Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = hydrothermal dewatering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4732 KiB  
Article
Effect of Hydrothermal Dewatering on Low-Temperature Oxidation of Lignite
by Qiong Mo, Junjie Liao, Yankun Yang, Lin Gao, Liping Chang, Weiren Bao, Xianshu Dong, Yuping Fan and Guichuan Ye
Molecules 2025, 30(9), 1932; https://doi.org/10.3390/molecules30091932 - 26 Apr 2025
Viewed by 290
Abstract
The hydrothermal dewatering (HTD) of lignite results in noticeable variations in the low-temperature oxidation process. Consequently, this study was made on the gas release and temperature change characteristics to investigate the oxidation kinetics and mechanism of HTD coal samples. In this study, a [...] Read more.
The hydrothermal dewatering (HTD) of lignite results in noticeable variations in the low-temperature oxidation process. Consequently, this study was made on the gas release and temperature change characteristics to investigate the oxidation kinetics and mechanism of HTD coal samples. In this study, a lignite from Inner Mongolia in China was upgraded by HTD. N2 adsorption, SEM, FT-IR, and chemical titration experiments were also carried out on raw and HTD coal samples to relate the physico-chemical structure properties with low-temperature oxidation characteristics. Results show that HTD coal samples have higher low-temperature oxidation activities and lower critical ignition temperatures compared with raw coal. According to the change in activation energy by kinetic analysis, the low-temperature oxidation process in the temperature range 35–140 °C could be divided into the stage I (oxygen adsorption stage) and stage II (accelerated oxidation stage). The correlation analysis indicates that the oxygen adsorption stage is controlled by the aliphatic and surface structures, while the accelerated oxidation stage is jointly affected by the competition of physico-chemical structures. The oxygen adsorption stage promotes the progress in accelerated oxidation stage. Full article
Show Figures

Figure 1

22 pages, 17856 KiB  
Article
Sustainable Utilization of Dewatered Sewage Sludge via Hydrothermal Conversion: Focus on Steroid Transformation
by Ying Su, Qianyi Liao, Shuhan Xia, Xu Shen, Jiang Zhu, Yubing Liao, Wenhao Wang, Zhou Fang and Debin Liu
Sustainability 2025, 17(7), 2815; https://doi.org/10.3390/su17072815 - 21 Mar 2025
Viewed by 297
Abstract
With the acceleration of urbanization, the disposal of dewatered sewage sludge (DSS) has become an urgent environmental issue worldwide. Hydrothermal conversion (HC) of DSS is an important method for sludge sustainable utilization due to its combination of efficiency and economic and environmental advantages. [...] Read more.
With the acceleration of urbanization, the disposal of dewatered sewage sludge (DSS) has become an urgent environmental issue worldwide. Hydrothermal conversion (HC) of DSS is an important method for sludge sustainable utilization due to its combination of efficiency and economic and environmental advantages. This study investigates the product distribution and composition of products during the HC of DSS under subcritical and supercritical water conditions (200–450 °C, 5–90 min), with a particular focus on the formation and conversion mechanisms of steroid compounds. The results indicate that increasing temperature and reaction time leads to a rise in gas-phase products (GPs) and a corresponding decline in solid-phase products (SPs), with phenolic compounds identified as the predominant constituents. In the water-soluble products (WSPs), nitrogen-containing cyclic compounds are the major products. Saturated nitrogen heterocycles dominate at lower temperatures (200 °C), while at elevated temperatures (300–350 °C), saturated azapolycyclic compounds emerge, ultimately transitioning into unsaturated aromatic nitrogen heterocycles at 450 °C. Steroids are primarily concentrated in the oil-phase products (OPs). The conversion process involves the initial conversion of lipids in the DSS to long-chain olefins at 200 °C, which are then converted to steroids at 250–350 °C. At higher temperatures (400–450 °C), these steroids might decompose into gaseous products or undergo polymerization to form char. This suggests the potential for steroids to act as precursor compounds in the process of char formation. This work could contribute to a deeper understanding of the HC mechanism of DSS and provide valuable technical insights for improving bio-oil quality. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 2780 KiB  
Article
Co-Hydrothermal Carbonization of Sawdust and Sewage Sludge: Assessing the Potential of the Hydrochar as an Adsorbent and the Ecotoxicity of the Process Water
by Matheus Cavali, Thuanne Braúlio Hennig, Nelson Libardi Junior, Boram Kim, Vincent Garnier, Hassen Benbelkacem, Rémy Bayard, Adenise Lorenci Woiciechowski, William Gerson Matias and Armando Borges de Castilhos Junior
Appl. Sci. 2025, 15(3), 1052; https://doi.org/10.3390/app15031052 - 21 Jan 2025
Cited by 2 | Viewed by 1346
Abstract
Hydrothermal carbonization (HTC) is a promising thermochemical process to convert residues into hydrochar. While conventional HTC utilizes one type of residue as raw material only, Co-HTC generally combines two. By mixing dry and wet wastes, Co-HTC can advantageously avoid water addition. Therefore, this [...] Read more.
Hydrothermal carbonization (HTC) is a promising thermochemical process to convert residues into hydrochar. While conventional HTC utilizes one type of residue as raw material only, Co-HTC generally combines two. By mixing dry and wet wastes, Co-HTC can advantageously avoid water addition. Therefore, this work investigated the potential of hydrochar derived from the Co-HTC of sawdust and non-dewatered sewage sludge as a dye (methylene blue) adsorbent and evaluated the toxicity of the resulting Co-HTC process water (PW) on Daphnia magna. Three hydrochars were produced by Co-HTC at 180, 215, and 250 °C and named H-180, H-215, and H-250, respectively. For methylene blue adsorption, H-180 and H-215 had a better performance than H-250. Both H-180 and H-215 presented a maximum adsorption capacity of approximately 70 mg·g−1, which was superior compared with the adsorption of methylene blue by other hydrochars in the literature. Moreover, the removal percentage obtained with H-180 remained satisfactory even after five cycles. Regarding the toxicological assays of the PWs, raising the Co-HTC temperature increased the variety of substances in the PW composition, resulting in higher toxicity to D. magna. The EC50 values of PW-180, PW-215, and PW-250 were 1.13%, 0.97%, and 0.51%, respectively. This highlights the importance of searching for the treatment and valorization of the PW. Instead of viewing this by-product as an effluent to be treated and disposed of, it is imperative to assess the potential of PWs for obtaining other higher added-value products. Full article
(This article belongs to the Special Issue Resource Utilization of Solid Waste and Circular Economy)
Show Figures

