design based on tumor cell reprogramming synchronized with the mobilization of the host’s protective immune response. Full article
(This article belongs to the Special Issue Cancer Treatment via Nanotherapy)
Show Figures

Graphical abstract

14 pages, 4087 KiB  
Article
Fullerenols Prevent Neuron Death and Reduce Oxidative Stress in Drosophila Huntington’s Disease Model
by Olga I. Bolshakova, Alina A. Borisenkova, Ilya M. Golomidov, Artem E. Komissarov, Alexandra D. Slobodina, Elena V. Ryabova, Irina S. Ryabokon, Evgenia M. Latypova, Elizaveta E. Slepneva and Svetlana V. Sarantseva
Cells 2023, 12(1), 170; https://doi.org/10.3390/cells12010170 - 31 Dec 2022
Cited by 12 | Viewed by 3520
Abstract
Huntington’s disease (HD) is one of the human neurodegenerative diseases for which there is no effective treatment. Therefore, there is a strong demand for a novel neuroprotective agent that can alleviate its course. Fullerene derivatives are considered to be such agents; however, they [...] Read more.
Huntington’s disease (HD) is one of the human neurodegenerative diseases for which there is no effective treatment. Therefore, there is a strong demand for a novel neuroprotective agent that can alleviate its course. Fullerene derivatives are considered to be such agents; however, they need to be comprehensively investigated in model organisms. In this work, neuroprotective activity of C60(OH)30 and C120O(OH)44 fullerenols was analyzed for the first time in a Drosophila transgenic model of HD. Lifespan, behavior, oxidative stress level and age-related neurodegeneration were assessed in flies with the pathogenic Huntingtin protein expression in nerve cells. Feed supplementation with hydroxylated C60 fullerene and C120O dimer oxide molecules was shown to diminish the oxidative stress level and neurodegenerative processes in the flies’ brains. Thus, fullerenes displayed neuroprotective activity in this model. Full article
(This article belongs to the Special Issue Oxidative Stress in Aging and Neurodegenerative Diseases)
Show Figures

Figure 1

23 pages, 4523 KiB  
Article
Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato (Solanum lycopersicum L.) Exposed to Hyper-Harmonized Fullerene Water Complex
by Angelina Subotić, Slađana Jevremović, Snežana Milošević, Milana Trifunović-Momčilov, Marija Đurić and Đuro Koruga
Plants 2022, 11(21), 2810; https://doi.org/10.3390/plants11212810 - 22 Oct 2022
Cited by 9 | Viewed by 2874
Abstract
The rapid production and numerous applications of nanomaterials warrant the necessity and importance of examining nanoparticles in terms to their environmental and biological effects and implications. In this study, the effects of a water-soluble hyper-harmonized hydroxyl-modified fullerene (3HFWC) on cherry tomato seed germination, [...] Read more.
The rapid production and numerous applications of nanomaterials warrant the necessity and importance of examining nanoparticles in terms to their environmental and biological effects and implications. In this study, the effects of a water-soluble hyper-harmonized hydroxyl-modified fullerene (3HFWC) on cherry tomato seed germination, seedlings growth, physiological response and fruiting was evaluated. Changes in the photosynthetic pigments content, oxidative stress assessment, and aquaporin genes expression in cherry tomato plants were studied after during short- and long-term continuous exposure to 3HFWC nanosubstance (200 mg/L). Increased levels of photosynthetic pigments in leaves, lycopene in fruits, decreased levels of hydrogen peroxide content, activation of cellular antioxidant enzymes such as superoxide dismutase, catalase and peroxidase and increased aquaporin gene expression (PIP1;3, PIP1;5 and PIP2;4) were observed in 3HFWC nanosubstance-exposed plants in comparison to control, untreated cherry tomato plants. The 3HFWC nanosubstance showed positive effects on cherry tomato seed germination, plantlet growth and lycopene content in fruits and may be considered as a promising nanofertilizer. Full article
(This article belongs to the Special Issue Advances in Nano-Enabled Agriculture)
Show Figures

Figure 1

29 pages, 9545 KiB  
Review
Fullerene-Perylenediimide (C60-PDI) Based Systems: An Overview and Synthesis of a Versatile Platform for Their Anchor Engineering
by Aurel Diacon, Oksana Krupka and Piétrick Hudhomme
Molecules 2022, 27(19), 6522; https://doi.org/10.3390/molecules27196522 - 2 Oct 2022
Cited by 4 | Viewed by 3142
Abstract
An overview of the different covalent bonding synthetic strategies of two electron acceptors leading to fullerene-perylenediimide (C60-PDI)-based systems, essentially dyads and triads, is presented, as well as their more important applications. To go further in the development of such electron and [...] Read more.
An overview of the different covalent bonding synthetic strategies of two electron acceptors leading to fullerene-perylenediimide (C60-PDI)-based systems, essentially dyads and triads, is presented, as well as their more important applications. To go further in the development of such electron and photoactive assemblies, an original aromatic platform 5-benzyloxy-3-formylbenzoic acid was synthesized to graft both the PDI dye and the fullerene C60. This new C60-PDI dyad exhibits a free anchoring phenolic function that could be used to attach a third electro- and photoactive unit to study cascade electron and/or energy transfer processes or to obtain unprecedented side-chain polymers in which the C60-PDI dyads are attached as pendant moieties onto the main polymer chain. This C60-PDI dyad was fully characterized, and cyclic voltammetry showed the concomitant reduction process onto both C60 and PDI moieties at identical potential. A quasi-quantitative quenching of fluorescence was demonstrated in this C60-PDI dyad, and an intramolecular energy transfer was suggested between these two units. After deprotection of the benzyloxy group, the free hydroxyl functional group of the platform was used as an anchor to reach a new side-chain methyl methacrylate-based polymer in which the PDI-C60 dyad units are located as pendants of the main polymer chain. Such polymer which associates two complementary acceptors could find interesting applications in optoelectronics and in particular in organic solar cells. Full article
(This article belongs to the Special Issue Recent Development of Fullerenes and Their Applications)
Show Figures

