Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = hydrothermal time engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6506 KB  
Article
Time-Engineered Hydrothermal Nb2O5 Nanostructures for High-Performance Asymmetric Supercapacitors
by Rutuja U. Amate, Mrunal K. Bhosale, Aviraj M. Teli, Sonali A. Beknalkar, Hajin Seo, Yeonsu Lee and Chan-Wook Jeon
Nanomaterials 2026, 16(3), 173; https://doi.org/10.3390/nano16030173 - 27 Jan 2026
Abstract
Precise control over nanostructure evolution is critical for optimizing the electrochemical performance of pseudocapacitive materials. In this work, Nb2O5 nanostructures were synthesized via a time-engineered hydrothermal route by systematically varying the reaction duration (6, 12, and 18 h) to elucidate [...] Read more.
Precise control over nanostructure evolution is critical for optimizing the electrochemical performance of pseudocapacitive materials. In this work, Nb2O5 nanostructures were synthesized via a time-engineered hydrothermal route by systematically varying the reaction duration (6, 12, and 18 h) to elucidate its influence on structural development, charge storage kinetics, and supercapacitor performance. Structural and surface analyses confirm the formation of phase-pure monoclinic Nb2O5 with a stable Nb5+ oxidation state. Morphological investigations reveal that a 12 h reaction time produces hierarchically organized Nb2O5 architectures composed of nanograin-assembled spherical aggregates with interconnected porosity, providing optimized ion diffusion pathways and enhanced electroactive surface exposure. Electrochemical evaluation demonstrates that the NbO-12 electrode delivers superior pseudocapacitive behavior dominated by diffusion-controlled Nb5+/Nb4+ redox reactions, exhibiting high areal capacitance (5.504 F cm−2 at 8 mA cm−2), fast ion diffusion kinetics, low internal resistance, and excellent cycling stability with 85.73% capacitance retention over 12,000 cycles. Furthermore, an asymmetric pouch-type supercapacitor assembled using NbO-12 as the positive electrode and activated carbon as the negative electrode operates stably over a wide voltage window of 1.5 V, delivering an energy density of 0.101 mWh cm−2 with outstanding durability. This study establishes hydrothermal reaction-time engineering as an effective strategy for tailoring Nb2O5 nanostructures and provides valuable insights for the rational design of high-performance pseudocapacitive electrodes for advanced energy storage systems. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

27 pages, 12510 KB  
Article
The Prediction and Safety Control of the CO2 Phase Migration Path During the Shutdown Process of Supercritical Carbon Dioxide Pipelines
by Xinze Li, Jianye Li and Yifan Yin
Energies 2026, 19(2), 531; https://doi.org/10.3390/en19020531 - 20 Jan 2026
Viewed by 188
Abstract
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on [...] Read more.
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on the phase migration and safety control during the shutdown process of supercritical carbon dioxide pipelines. Taking a supercritical carbon dioxide transportation pipeline in Xinjiang Oilfield, China, as the research object, a hydro-thermal coupling model of the pipeline is established to simulate the pipeline and elucidate the coordinated variation patterns of temperature, pressure, density, and phase state. It was found that there were significant differences in the migration paths of the CO2 phase at different positions. The accuracy of the simulation results was verified through the self-built high-pressure visual reactor experimental system, and the influences of the initial temperature, initial pressure, and ambient temperature before pipeline shutdown on the slope of the phase migration path were explored. The phase migration line slope prediction model was established by using the least squares method and ridge regression method, the process boundary ranges and allowable shutdown time ranges for pipeline safety shutdowns in both summer and winter were further established. The research results show that when the pipeline operates under the low-pressure and high-temperature boundary, the CO2 in the pipeline vaporizes earlier from the starting point after the pipeline is shut down, and the safe shutdown time of the pipeline is shorter. There is a clear safety operation window in summer, while vaporization risks are widespread in winter. The phase migration path prediction formula and the safety zone division method proposed in this paper provide a theoretical basis and engineering guidance for the safe shutdown control of supercritical carbon dioxide pipelines, which can help reduce operational risks and lower maintenance costs. Full article
(This article belongs to the Special Issue New Advances in Carbon Capture, Utilization and Storage (CCUS))
Show Figures