Figure 1

32 pages, 1636 KiB  
Review
Recent Advances in Hydrothermal Oxidation Technology for Sludge Treatment
by Hang Yu, Yuanyuan Liu, Nana Guo, Weiling Piao, Zonglin Pan, Bin Zhu, Yimin Zhu, Libo Wu, Jinling Wan and Huangzhao Wei
Appl. Sci. 2024, 14(24), 11827; https://doi.org/10.3390/app142411827 - 18 Dec 2024
Viewed by 1668
Abstract
With the rapid development of urbanization and the widespread adoption of wastewater treatment facilities, the volume of sludge produced has steadily increased. Hydrothermal oxidation (HTO) technology offers an effective solution for sludge reduction, harmless disposal, and resource recovery, making it a highly promising [...] Read more.
With the rapid development of urbanization and the widespread adoption of wastewater treatment facilities, the volume of sludge produced has steadily increased. Hydrothermal oxidation (HTO) technology offers an effective solution for sludge reduction, harmless disposal, and resource recovery, making it a highly promising method for sludge treatment. In recent years, HTO has attracted significant attention due to its efficiency and environmental benefits. This paper provides a detailed explanation of the fundamental principles of HTO in sludge treatment, with a focus on the removal of organic pollutants, nitrogen transformation, and phosphorus recovery. The influence of key operational parameters, such as reaction temperature, time, initial oxygen pressure, and pH, on the performance of HTO treatment is also explored. In addition, the research status of HTO sludge treatment and an example of product recovery after treatment are also discussed. It examines the challenges associated with scaling up HTO for large-scale sludge treatment, along with potential research directions for future work. Special attention is given to the innovation of catalysts, with the goal of achieving self-catalysis in sludge treatment. Moreover, considering that ammonia nitrogen (NH3-N) is a major intermediate product in HTO, its removal, as well as the prediction and planning of other unintended products, remains a key issue. Further areas of interest include improving sludge dewatering performance and enhancing the production of valuable single carboxylic acids, which can boost resource recovery efficiency. This paper also highlights the diversification of sludge applications after HTO treatment. By providing insights into future development trends, this review offers valuable references for further research and practical applications. The ultimate goal is to support the development of HTO as a sustainable and efficient solution for sludge treatment, addressing environmental concerns while maximizing resource recovery opportunities. Full article
(This article belongs to the Special Issue Resource Utilization of Solid Waste and Circular Economy)
Show Figures

