A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil
Abstract
:1. Introduction
2. Methods and Materials
2.1. Design of Thermo-TDR Sensor
2.2. Heat Transfer Simulation to Determine the Probe Parameters
2.3. Electromagnetic Simulation for Rationality Check of Probe Design Parameter
2.4. Validation Test for Proposed Thermo-TDR Sensor
3. Results and Discussion
3.1. Analysis of Thermal and Electromagnetic Simulation
3.1.1. Optimization of Sensor Parameters
3.1.2. Energy Distribution Characteristic of Electromagnetic Field
3.1.3. Analysis of Significant Temperature Rise Scope
3.2. Analysis of Validation Experiments
3.2.1. Validation Experiment of Unfrozen Water Content
3.2.2. Validation Experiment of Thermal Conductivity
4. Conclusions
- (1)
- The transient heating scheme has minor thermal disturbance to the surrounding soil, which is more reasonable for the measurement of the hydrothermal parameters of frozen soil. The deviation rate between the theoretical calculated thermal conductivity and the numerical preset value is only 2.94%, which confirms the sensor’s accuracy in thermal physics testing.
- (2)
- By employing a 10 mm probe spacing design, the test area is significantly increased to 237.6 mm2 and is 144.94% and 48.13% higher than that of the 6 mm and 8 mm spacing designs, respectively. With 10 mm probe spacing, the skin effect coefficient of the thermo-TDR sensor is 25.54%, which satisfies the electromagnetic design requirements.
- (3)
- The experimental results of the designed thermo-TDR sensor have a good consistency with those obtained from NMR and transient plane source methods, validating that the thermo-TDR sensor is capable of measuring the unfrozen water and thermal conductivity simultaneously. It is also noted that the hydrothermal parameters of frozen soil exhibit a drastic variation trend in the temperature range of −2~0 °C.
- (4)
- Testing errors of the thermo-TDR sensor will significantly increase in the near-phase transition range, especially in the range of −2~−1 °C. Therefore, determination and correction studies on the test errors induced by drastic changes in soil’s physical properties during the probe’s heating process need to be conducted in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Zhuang, D.; Huang, Y.; Fu, J. Advances in Multi-Sensor Data Fusion: Algorithms and Applications. Sensors 2009, 9, 7771–7784. [Google Scholar] [CrossRef]
- Llinas, J.; Hall, D.L. Introduction to multi-sensor data fusion. In Proceedings of the ISCAS ’98: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Monterey, CA, USA, 31 May–3 June 1998. [Google Scholar]
- Young, C.B.; Bradley, A.A.; Krajewski, W.F.; Kruger, A.; Morrissey, M.L. Evaluating NEXRAD Multi-sensor Precipitation Estimates for Operational Hydrologic Forecasting. J. Hydrometeorol. 2000, 1, 241–254. [Google Scholar]
- Hall, D.L. Mathematical Techniques in Multi-sensor Data Fusion: Mathematical Techniques in Multi-sensor Data Fusion; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Cho, H.; Seo, Y.W.; Kumar, B.V.K.V.; Rajkumar, R.R. A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1836–1843. [Google Scholar]
- Becker, B.R.; Misra, A.; Fricke, B.A. Development of correlations for soil thermal conductivity. Intcommheat Mass Transf. 1992, 19, 59–68. [Google Scholar]
- Kozlowski, T. A comprehensive method of determining the soil unfrozen water curves-2. Stages of the phase change process in frozen soil-water system. Cold Reg. Sci. Technol. 2003, 36, 81–92. [Google Scholar]
- Liu, G.; Si, B.C. Soil ice content measurement using a heat pulse probe method. Can. J. Soil Sci. 2011, 91, 235–246. [Google Scholar]