Figure 1

16 pages, 2156 KB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Through Few-Layer MoS2 Composite Formation for Efficient Water Oxidation
by Deepak Rajaram Patil, Santosh S. Patil, Rajneesh Kumar Mishra, Sagar M. Mane and Seung Yoon Ryu
Materials 2025, 18(24), 5639; https://doi.org/10.3390/ma18245639 - 15 Dec 2025
Viewed by 477
Abstract
Photoelectrochemical water splitting (PEC-WS) provides a sustainable route to transform solar energy into hydrogen; however, its overall efficiency is constrained by the inherently slow kinetics of the oxygen evolution reaction. Bismuth vanadate (BiVO4) is considered an attractive visible-light-responsive photoanode due to [...] Read more.
Photoelectrochemical water splitting (PEC-WS) provides a sustainable route to transform solar energy into hydrogen; however, its overall efficiency is constrained by the inherently slow kinetics of the oxygen evolution reaction. Bismuth vanadate (BiVO4) is considered an attractive visible-light-responsive photoanode due to its suitable band gap (~2.4 eV) and chemical stability; however, its efficiency is restricted by limited charge transport and significant charge carrier recombination. To overcome these limitations, BiVO4–MoS2 (BVO–MS) heterostructures were synthesized through a simple in situ hydrothermal approach, ensuring robust interfacial coupling and uniform dispersion of MS nanosheets over BVO dendritic surfaces. This intimate contact promotes rapid charge transfer and improved light-harvesting capability. Structural and spectroscopic analyses confirmed the formation of monoclinic BVO with uniformly integrated amorphous MS. The optimized BVO–MS10 electrode delivered a photocurrent density of 4.72 mA cm−2 at 0.6 V vs. SCE, approximately 5.3 times higher than pristine BVO, and achieved an applied bias photon-to-current efficiency of 0.49%. Mott–Schottky analysis revealed a distinct negative shift in the flat-band potential for BVO–MS10, indicative of an upward movement of its conduction band and the establishment of a strong internal electric field that enhances charge separation and interfacial electron transport. These synergistic effects collectively endow the in situ engineered BVO–MS heterostructure with superior PEC water oxidation performance and highlight its promise for efficient solar-driven hydrogen generation. Full article
Show Figures