Graphical abstract

14 pages, 4350 KiB  
Article
MWCNTs-CTAB and HFs-Lac Nanocomposite-Modified Glassy Carbon Electrode for Rutin Determination
by Xin-Yan Song, Xin Meng, Bao-Lin Xiao, Yang-Yang Li, Xin-Xin Ma, Ali Akbar Moosavi-Movahedi and Jun Hong
Biosensors 2022, 12(8), 632; https://doi.org/10.3390/bios12080632 - 11 Aug 2022
Cited by 16 | Viewed by 2705
Abstract
Rutin is a flavonoid glycoside compound, which is mainly transported via the blood circulation system in the human body. The monitoring of the blood concentration of rutin is of great significance in many fields such as pharmacology and pharmacokinetics. In this work, a [...] Read more.
Rutin is a flavonoid glycoside compound, which is mainly transported via the blood circulation system in the human body. The monitoring of the blood concentration of rutin is of great significance in many fields such as pharmacology and pharmacokinetics. In this work, a biosensor based on multi-walled carbon nanotubes (MWCNTs), cetyltrimethylammonium bromide (CTAB), hydroxyl fullerenes (HFs), and laccase (Lac) nanocomposite-modified glassy carbon electrodes was constructed. The modified materials were characterized with a transmission electron microscope (TEM), cyclic voltammograms (CV), and electrochemical impedance spectroscopy (EIS). CTAB is used to disperse MWCNTs and improve hydrophilicity and biocompatibility of MWCNTs, while the use of Lac can enhance the oxidation of catechol structure in rutin, thus significantly improving the sensitivity and selectivity of the modified electrode. Linear sweep voltammetry (LSV) studies showed that the determination linear ranges of rutin were 0.1 µmol L−1 to 2 µmol L−1 and 2 µmol L−1 to 11 µmol L−1, with the determination limits of 30 nmol L−1 and 95.5 nmol L−1, respectively. The proposed biosensor can be used to detect rutin tablets and serum samples with high recovery, which indicates a good accuracy of this method, and the results are consistent with those measured by the traditional ultra-high performance liquid chromatography (UHPLC) method. Hence, this biosensor has potential practical application value in rutin drug quality testing and clinical blood drug concentration monitoring. Full article
(This article belongs to the Special Issue Application of Nanomaterials for Biosensors)
Show Figures

Figure 1

16 pages, 6640 KiB  
Article
Toxic Effect of Fullerene and Its Derivatives upon the Transmembrane β2-Adrenergic Receptors
by Longlong Ren, Zhenxiang Jing, Fei Xia, John Zenghui Zhang and Yang Li
Molecules 2022, 27(14), 4562; https://doi.org/10.3390/molecules27144562 - 18 Jul 2022
Cited by 7 | Viewed by 2668
Abstract
Numerous experiments have revealed that fullerene (C60) and its derivatives can bind to proteins and affect their biological functions. In this study, we explored the interaction between fullerine and the β2-adrenergic receptor (β2AR). The MD simulation results [...] Read more.
Numerous experiments have revealed that fullerene (C60) and its derivatives can bind to proteins and affect their biological functions. In this study, we explored the interaction between fullerine and the β2-adrenergic receptor (β2AR). The MD simulation results show that fullerene binds with the extracellular loop 2 (ECL2) and intracellular loop 2 (ICL2) of β2AR through hydrophobic interactions and π–π stacking interactions. In the C60_in1 trajectory, due to the π–π stacking interactions of fullerene molecules with PHE and PRO residues on ICL2, ICL2 completely flipped towards the fullerene direction and the fullerene moved slowly into the lipid membrane. When five fullerene molecules were placed on the extracellular side, they preferred to stack into a stable fullerene cluster (a deformed tetrahedral aggregate), and had almost no effect on the structure of β2AR. The hydroxyl groups of fullerene derivatives (C60(OH)X, X represents the number of hydroxyl groups, X = 4, 8) can form strong hydrogen bonds with the ECL2, helix6, and helix7 of β2AR. The hydroxyl groups firmly grasp the β2AR receptor like several claws, blocking the binding entry of ligands. The simulation results show that fullerene and fullerene derivatives may have a significant effect on the local structure of β2AR, especially the distortion of helix4, but bring about no great changes within the overall structure. It was found that C60 did not compete with ligands for binding sites, but blocked the ligands’ entry into the pocket channel. All the above observations suggest that fullerene and its derivatives exhibit certain cytotoxicity. Full article
(This article belongs to the Special Issue Molecular Simulation in Modern Chemical Physics)
Show Figures