- Zhang, Y.; Treberg, M.; Carey, S.K. Evaluation of the heat pulse probe method for determining frozen soil moisture content. Water Resour. Res. 2011, 47, 143–158. [Google Scholar] [CrossRef]
- Feng, S.; Chen, J.; Jones, S.B.; Flerchinger, G.; Dyck, M.; Filipovic, V.; Hu, Y.; Si, B.; Lv, J.; Wu, Q.; et al. Miscellaneous methods for determination of unfrozen water content in frozen soils. J. Hydrol. 2024, 631, 130802. [Google Scholar]
- Wu, B.; Zhu, H.-H.; Cao, D.; Xu, L.; Shi, B. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors. Cold Reg. Sci. Technol. 2021, 189, 103332. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Wu, B.; Cao, D.-F.; Li, B.; Wen, Z.; Liu, X.-F.; Shi, B. Characterizing thermo-hydraulic behaviors of seasonally frozen loess via a combined opto-electronic sensing system: Field monitoring and assessment. J. Hydrol. 2023, 622, 129647. [Google Scholar]
- Ren, T.; Shao, M.; Ju, Z.; Robert, H. Determining soil thermal-hydraulic dynamics and physical parameters using the heat pulse-time domain reflectometry technique I. Principles. Acta Pedol. Sin. 2004, 41, 225–229. [Google Scholar]
- Knight, J.H. Sensitivity of time domain reflectometry measurements to lateral variations in soil water content. Water Resour. Res. 1992, 28, 2345–2352. [Google Scholar] [CrossRef]
- Blackwell, J.H. The axial-flow error in the thermal-conductivity probe. Can. J. Phys. 2011, 34, 412–417. [Google Scholar]
- Wen, M.; Liu, G.; Horton, R.; Noborio, K. An in situ probe-spacing-correction thermo-TDR sensor to measure soil water content accurately. Eur. J. Soil Sci. 2018, 69, 1030–1034. [Google Scholar]
- Peng, W.; Lu, Y.; Xie, X.; Ren, T.; Horton, R. An Improved Thermo-TDR Technique for Monitoring Soil Thermal Properties, Water Content, Bulk Density, and Porosity. Vadose Zone J. 2019, 18, 1–9. [Google Scholar]
- Liu, X.; Ren, T.; Horton, R. Determination of Soil Bulk Density with Thermo-Time Domain Reflectometry Sensors. Soil Sci. Soc. Am. J. 2008, 72, 1000–1005. [Google Scholar]
- Yu, X.; Zhang, N.; Pradhan, A.; Thapa, B.; Tjuatja, S. Design and Evaluation of a Thermo-TDR Probe for Geothermal Applications. Geotech. Test. J. 2016, 38, 864–877. [Google Scholar]
- Ren, T.; Shao, M.; Ju, Z.; Robert, H. Determining soil thermal-hydraulic dynamics and physical parameters using the heat pulse-time domain reflectometry technique II. Applications. Acta Pedol. Sin. 2004, 41, 523–529. [Google Scholar]
- He, H.; Dyck, M.; Horton, R.; Ren, T.; Bristow, K.; Lv, J.; Si, B. Development and Application of the Heat Pulse Method for Soil Physical Measurements. Rev. Geophys. 2018, 56, 567–620. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Tian, Z.; Heitman, J.; Horton, R.; Ren, T. Determining Soil Ice Contents during Freezing and Thawing with Thermo-Time Domain Reflectometry. Vadose Zone J. 2015, 14, vzj2014.12.0179. [Google Scholar]
- Kojima, Y.; Heitman, J.L.; Noborio, K.; Ren, T.; Horton, R. Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor. Cold Reg. Sci. Technol. 2018, 151, 188–195. [Google Scholar]
- Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294. [Google Scholar]
- Vries DE, D.A. A Nonstationary Method for Determining Thermal conductivity of Soil in Situ. Soil Sci. 1952, 73, 83–90. [Google Scholar]
- Campbell, G.; Calissendorff, C.; Williams, J. Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J. 1991, 55, 291–293. [Google Scholar]
- Abramowitz, M.; Stegun, I.A.; Romain, J.E. Handbook of Mathematical Functions. Phys. Today 1966, 19, 120–121. [Google Scholar]
- Siddiqui, S.; Drnevich, V. A New Method of Measuring Density and Moisture Content of Soil Using the Technique of Time Domain Reflectometry; Joint Highway Research Project, Purdue University: West Lafayette, IN, USA, 1995. [Google Scholar]