Figure 1

20 pages, 7531 KB  
Review
Synthesis, Applications, and Inhibition Mechanisms of Carbon Dots as Corrosion Inhibitors: A Review
by Yin Hu, Tianyao Hong, Sheng Zhou, Yangrui Wang, Shiyu Sheng, Jie Hong, Shifang Wang, Chang Liu, Chuang He, Haijie He and Minjie Xu
Processes 2025, 13(12), 4002; https://doi.org/10.3390/pr13124002 - 11 Dec 2025
Viewed by 480
Abstract
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and [...] Read more.
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and inhibition mechanisms. Various strategies—including hydrothermal/solvothermal treatment, microwave irradiation, pyrolysis, electrochemical synthesis, and chemical oxidation—have been employed to obtain CDs with tailored size, heteroatom doping, and surface groups, thereby enhancing their inhibition efficiency. CDs have demonstrated remarkable applicability across diverse corrosive environments, including acidic, neutral chloride, CO2-saturated, microbiologically influenced, and alkaline systems, often achieving inhibition efficiencies exceeding 90%. Mechanistically, their performance arises from strong adsorption and compact film formation, heteroatom-induced electronic modulation, suppression of anodic and cathodic reactions, and synergistic effects of particle size and structural configuration. Compared with conventional inhibitors, CDs offer higher efficiency, environmental compatibility, and multifunctionality. Despite significant progress, challenges remain regarding precise structural control, scalability of synthesis, and deeper mechanistic understanding. The effectiveness of CDs inhibitors is highly dependent on factors such as pH, temperature, inhibitor concentration, and exposure time, which should be tailored for specific applications to maximize performance. Future research should focus on integrating sustainable synthesis with rational heteroatom engineering and advanced characterization to achieve long-term, cost-effective, and environmentally benign corrosion protection solutions. Compared to earlier reviews, this review discusses the emerging trends in the field of CDs as corrosion inhibitors. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 9180 KB  
Article
Optimized Synthesis Strategy of Mxene-Loaded Graphitic Carbon Nitride (g-C3N4) for Enhanced Photocatalytic Degradation of Rhodamine B
by Bayazid Bustami, Parvej Rahman Alif, Md Mahfuzur Rahman, Mohaiminul Islam and Alam S. M. Nur
ChemEngineering 2025, 9(6), 127; https://doi.org/10.3390/chemengineering9060127 - 10 Nov 2025
Viewed by 1713
Abstract
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by [...] Read more.
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by fast recombination of charge carriers and a low surface area. In this study, we report a simple hydrothermal method to synthesize exfoliated porous g-C3N4 (E-PGCN) combined with Ti3C2 MXene to form a heterojunction composite that addresses these issues. Various characterization techniques (FTIR, XRD, XPS, SEM, BET) confirmed that adding MXene improves light absorption, increases surface area (53.7 m2/g for the composite versus 21.4 m2/g for bulk g-C3N4 (BGCN)), and enhances charge separation at the interface. Under UV-visible light irradiation with Rhodamine B (RhB) as the model pollutant, the E-PGCN/Ti3C2 MXene composite containing 3 wt% MXene demonstrated an impressive degradation efficiency of 93.2%. This performance is superior to BGCN (66.6%), E-PGCN (82.5%), and E-PGCN/Ti3C2 MXene-5 wt% composites (81%). This is due to the excess Mxene which caused agglomeration and reduced activity. Scavenger studies identified electron radicals as the dominant reactive species, with optimal activity at pH ~4.5. This enhanced performance, 1.4 times greater than BGCN and 1.13 times higher than E-PGCN, is ascribed to the synergistic interplay between the excellent electrical conductivity of MXene and the porous structural features of E-PGCN. This work highlights the importance of morphological engineering and heterojunction design for advancing metal-free photocatalysts, offering a scalable strategy for sustainable water purification. Full article
Show Figures

Figure 1

21 pages, 5806 KB  
Article
Hydrothermal Synthesis Optimization of High-Aspect Ratio α-Al2O3 Microfibers for Thermally Conductive Soft Composites
by Omar Zahhaf, Giulia D’Ambrogio, François Grasland, Guilhem Rival, Minh-Quyen Le, Pierre-Jean Cottinet and Jean-Fabien Capsal
Ceramics 2025, 8(4), 127; https://doi.org/10.3390/ceramics8040127 - 9 Oct 2025
Viewed by 1050
Abstract
This work presents a comprehensive study on the synthesis and application of Al2O3 fibers derived from an ammonium aluminum carbonate hydroxide (AACH) precursor. Through a hydrothermal route, the influence of critical synthesis parameters, including aluminum nitrate and urea concentrations, reaction [...] Read more.
This work presents a comprehensive study on the synthesis and application of Al2O3 fibers derived from an ammonium aluminum carbonate hydroxide (AACH) precursor. Through a hydrothermal route, the influence of critical synthesis parameters, including aluminum nitrate and urea concentrations, reaction temperature and time, and stirring conditions, on fiber morphology and aspect ratio was systematically investigated. The as-synthesized AACH fibers were subsequently converted into thermodynamically stable α-alumina fibers via controlled annealing. These high-aspect ratio alumina fibers were incorporated into polydimethylsiloxane (PDMS) to produce electrically insulating, thermally conductive composites. The thermal performance of fiber-filled composites was benchmarked against that of particle-filled counterparts, with the former exhibiting significantly enhanced thermal conductivity. Furthermore, the dielectrophoretic alignment of alumina fibers led to an additional increase in thermal conductivity, underlining the importance of high-aspect ratio fillers. This study uniquely combines the controlled synthesis of alumina fibers with their incorporation and alignment in a polymer matrix, presenting a novel and effective approach for engineering anisotropic, thermally conductive, and electrically insulating composite materials. Dielectrophoretic alignment of α-Al2O3 fibers synthesized through optimized hydrothermal conditions and incorporated into PDMS composites deliver over 95 % higher thermal conductivity than spherical fillers. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