Figure 1

9 pages, 887 KiB  
Brief Report
Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing
by Halina Pawlak-Kruczek, Agnieszka Urbanowska, Lukasz Niedzwiecki, Michał Czerep, Marcin Baranowski, Christian Aragon-Briceño, Małgorzata Kabsch-Korbutowicz, Amit Arora, Przemysław Seruga, Mateusz Wnukowski, Jakub Mularski, Eddy Bramer, Gerrit Brem and Artur Pożarlik
Energies 2023, 16(13), 5102; https://doi.org/10.3390/en16135102 - 1 Jul 2023
Cited by 5 | Viewed by 1823
Abstract
One of the processes that can serve to valorise low-quality biomass and organic waste is hydrothermal carbonization (HTC). It is a thermochemical process that transpires in the presence of water and uses heat to convert wet feedstocks into hydrochar (the solid product of [...] Read more.
One of the processes that can serve to valorise low-quality biomass and organic waste is hydrothermal carbonization (HTC). It is a thermochemical process that transpires in the presence of water and uses heat to convert wet feedstocks into hydrochar (the solid product of hydrothermal carbonization). In the present experimental study, an improvement consisting of an increased hydrophobic character of HTC-treated biomass is demonstrated through the presentation of enhanced mechanical dewatering at different pressures due to HTC valorisation. As part of this work’s scope, flashing-off of low-quality steam is additionally explored, allowing for the recovery of the physical enthalpy of hot hydrochar slurry. The flashing-off vapours, apart from steam, contain condensable hydrocarbons. Accordingly, a membrane system that purifies such effluent and the subsequent recovery of chemical energy from the retentate are taken into account. Moreover, the biomethane potential is calculated for the condensates, presenting the possibility for the chemical energy recovery of the condensates. Full article
(This article belongs to the Special Issue Biomass and Waste Conversion: Latest Advances and Prospects)
Show Figures

Figure 1

19 pages, 3305 KiB  
Article
An Integrated Approach to the Hydrothermal Carbonization of Sewage Sludge: Simulation, Modeling, and Life Cycle Assessment
by Riccardo Bacci di Capaci, Andrea Luca Tasca, Riccardo Gori, Sandra Vitolo, Monica Puccini and Gabriele Pannocchia
ChemEngineering 2023, 7(3), 44; https://doi.org/10.3390/chemengineering7030044 - 4 May 2023
Cited by 7 | Viewed by 3561
Abstract
Sewage sludge management at wastewater treatment plants is becoming a more and more challenging task. Here, an innovative integrated modeling approach is developed to investigate the optimization of a municipal wastewater treatment plant (MWWTP) by the inclusion of hydrothermal carbonization (HTC). To this [...] Read more.
Sewage sludge management at wastewater treatment plants is becoming a more and more challenging task. Here, an innovative integrated modeling approach is developed to investigate the optimization of a municipal wastewater treatment plant (MWWTP) by the inclusion of hydrothermal carbonization (HTC). To this aim, two alternative plant layouts have been considered: (i) a conventional activated sludge-based treatment plant, i.e., based on thickening, stabilization, conditioning, and dewatering; (ii) additional hydrothermal carbonization and integrated treatment of the spent liquor in the sludge line. An Italian MWWTP has been selected as a case study, and three different scenarios have been implemented in the process simulation software World Wide Engine for Simulation Training and Automation (WEST) by considering the effect of the different digestion times in the aerobic reactor. Then, according to the Design of Experiment (DoE) methodology applied both on simulated and experimental data, and by the use of a Python code, the desired models have been developed and compared. Finally, a Life Cycle Assessment (LCA) study has been carried out to estimate the impacts on human health, ecosystems, and resources. The integration of HTC corresponds to the generation of a valuable product (the hydrochar), whereas the conventional layout is associated with high disposal costs of the sewage sludge. According to LCA results, a sludge age of 40 days is recommended due to the lowest impacts estimated, both with and without a HTC section. This has been ascribed mainly to the electricity demand of the sludge line, which increases with the excess sludge flow rate, i.e., as the sludge age decreases. Full article
Show Figures