- Siddiqui, S.; Drnevich, V.; Deschamps, R. Time domain reflectometry development for use in geotechnical engineering. Geotech. Test. J. 2000, 23, 9–20. [Google Scholar]
- Wang, S.; Cui, F.; Chen, J.; Liu, Z.; Jin, L. Numerical simulation of the temperature field of wide embankments in permafrost regions based on the ground-atmosphere coupling model. J. Highw. Transp. Res. Dev. 2016, 29, 169–178. [Google Scholar]
- PA, F. The sample area of conventional and alternative time domain reflectometry probe. Water Resour. Res. 1998, 34, 2971–2979. [Google Scholar]
- Chen, Y.M.; Mu, Q.Y.; Zhan, T.L.T. Experimental and numerical studies on the sample area and skin effect of the three-rod time domain reflectometry probe. Eur. J. Environ. Civ. Eng. 2016, 20, 363–377. [Google Scholar]
- Ferré, P.A.; Rudolph, D.L.; Kachanoski, R.G. Spatial Averaging of Water Content by Time Domain Reflectometry: Implications for Twin Rod Probes with and without Dielectric Coatings. Water Resour. Res. 1996, 32, 271–279. [Google Scholar]
- Knight, J.H.; Ferré, P.A.; Rudolph, D.L.; Kachanoski, R.G. A numerical analysis of the effects of coatings and gaps upon relative dielectric permittivity measurement with time domain reflectometry. Water Resour. Res. 1997, 33, 1455–1460. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Welch, S.M.; Kluitenberg, G.J.; Bristow, K.L. Rapid numerical estimation of soil thermal properties for a broad class of heat-pulse emitter geometries. Meas. Sci. Technol. 1996, 7, 932. [Google Scholar]
- Dai, B.; Zhang, Y.; Ding, H.; Xu, Y.; Liu, Z. Characteristics and Prediction of the Thermal Diffusivity of Sandy Soil. Energies 2022, 15, 1524. [Google Scholar] [CrossRef]
- Xu, X.Z.; Wang, J.C.; Zhang, L.X. Frozen Soil Physics; Science Press: Beijing, China, 2001. [Google Scholar]
Specimen Number | Moisture Content/% | Dry Density/g·cm−3 | Temperature Point/°C |
---|---|---|---|
A1 | 6 | 1.55 | 0, −0.5, −0.9, −1.2, −1.7, −2.7, −3.5, −4.7, −5.7, −6.7, −7.7, −10 |
A2 | 8 | 1.55 | |
A3 | 10 | 1.55 | |
A4 | 12 | 1.55 | |
A5 | 14 | 1.55 |
Spacing (mm) | 1.00 | 3.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 | 10.00 | 12.00 |
---|---|---|---|---|---|---|---|---|---|
Maximum Temperature Rise (°C) | 2.57 | 1.20 | 0.75 | 0.47 | 0.38 | 0.31 | 0.26 | 0.22 | 0.14 |
Time to Reach Maximum Temperature (s) | 30 | 31 | 34 | 40 | 44 | 48 | 53 | 59 | 81 |
90% Signal Stabilization Time | 22 | 26 | 29 | 33 | 35 | 38 | 41 | 45 | 59 |
Spacing (mm) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
−1 °C | 1.89 | 1.04 | 0.58 | 0.45 | 0.34 | 0.21 | 0.18 | 0.15 | 0.12 | 0.11 |
−2 °C | 2.17 | 1.40 | 0.96 | 0.77 | 0.61 | 0.39 | 0.32 | 0.27 | 0.23 | 0.20 |
−3 °C | 2.51 | 1.70 | 1.18 | 0.95 | 0.75 | 0.48 | 0.39 | 0.32 | 0.27 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Fan, S.; Mu, Q.; Zhang, Q.; Tang, L.; Liu, J.; Cui, F.; Liu, Z.; Wang, X. A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil. Sensors 2025, 25, 2155. https://doi.org/10.3390/s25072155
Liu P, Fan S, Mu Q, Zhang Q, Tang L, Liu J, Cui F, Liu Z, Wang X. A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil. Sensors. 2025; 25(7):2155. https://doi.org/10.3390/s25072155
Chicago/Turabian StyleLiu, Panting, Simao Fan, Qingyi Mu, Qifan Zhang, Linlin Tang, Jine Liu, Fuqing Cui, Zhiyun Liu, and Xuna Wang. 2025. "A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil" Sensors 25, no. 7: 2155. https://doi.org/10.3390/s25072155
APA StyleLiu, P., Fan, S., Mu, Q., Zhang, Q., Tang, L., Liu, J., Cui, F., Liu, Z., & Wang, X. (2025). A Thermo–TDR Sensor for Simultaneous Measurement of Unfrozen Water Content and Thermal Conductivity of Frozen Soil. Sensors, 25(7), 2155. https://doi.org/10.3390/s25072155