11 pages, 2257 KB  
Article
Liquid-Exfoliated Antimony Nanosheets Hybridized with Reduced Graphene Oxide for Photoelectrochemical Photodetectors
by Gengcheng Liao, Sichao Yu, Jiebo Zeng, Zongyu Huang, Xiang Qi, Jianxin Zhong and Long Ren
Nanomaterials 2025, 15(17), 1355; https://doi.org/10.3390/nano15171355 - 3 Sep 2025
Viewed by 920
Abstract
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO [...] Read more.
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO through hydrothermal treatment. Specifically, during photoexcitation, the electron–hole pairs photogenerated on the surface of Sb NSs can be well stimulated and transferred by rGO, reducing the photogenerated carriers recombine on Sb NSs. The excellent electrochemical performance is confirmed by PEC tests. The photobehavior performance of the Sb NSs-rGO composite is significantly improved; its photocurrent density reaches 48.830 nA/cm2 at zero potential, approximately twice that of pure Sb NSs. The hybrid exhibits a faster photoresponse speed, with the response time and recovery time being 0.140 s and 0.163 s, respectively. This enhancement arises from the conductive role of rGO as a conductive channel, and as a result, the efficient separation of photoinduced electron–hole pairs is facilitated. This study is a further exploration of hybrid engineering of 2D materials in photochemical photodetectors and demonstrates significant progress in this field. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 3rd Edition)
Show Figures

Figure 1

26 pages, 10183 KB  
Article
Macro-Microscopic Characterization and Long-Term Performance Prediction of Polyvinyl Chloride Under Hydrothermal Aging Based on Creep Behavior Analysis
by Hui Li, Xiaoxiao Su, Guan Gong, Aoxin Shao and Yanan Zheng
Polymers 2025, 17(17), 2320; https://doi.org/10.3390/polym17172320 - 27 Aug 2025
Cited by 1 | Viewed by 1095
Abstract
The creep behavior of rigid polyvinyl chloride (PVC) in hydrothermal environments can compromise its long-term stability and load-bearing capacity, potentially leading to deformation or structural failure. Understanding this degradation is critical for ensuring the durability and safety of PVC in engineering applications such [...] Read more.
The creep behavior of rigid polyvinyl chloride (PVC) in hydrothermal environments can compromise its long-term stability and load-bearing capacity, potentially leading to deformation or structural failure. Understanding this degradation is critical for ensuring the durability and safety of PVC in engineering applications such as pipelines and building materials. In this study, accelerated hydrothermal aging tests were carried out on PVC under controlled conditions of 60 °C and 90% relative humidity (RH). Short-term tensile creep tests at four different stress levels were conducted both before and after aging. Microstructural changes associated with the PVC’s creep behavior were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and other microscopic characterization techniques. These analyses provided a detailed microscopic interpretation of how hydrothermal exposure and applied loads influenced the macroscopic creep performance of the PVC, thereby elucidating the correlation between its macroscopic mechanical behavior and microstructural evolution. By applying the time–stress equivalence principle and the time–aging equivalence principle, the short-term creep behavior was characterized to predict long-term performance. The accelerated characterization curve can effectively predict the creep behavior of PVC under a stress level of 16 MPa over approximately 6.5 years in an environment of 60 °C and 90% RH. At the same time, the master creep modulus curve of PVC under any aging duration and stress level can be established under the specified environmental conditions of 60 °C and 90% RH. Long-term creep curves were fitted using a locally structured derivative Kelvin model, demonstrating that this model can effectively simulate the long-term creep behavior of PVC under hydrothermal conditions. The results indicate that at a stress level of 16 MPa, PVC is expected to undergo creep damage and failure after approximately 15 years in such an environment. These findings provide a critical reference for assessing the long-term performance of PVC in hydrothermal environments. Full article
(This article belongs to the Special Issue Aging Behavior and Durability of Polymer Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 6025 KB  
Article
Solar-Activated Titanium-Based Cu4O3/ZrO2/TiO2 Ternary Nano-Heterojunction for Rapid Photocatalytic Degradation of the Textile Dye Everzol Yellow 3RS
by Saira, Wesam Abd El-Fattah, Muhammad Shahid, Sufyan Ashraf, Zeshan Ali Sandhu, Ahlem Guesmi, Naoufel Ben Hamadi, Mohd Farhan and Muhammad Asam Raza
Catalysts 2025, 15(8), 751; https://doi.org/10.3390/catal15080751 - 6 Aug 2025
Cited by 1 | Viewed by 1368
Abstract
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption [...] Read more.
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption onto natural or modified clays and zeolites, and no photocatalytic pathway employing engineered nanomaterials has been documented to date. This study reports the synthesis, characterization, and performance of a visible-active ternary nanocomposite, Cu4O3/ZrO2/TiO2, prepared hydrothermally alongside its binary (Cu4O3/ZrO2) and rutile TiO2 counterparts. XRD, FT-IR, SEM-EDX, UV-Vis, and PL analyses confirm a heterostructured architecture with a narrowed optical bandgap of 2.91 eV, efficient charge separation, and a mesoporous nanosphere-in-matrix morphology. Photocatalytic tests conducted under midsummer sunlight reveal that the ternary catalyst removes 91.41% of 40 ppm EY-3RS within 100 min, markedly surpassing the binary catalyst (86.65%) and TiO2 (81.48%). Activity trends persist across a wide range of operational variables, including dye concentrations (20–100 ppm), catalyst dosages (10–40 mg), pH levels (3–11), and irradiation times (up to 100 min). The material retains ≈ 93% of its initial efficiency after four consecutive cycles, evidencing good reusability. This work introduces the first nanophotocatalytic strategy for EY-3RS degradation and underscores the promise of multi-oxide heterojunctions for solar-driven remediation of colored effluents. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