Figure 1

15 pages, 1676 KiB  
Article
Development of a Continuous Hydrothermal Treatment Process for Efficient Dewatering of Industrial Wastewater Sludge
by Douwe S. Zijlstra, Esther Cobussen-Pool, Dennis J. Slort, Mark Visser, Pavlina Nanou, Jan R. Pels and Heather E. Wray
Processes 2022, 10(12), 2702; https://doi.org/10.3390/pr10122702 - 14 Dec 2022
Cited by 7 | Viewed by 2842
Abstract
Sludges from the papermaking industry represent a challenging residue stream that is difficult to dewater using conventional processes. The successful development and scale-up of innovative processes from lab- to pilot- to industrial-scale are required to tackle challenges for waste treatment, including paper sludges. [...] Read more.
Sludges from the papermaking industry represent a challenging residue stream that is difficult to dewater using conventional processes. The successful development and scale-up of innovative processes from lab- to pilot- to industrial-scale are required to tackle challenges for waste treatment, including paper sludges. Biological paper sludge was treated via a mild hydrothermal carbonization process (TORWASH®) to improve dewaterability of the sludge, including long-duration, continuous testing. Initial lab-scale experiments indicated the optimal treatment temperature for sludge dewatering was 190 °C. Dewaterability improved with increasing temperature, but the obtained solid yield decreased. Scaling-up to a continuous flow pilot plant required a temperature of 200 °C to achieve optimum dewatering. Pilot-scale hydrothermal treatment and dewatering resulted in solid cakes with an average dry matter content of 38% and a solid yield of 39%. This study demonstrates the benefits of hydrothermal carbonization for the dewatering of biological paper sludge without the use of dewatering aids such as fiber sludge or polyelectrolytes. The results also demonstrate the successful adaptation of a lab-scale batch process to a pilot-scale continuous flow process for hydrothermal carbonization of industrial wastewater sludge. Full article
Show Figures

Graphical abstract

12 pages, 2972 KiB  
Article
Influence of Post- and Pre-Acid Treatment during Hydrothermal Carbonization of Sewage Sludge on P-Transformation and the Characteristics of Hydrochar
by Vicky Shettigondahalli Ekanthalu, Satyanarayana Narra, Tommy Ender, Edward Antwi and Michael Nelles
Processes 2022, 10(1), 151; https://doi.org/10.3390/pr10010151 - 12 Jan 2022
Cited by 14 | Viewed by 3614
Abstract
Phosphorus (P) recovery from alternative P-rich residues is essential to meet the growing demands of food production globally. Despite sewage sludge being a potential source for P, its direct application on agricultural land is controversial because of the obvious concerns related to heavy [...] Read more.
Phosphorus (P) recovery from alternative P-rich residues is essential to meet the growing demands of food production globally. Despite sewage sludge being a potential source for P, its direct application on agricultural land is controversial because of the obvious concerns related to heavy metals and organic pollutants. Further, most of the available P recovery and sludge management technologies are cost-intensive as they require mandatory dewatering of sewage sludge. In this regard, hydrothermal carbonization (HTC) has gained great attention as a promising process to effectively treat the wet sewage sludge without it having to be dewatered, and it simultaneously enables the recovery of P. This study was conducted to analyse and compare the influence of acid (H2SO4) addition during and after HTC of sewage sludge on P leaching and the characteristics of hydrochar. The obtained results suggested that despite using the same amount of H2SO4, P leaching from solid to liquid phase was significantly higher when acid was used after the HTC of sewage sludge in comparison with acid utilization during the HTC process. After HTC, the reduction in acid-buffering capacity of sewage sludge and increase in solubility of phosphate precipitating metal ions had a greater influence on the mobilization of P from solid to liquid phase. In contrast, utilization of H2SO4 in different process conditions did not have a great influence on proximate analysis results and calorific value of consequently produced hydrochar. Full article
(This article belongs to the Special Issue Emerging Technologies for Water and Wastewater Treatment)
Show Figures