Figure 1

18 pages, 2144 KiB  
Article
Combined Action of Hyper-Harmonized Hydroxylated Fullerene Water Complex and Hyperpolarized Light Leads to Melanoma Cell Reprogramming In Vitro
by Milica Markelić, Dijana Drača, Tamara Krajnović, Zorana Jović, Milica Vuksanović, Djuro Koruga, Sanja Mijatović and Danijela Maksimović-Ivanić
Nanomaterials 2022, 12(8), 1331; https://doi.org/10.3390/nano12081331 - 13 Apr 2022
Cited by 11 | Viewed by 2651
Abstract
(1) Background: Their unique structure and electron deficiency have brought fullerenes into the focus of research in many fields, including medicine. The hyper-harmonized hydroxylated fullerene water complex (3HFWC) formulation has solved the limitations of the poor solubility and bioavailability of fullerenes. To achieve [...] Read more.
(1) Background: Their unique structure and electron deficiency have brought fullerenes into the focus of research in many fields, including medicine. The hyper-harmonized hydroxylated fullerene water complex (3HFWC) formulation has solved the limitations of the poor solubility and bioavailability of fullerenes. To achieve better antitumor activity, 3HFWC was combined with short-term irradiation of cells with hyperpolarized light (HPL) generated by the application of a nanophotonic fullerene filter in a Bioptron® device. The benefits of HPL were confirmed in the microcirculation, wound healing and immunological function. (2) Methods: B16, B16-F10 and A375 melanoma cells were exposed to a wide spectrum of 3HFWC doses and to a single short-term HPL irradiation. (3) Results: Apart from the differences in the redox status and level of invasiveness, the effects of the treatments were quite similar. Decreased viability, morphological alteration, signs of melanocytic differentiation and cellular senescence were observed upon the successful internalization of the nanoquantum substance. (4) Conclusions: Overall, 3HFWC/HPL promoted melanoma cell reprogramming toward a normal phenotype. Full article
(This article belongs to the Special Issue Cancer Treatment via Nanotherapy)
Show Figures

Graphical abstract

13 pages, 2689 KiB  
Article
The Effect of Polyhydroxy Fullerene Derivative on Human Myeloid Leukemia K562 Cells
by Wei Guo, Xing Liu, Lianjie Ye, Jie Liu, Kollie Larwubah, Ge Meng, Weiqiang Shen, Xiangxian Ying, Jun Zhu, Shengjie Yang, Jianjun Guo, Yanrong Jia and Meilan Yu
Materials 2022, 15(4), 1349; https://doi.org/10.3390/ma15041349 - 11 Feb 2022
Cited by 6 | Viewed by 2732
Abstract
The use of nanomedicines for cancer treatment has been widespread. Fullerenes have significant effects in the treatment of solid tumors. Here, we are going to study the effects of hydroxylated fullerene C60(OH)n(n = 18–22) treatment on chronic myeloid leukemia [...] Read more.
The use of nanomedicines for cancer treatment has been widespread. Fullerenes have significant effects in the treatment of solid tumors. Here, we are going to study the effects of hydroxylated fullerene C60(OH)n(n = 18–22) treatment on chronic myeloid leukemia cell proliferation and investigate its toxicity. The results showed that hydroxylated fullerene C60(OH)n (n = 18–22) at low concentrations (less than 120 μM) not only had apparent toxic side effects, but also promoted the growth of K562 cells, while a high concentration of C60(OH)n had different degrees of inhibition on K562 cells. When the concentration is higher than 160 μM, the K562 cells showed morphological changes, the mitochondrial membrane potential decreased, the cell cycle was blocked in the stage of G2-phase, and cell apoptosis occurred, which may cause apoptosis, autophagy, and a variety of other damage leading to cell death. Meanwhile, it also indicated that its inhibition of solid tumors might be related to the tumor microenvironment; we verified the safety of fullerene without apparent cellular toxicity at a specific concentration. Full article
(This article belongs to the Special Issue Advances in Metal-Based Nanoparticles)
Show Figures

Figure 1

14 pages, 2830 KiB  
Article
Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice
by Jelena Lazovic, Lydia M. Zopf, Jernej Hren, Martin Gajdoš, Marija Slavkovic, Zorana Jovic, Ivana Stankovic, Valentina Matovic and Djuro Koruga
Symmetry 2021, 13(11), 2004; https://doi.org/10.3390/sym13112004 - 22 Oct 2021
Cited by 7 | Viewed by 3088
Abstract
The most symmetric molecule, Buckminster fullerene C60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited [...] Read more.
The most symmetric molecule, Buckminster fullerene C60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380–500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management. Full article
(This article belongs to the Special Issue Molecular Biology and Applied Microbiology)
Show Figures

Figure 1

Back to TopTop