15 pages, 3833 KB  
Article
High-Temperature Tribological Behavior of Polyimide Composites with Dual-Phase MoS2/MXene Lubricants: A Synergistic Effect Analysis
by Xingtian Ji, Pengwei Ren, Hao Liu, Yanhua Shi, Yunfeng Yan and Jianzhang Wang
J. Compos. Sci. 2025, 9(7), 373; https://doi.org/10.3390/jcs9070373 - 17 Jul 2025
Cited by 1 | Viewed by 1334
Abstract
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under [...] Read more.
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under harsh conditions. Therefore, this study synthesized a composite lubricant with binary fillers to improve this performance. This study employed the hydrothermal method to synthesize MoS2/MXene composite lubricating fillers and systematically investigated the high-temperature tribological properties of PI composites reinforced with these fillers. The results demonstrated that the optimal PI composite containing 5% MoS2/MXene exhibited a 14 °C increase in initial decomposition temperature compared to pure PI. Additionally, its thermal conductivity was enhanced by 36%, while the hardness (0.398 GPa) and elastic modulus (6.294 GPa) were elevated by 12.4% and 18.6%, respectively, relative to the pure PI. In terms of tribological behavior, all composite formulations displayed typical temperature-dependent friction characteristics. It is worth noting that MXene’s high hardness and thermal conductivity inhibited the occurrence of abrasive wear. At the same time, the substrate was strengthened, and thermal resistance was enhanced, thereby delaying the plastic deformation of the material at high temperatures. Full article
Show Figures

Figure 1

21 pages, 4620 KB  
Article
PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale and Chan-Wook Jeon
Polymers 2025, 17(12), 1683; https://doi.org/10.3390/polym17121683 - 17 Jun 2025
Cited by 2 | Viewed by 946
Abstract
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic [...] Read more.
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic two-step strategy involving the electrochemical deposition of amorphous WO3 and the controlled hydrothermal crystallization of TiO2. Structural and morphological analyses confirm the formation of phase-pure heterostructures with a tunable TiO2 crystallinity governed by reaction time. The optimized WTi-5 configuration exhibits a hierarchically organized nanostructure that couples the fast ion intercalation dynamics of amorphous WO3 with the interfacial stability and electrochemical modulation capability of crystalline TiO2. Electrochromic characterization reveals pronounced redox activity, a high charge reversibility (98.48%), and superior coloration efficiency (128.93 cm2/C). Optical analysis confirms an exceptional transmittance modulation (ΔT = 82.16% at 600 nm) and rapid switching kinetics (coloration/bleaching times of 15.4 s and 6.2 s, respectively). A large-area EC device constructed with the WTi-5 electrode delivers durable performance, with only a 3.13% degradation over extended cycling. This study establishes interface-engineered WO3/TiO2 bilayers as a scalable platform for next-generation smart windows, highlighting the pivotal role of a heterostructure design in uniting a high contrast, speed, and longevity within a single EC architecture. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Electrochromic Energy Storage Systems)
Show Figures