Figure 1

29 pages, 1472 KiB  
Review
Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae
by Makoto M. Watanabe and Andreas Isdepsky
Energies 2021, 14(21), 6992; https://doi.org/10.3390/en14216992 - 25 Oct 2021
Cited by 13 | Viewed by 9106
Abstract
Microalgae have attracted significant attention worldwide as one of the most promising feedstock fossil fuel alternatives. However, there are a few challenges for algal fuels to compete with fossil fuels that need to be addressed. Therefore, this study reviews the R&D status of [...] Read more.
Microalgae have attracted significant attention worldwide as one of the most promising feedstock fossil fuel alternatives. However, there are a few challenges for algal fuels to compete with fossil fuels that need to be addressed. Therefore, this study reviews the R&D status of microalgae-based polyculture and biocrude oil production, along with wastewater treatment. Mixotrophic algae are free to some extent from light restrictions using organic matter and have the ability to grow well even in deep water-depth cultivation. It is proposed that integrating the mixotrophic microalgae polyculture and wastewater treatment process is the most promising and harmonizing means to simultaneously increase capacities of microalgae biomass production and wastewater treatment with a low land footprint and high robustness to perturbations. A large amount of mixotrophic algae biomass is harvested, concentrated, and dewatered by combining highly efficient sedimentation through flocculation and energy efficient filtration, which reduce the carbon footprint for algae fuel production and coincide with the subsequent hydrothermal liquefaction (HTL) conversion. HTL products are obtained with a relatively low carbon footprint and separated into biocrude oil, solid, aqueous, and gas fractions. Algae biomass feedstock-based HTL conversion has a high biocrude oil yield and quality available for existing oil refineries; it also has a bioavailability of the recycled nitrogen and phosphorus from the aqueous phase of algae community HTL. The HTL biocrude oil represents higher sustainability than conventional liquid fuels and other biofuels for the combination of greenhouse gas (GHG) and energy return on investment (EROI). Deep water-depth polyculture of mixotrophic microalgae using sewage has a high potential to produce sustainable biocrude oil within the land area of existing sewage treatment plants in Japan to fulfill imported crude oil. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

32 pages, 3578 KiB  
Review
Key Targets for Improving Algal Biofuel Production
by Gareth Griffiths, Abul Kalam Hossain, Vikas Sharma and Ganesh Duraisamy
Clean Technol. 2021, 3(4), 711-742; https://doi.org/10.3390/cleantechnol3040043 - 9 Oct 2021
Cited by 29 | Viewed by 8811
Abstract
A number of technological challenges need to be overcome if algae are to be utilized for commercial fuel production. Current economic assessment is largely based on laboratory scale up or commercial systems geared to the production of high value products, since no industrial [...] Read more.
A number of technological challenges need to be overcome if algae are to be utilized for commercial fuel production. Current economic assessment is largely based on laboratory scale up or commercial systems geared to the production of high value products, since no industrial scale plant exits that are dedicated to algal biofuel. For macroalgae (‘seaweeds’), the most promising processes are anaerobic digestion for biomethane production and fermentation for bioethanol, the latter with levels exceeding those from sugar cane. Currently, both processes could be enhanced by increasing the rate of degradation of the complex polysaccharide cell walls to generate fermentable sugars using specifically tailored hydrolytic enzymes. For microalgal biofuel production, open raceway ponds are more cost-effective than photobioreactors, with CO2 and harvesting/dewatering costs estimated to be ~50% and up to 15% of total costs, respectively. These costs need to be reduced by an order of magnitude if algal biodiesel is to compete with petroleum. Improved economics could be achieved by using a low-cost water supply supplemented with high glucose and nutrients from food grade industrial wastewater and using more efficient flocculation methods and CO2 from power plants. Solar radiation of not <3000 h·yr−1 favours production sites 30° north or south of the equator and should use marginal land with flat topography near oceans. Possible geographical sites are discussed. In terms of biomass conversion, advances in wet technologies such as hydrothermal liquefaction, anaerobic digestion, and transesterification for algal biodiesel are presented and how these can be integrated into a biorefinery are discussed. Full article
(This article belongs to the Special Issue Bioeconomy: Current Trends, Challenges, and Future Prospects)
Show Figures

Figure 1

15 pages, 1315 KiB  
Article
Model-Based Evaluation of Hydrothermal Treatment for the Energy Efficient Dewatering and Drying of Sewage Sludge
by Philipp Knötig, Hendrik Etzold and Benjamin Wirth
Processes 2021, 9(8), 1346; https://doi.org/10.3390/pr9081346 - 30 Jul 2021
Cited by 18 | Viewed by 3053
Abstract
This research paper evaluates hydrothermal carbonization (HTC) as a possible treatment for sewage sludge, including phosphorus recycling. German governmental requirements force a high number of wastewater treatment plants (WWTP) to recover phosphorus from sewage sludge above limits of 20 g kgTS−1 [...] Read more.
This research paper evaluates hydrothermal carbonization (HTC) as a possible treatment for sewage sludge, including phosphorus recycling. German governmental requirements force a high number of wastewater treatment plants (WWTP) to recover phosphorus from sewage sludge above limits of 20 g kgTS−1 before further disposal (e.g., co-incineration). The results show that pH reduction has a positive effect on shifting phosphorus to the liquid phase during HTC. Although the experimental results of this research do not yet achieve the necessary phosphorus reduction, various calculations are made to achieve this goal in future experimental studies. In order to be able to assess the energy benefits of HTC, Aspen Plus modeling was used to show the positive impact of implementing this technology in a WWTP. It is shown that the mechanical dewaterability of sewage sludge (SS) increases after HTC enabling energy savings by means of subsequent thermal drying. A heat optimized HTC is able to cut energy expenses by half, further providing a phosphorus-depleted hydrochar for extensive energetic use. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

16 pages, 2330 KiB  
Article
Sewage Sludge Valorization via Hydrothermal Carbonization: Optimizing Dewaterability and Phosphorus Release
by Taina Lühmann and Benjamin Wirth
Energies 2020, 13(17), 4417; https://doi.org/10.3390/en13174417 - 26 Aug 2020
Cited by 30 | Viewed by 3501
Abstract
As the use of sewage sludge as a fertilizer in agriculture is increasingly restricted in the European Union, other ways to utilize this waste stream need to be developed. Sewage sludge is an ideal input material for the process of hydrothermal carbonization, as [...] Read more.
As the use of sewage sludge as a fertilizer in agriculture is increasingly restricted in the European Union, other ways to utilize this waste stream need to be developed. Sewage sludge is an ideal input material for the process of hydrothermal carbonization, as it can convert wet biomass into a solid energy carrier with increased mechanical dewaterability. Digested sewage sludge was hydrothermally carbonized at 160–200 °C for 30–60 min with initial pH levels of 1.93–8.08 to determine optimal reaction conditions for enhanced dewaterability and phosphorus release into the liquid phase. Design of experiments was used to develop response surface models, which can be applied to optimize the process conditions. For optimal dewaterability and phosphorus release, low initial pH values (pH 1.93) and mild temperatures around 170 °C are favorable. Because holding time had no statistically relevant effect, a dependency of reaction time was investigated. Though it did not yield substantially different results, it could be included in investigations of short reaction times prospectively. Low reaction temperatures and short holding times are desirable considering economic reasons for scale-up, while the high acid consumption necessary to achieve these results is unfavorable. Full article
(This article belongs to the Special Issue Hydrothermal Carbonization)
Show Figures

Graphical abstract

16 pages, 3393 KiB  
Article
Potential Use of Waste Activated Sludge Hydrothermally Treated as a Renewable Fuel or Activated Carbon Precursor
by J. A. Villamil, E. Diaz, M. A. de la Rubia and A. F. Mohedano
Molecules 2020, 25(15), 3534; https://doi.org/10.3390/molecules25153534 - 2 Aug 2020
Cited by 24 | Viewed by 4652
Abstract
In this work, dewatered waste activated sludge (DWAS) was subjected to hydrothermal carbonization to obtain hydrochars that can be used as renewable solid fuels or activated carbon precursors. A central composite rotatable design was used to analyze the effect of temperature (140–220 °C) [...] Read more.
In this work, dewatered waste activated sludge (DWAS) was subjected to hydrothermal carbonization to obtain hydrochars that can be used as renewable solid fuels or activated carbon precursors. A central composite rotatable design was used to analyze the effect of temperature (140–220 °C) and reaction time (0.5–4 h) on the physicochemical properties of the products. The hydrochars exhibited increased heating values (up to 22.3 MJ/kg) and their air-activation provided carbons with a low BET area (100 m2/g). By contrast, chemical activation with K2CO3, KOH, FeCl3 and ZnCl2 gave carbons with a well-developed porous network (BET areas of 410–1030 m2/g) and substantial contents in mesopores (0.079–0.271 cm3/g) and micropores (0.136–0.398 cm3/g). The chemically activated carbons had a fairly good potential to adsorb emerging pollutants such as sulfamethoxazole, antipyrine and desipramine from the liquid phase. This was especially the case with KOH-activated hydrochars, which exhibited a maximum adsorption capacity of 412, 198 and 146 mg/g, respectively, for the previous pollutants. Full article
(This article belongs to the Special Issue New Materials for a Sustainable Future)
Show Figures