Graphical abstract

9 pages, 1252 KB  
Communication
Dual Effects of Ag Doping and S Vacancies on H2 Detection Using SnS2-Based Photo-Induced Gas Sensor at Room Temperature
by Shaoling Wang, Xianju Shi, Na Fang, Haoran Ma and Jichao Wang
Materials 2025, 18(12), 2687; https://doi.org/10.3390/ma18122687 - 6 Jun 2025
Cited by 1 | Viewed by 978
Abstract
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped [...] Read more.
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped SnS2 nanomaterials activated by light illumination. The Ag-SnS2 nanosheets, synthesized through hydrothermal methods, exhibited exceptional H2 detection capabilities under blue LED light activation. The synergistic interaction between silver dopants and photo-activation enabled remarkable gas sensitivity across a broad concentration range (5.0–2500 ppm), achieving rapid response/recovery times (4 s/18 s) at 2500 ppm under RT. Material characterization revealed that Ag doping induced S vacancies, enhancing oxygen adsorption, while simultaneously facilitating photo-induced hole transfer for surface hydrogen activation. The optimized sensor maintained good response stability after five-week ambient storage, demonstrating excellent operational durability. Experimental results further demonstrated that Ag dopants enhanced hydrogen adsorption–activation, while S vacancies improved the surface oxygen affinity. This work provides fundamental insights into defect engineering strategies for the development of optically modulated gas sensors, proposing a viable pathway for the construction of energy-efficient environmental monitoring systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

22 pages, 7080 KB  
Article
A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil
by Panting Liu, Simao Fan, Qingyi Mu, Qifan Zhang, Linlin Tang, Jine Liu, Fuqing Cui, Zhiyun Liu and Xuna Wang
Sensors 2025, 25(7), 2155; https://doi.org/10.3390/s25072155 - 28 Mar 2025
Cited by 1 | Viewed by 883
Abstract
Due to increasing human engineering activities in cold regions, the precise measurement of frozen soil’s physical property parameters has become particularly important. Traditional measurements of thermal conductivity and unfrozen water content of frozen soil are usually tested separately, leading to errors in accurately [...] Read more.
Due to increasing human engineering activities in cold regions, the precise measurement of frozen soil’s physical property parameters has become particularly important. Traditional measurements of thermal conductivity and unfrozen water content of frozen soil are usually tested separately, leading to errors in accurately understanding the dynamic variation law of permafrost’s hydrothermal parameters in the near-phase transition zone. To address this, a multi-sensor fusion technology–thermo time domain reflectometry (thermo-TDR) sensor was designed and optimized for measuring the unfrozen water content and thermal conductivity of frozen soil. Three-dimensional thermal and electromagnetic numerical models were developed to analyze and validate the design parameters of the proposed sensor. Furthermore, a corresponding validation experiment was carried out to confirm the usability and accuracy of the designed sensor. The results show that (1) under the optimized probe parameters, the deviation between the theoretical thermal conductivity and the numerical preset value is 2.94%, verifying the accuracy of the sensor in thermal physical testing. (2) With a 10 mm probe spacing design, the test area of the thermo-TDR significantly increased, and the skin effect coefficient reached 25.54%, satisfying the electromagnetic design requirements of the TDR method. (3) The designed thermo-TDR sensor realizes the simultaneous measurement of unfrozen water and thermal conductivity of frozen soil, and the experimental results present a good consistency with that of the nuclear magnetic resonance (NMR) and transient planar heat source methods. (4) Additionally, due to the drastic changes in the soil’s physical properties due to the probe’s heating process, testing errors of the thermo-TDR sensor will significantly increase in the near-phase transition range, especially in the range of −2~−1 °C. Full article
Show Figures

Figure 1

13 pages, 2757 KB  
Article
Crystal Phase and Morphology Control for Enhanced Luminescence in K3GaF6:Er3+
by Yilin Guo, Xin Pan, Yidi Zhang, Ke Su, Rong-Jun Xie, Jiayan Liao, Lefu Mei and Libing Liao
Nanomaterials 2025, 15(4), 318; https://doi.org/10.3390/nano15040318 - 19 Feb 2025
Cited by 4 | Viewed by 1196
Abstract
Upconversion luminescent materials (UCLMs) have garnered significant attention due to their broad potential applications in fields such as display technology, biological imaging, and optical sensing. However, optimizing crystal phase and morphology remains a challenge. This study systematically investigates the effects of phase transformation [...] Read more.
Upconversion luminescent materials (UCLMs) have garnered significant attention due to their broad potential applications in fields such as display technology, biological imaging, and optical sensing. However, optimizing crystal phase and morphology remains a challenge. This study systematically investigates the effects of phase transformation and morphology control on the upconversion luminescent properties of K3GaF6:Er3+. By comparing different synthesis methods, we found that the hydrothermal method effectively facilitated the transformation of the NaxK3-xGaF6 crystal phase from cubic to monoclinic, with Na+/K+ ions playing a key role in the preparation process. Furthermore, the hydrothermal method significantly optimized the particle morphology, resulting in the formation of uniform octahedral structures. The 657 nm red emission intensity of the monoclinic phase sample doped with Er3+ was enhanced by 30 times compared to that of the cubic phase, clearly demonstrating the crucial role of phase transformation in luminescent performance. This study emphasizes the synergistic optimization of crystal phase and morphology through phase engineering, which substantially improves the upconversion luminescence efficiency of K3GaF6:Er3+, paving the way for further advancements in the design of efficient upconversion materials. Full article
Show Figures

Figure 1

15 pages, 4052 KB  
Article
Viscoelastic, Shape Memory, and Fracture Characteristics of 3D-Printed Photosensitive Epoxy-Based Resin Under the Effect of Hydrothermal Ageing
by Mohamad Alsaadi, Tamer A Sebaey, Eoin P. Hinchy, Conor T. McCarthy, Tielidy A. de M. de Lima, Alexandre Portela and Declan M. Devine
J. Manuf. Mater. Process. 2025, 9(2), 46; https://doi.org/10.3390/jmmp9020046 - 1 Feb 2025
Cited by 2 | Viewed by 1977
Abstract
Using 3D-printed (3DPd) polymers and their composites as shape memory materials in various smart engineering applications has raised the demand for such functionally graded sustainable materials. This study aims to investigate the viscoelastic, shape memory, and fracture toughness properties of the epoxy-based ultraviolet [...] Read more.
Using 3D-printed (3DPd) polymers and their composites as shape memory materials in various smart engineering applications has raised the demand for such functionally graded sustainable materials. This study aims to investigate the viscoelastic, shape memory, and fracture toughness properties of the epoxy-based ultraviolet (UV)-curable resin. A UV-based DLP (Digital Light Processing) printer was employed for the 3D printing (3DPg) epoxy-based structures. The effect of the hydrothermal accelerated ageing on the various properties of the 3DPd components was examined. The viscoelastic performance in terms of glass transition temperature (Tg), storage modulus, and loss modulus was evaluated. The shape memory polymer (SMP) performance with respect to shape recovery and shape fixity (programming the shape) were calculated through dynamic mechanical thermal analysis (DMTA). DMTA is used to reveal the molecular mobility performance through three different regions, i.e., glass region, glass transition region, and rubbery region. The shape-changing region (within the glass transition region) between the Tg value from the loss modulus and the Tg value from the tan(δ) was analysed. The temperature memory behaviour was investigated for flat and circular 3DPd structures to achieve sequential deployment. The critical stress intensity factor values of the single-edge notch bending (SENB) specimens have been explored for different crack inclination angles to investigate mode I (opening) and mixed-mode I/III (opening and tearing) fracture toughness. This study can contribute to the development of highly complex shape memory 3DPd structures that can be reshaped several times with large deformation. Full article
Show Figures

Figure 1

Back to TopTop