Graphical abstract

22 pages, 2284 KiB  
Article
Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties
by Fabio Merzari, Jillian Goldfarb, Gianni Andreottola, Tanja Mimmo, Maurizio Volpe and Luca Fiori
Energies 2020, 13(11), 2890; https://doi.org/10.3390/en13112890 - 5 Jun 2020
Cited by 65 | Viewed by 7874
Abstract
Conventional activated sludge systems, still widely used to treat wastewater, produce large amounts of solid waste that is commonly landfilled or incinerated. This study addresses the potential use of Hydrothermal Carbonization (HTC) to valorize sewage sludge residues examining the properties of hydrochars depending [...] Read more.
Conventional activated sludge systems, still widely used to treat wastewater, produce large amounts of solid waste that is commonly landfilled or incinerated. This study addresses the potential use of Hydrothermal Carbonization (HTC) to valorize sewage sludge residues examining the properties of hydrochars depending on HTC process conditions and sewage sludge withdrawal point. With increasing HTC severity (process residence time and temperature), solid yield, total Chemical Oxygen Demand (COD) and solid pH decrease while ash content increases. Hydrochars produced from primary (thickened) and secondary (digested and dewatered) sludge show peculiar distinct properties. Hydrochars produced from thickened sludge show good fuel properties in terms of Higher Heating Value (HHV) and reduced ash content. However, relatively high volatile matter and O:C and H:C ratios result in thermal reactivity significantly higher than typical coals. Both series of carbonized secondary sludges show neutral pH, low COD, enhanced phosphorous content and low heavy metals concentration: as a whole, they show properties compatible with their use as soil amendments. Full article
(This article belongs to the Special Issue Hydrothermal Carbonization)
Show Figures

Graphical abstract

12 pages, 1486 KiB  
Article
Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation
by Agnieszka Urbanowska, Małgorzata Kabsch-Korbutowicz, Mateusz Wnukowski, Przemysław Seruga, Marcin Baranowski, Halina Pawlak-Kruczek, Monika Serafin-Tkaczuk, Krystian Krochmalny and Lukasz Niedzwiecki
Energies 2020, 13(1), 262; https://doi.org/10.3390/en13010262 - 5 Jan 2020
Cited by 49 | Viewed by 5788
Abstract
Agriculture affects both the quantity and the quality of water available for other purposes, which becomes problematic, especially during increasingly frequent severe droughts. This requires tapping into the resources that are typically neglected. One such resource is a by-product of anaerobic digestion, in [...] Read more.
Agriculture affects both the quantity and the quality of water available for other purposes, which becomes problematic, especially during increasingly frequent severe droughts. This requires tapping into the resources that are typically neglected. One such resource is a by-product of anaerobic digestion, in which moisture content typically exceeds 90%. Application of hydrothermal carbonization process (HTC) to this residue could partially remove organic and inorganic material, improve dewatering, decrease the overall solid mass, sanitize the digestate, change its properties, and eliminate problems related with emissions of odors from the installation. However, a significant gap still exists in terms of the dewatering of the hydrochars and the composition of the effluents. This work presents results of experimental investigation focused on the removal of organic compounds from the HTC effluent. Results of qualitative and quantitative analysis of liquid by-products of HTC of the agricultural digestate showed that acetic acid, 3-pyridinol, 1-hydroxyacetone, and 1,3-propanediol were the main liquid organic products of the process. Application of ultrafiltration process with the use of 10 kDa membrane for liquid HTC by-product treatment allows for the reduction of chemical oxygen demand up to 30%, biological oxygen demand up to 10%, and dissolved organic carbon up to 21%. Full article
Show Figures

Figure 1

Back to TopTop