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Abstract: Conventional activated sludge systems, still widely used to treat wastewater, produce
large amounts of solid waste that is commonly landfilled or incinerated. This study addresses the
potential use of Hydrothermal Carbonization (HTC) to valorize sewage sludge residues examining the
properties of hydrochars depending on HTC process conditions and sewage sludge withdrawal point.
With increasing HTC severity (process residence time and temperature), solid yield, total Chemical
Oxygen Demand (COD) and solid pH decrease while ash content increases. Hydrochars produced
from primary (thickened) and secondary (digested and dewatered) sludge show peculiar distinct
properties. Hydrochars produced from thickened sludge show good fuel properties in terms of
Higher Heating Value (HHV) and reduced ash content. However, relatively high volatile matter and
O:C and H:C ratios result in thermal reactivity significantly higher than typical coals. Both series
of carbonized secondary sludges show neutral pH, low COD, enhanced phosphorous content and
low heavy metals concentration: as a whole, they show properties compatible with their use as
soil amendments.
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1. Introduction

In 1991, the European Union (EU) Directive 91/271/EEC set new benchmarks for the collection,
treatment and monitoring of wastewater in urban areas [1]. In 2000, the EU produced over 10 million
dry tons of sewage sludge (latest available official EU data [2]). Since then, production has steadily
increased, increasing burdens on municipal wastewater treatment systems [3]. In 2017, the global
sewage sludge production reached approximately 45 million of dry tons per year [4]. In Italy alone,
over 1100 kilotons of dry sludge matter were produced in 2010, with almost 40% going to landfills and
less than 30% used in agricultural applications [2]. In 2016, the European Commission reported that
the 1991 directive was successful in terms of current improvements seen in EU water quality despite
an increasing population growth. However, the European Commission also underlined the need to
develop “innovative solutions to increase resource efficiency, such as solutions for energy recovery,
nutrient recovery, and processing to marketable products and water re-use” [5]. Beyond the EU, global
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urbanization and the growth of the middle class, combined with stricter environmental regulations,
have forced municipalities to re-examine their sludge management practices—transitioning away from
traditional disposal via incineration, landfilling, or discharge to oceans/waterways—to favor beneficial
reuse [6,7].

Sludge is a complex, heterogeneous mixture comprised of organic compounds such as proteins,
peptides, polysaccharides, phenols, aliphatic, aromatic and furan compounds, as well as inorganic
materials such as nutrients (phosphorous, potassium, nitrogen), silica, and heavy metals [8] and
pathogens and other microbiological pollutants [9]. In a typical wastewater treatment process, primary
sludge is characterized as the sludge following mechanical processing (screening, grit removal,
sedimentation) containing between 93 and 99.5 wt% water, with a high content of suspended and
dissolved organics. Secondary sludge (also known as Waste Activated Sludge, WAS) follows from
biological treatment and contains a high amount of microbial cells with a total solids concentration
ranging between 0.8 and 1.2 wt% depending on the type of process used [10].

Anaerobic Digestion (AD) is the most widely used sludge management technique. AD converts
the organic solids to biogas (predominantly CH4 and CO2) via hydrolysis, acidogenesis, acetogenesis,
and methanogenesis [11,12]. Despite its popularity, a considerable amount of solid remains after AD;
as little as 20–30 wt% of the total organic matter is mineralized [9]. While these solids were once
thought to be environmentally benign, their use into the soil may well be a potentially large source of
greenhouse gas emissions and point pollutant sources for mercury, lead, cadmium, and copper on
arable land, contributing to environmental acidification [13] and posing a toxicological risk in terms
of pathogens present [9]. The microbiological processes occurring on land-applied sludge (mainly
anaerobic decomposition, nitrification, and denitrification) lead to considerable emissions of methane
and nitrous oxide, as well as ammonia and nitrate. While land application of sludge offsets the
use of industrial nitrogen-containing fertilizers and represents a considerable net reduction of N2O,
NH3, and NO3

− emissions, CH4 emissions are still estimated to be 6.3 kgton−1 of applied sludge [13].
As such, direct land application of secondary sludge may not be the optimal nutrient recovery pathway
and may well represent a waste of a renewable energy source.

Hydrothermal Carbonization (HTC) is a process to concentrate the carbon in a given biomass,
occurring in water at elevated temperatures in the range of 160–280 ◦C [14], above saturated vapor
pressure, where water’s dielectric constant decreases so drastically that it catalyzes the carbonization of
biomass while acting as an organic solvent [15,16]. HTC proceeds via a series of mechanisms, including
hydrolysis, dehydration, decarboxylation, decarbonylation, and demethanation. HTC is performed
in 80–95 vol% water [17–20], making it an ideal processing pathway for wet biomasses [21,22] such
as sewage sludge. As well recognized in the literature, HTC not only leads to reduced volume and
energy densification of the solid residue, considerably improving its dewaterability [23,24], but also
significantly increases its solid fuel properties while stabilizing and disinfecting the sludge [25,26].
Interestingly, HTC of sludge enhances NO + NH3 reactions during solid combustion, significantly
reducing NOx emissions across combustion modes [27].

While multiple studies focused on nutrients recovery such as phosphorous [28–30] or probed
the impact of processing conditions on the solid and energy yields of hydrochars produced from the
HTC of sludge from one withdrawal point in the wastewater treatment (WWT) process [23,31–39],
the impact of upstream WWT processes on hydrochars is often not part of the experimental design.
Thus, a primary goal of the present work was to determine the most viable point in the WWT process
to employ HTC for sludge treatment from a solid fuel production and potential nutrient recovery
standpoint. There are two sets of variables of interest in the present work: (1) feedstock withdrawal
point from the WWT process; (2) hydrothermal reaction conditions on the composition and oxidation
properties of resulting hydrochars. While some research has been done to quantify the environmental
and economic benefits of using HTC to treat sewage sludge, understanding the impact of both feedstock
and processing conditions on resulting hydrochars is critical to enable better optimization of this
waste-to-energy conversion pathway [40].
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2. Materials and Methods

Three kinds of samples were collected at different process points from the municipal Wastewater
Treatment Plant (WWTP) of Trento, Italy, which uses a Conventional Activated Sludge (CAS) and
Membrane BioReactor (MBR) system (more information about CAS/MBR systems in recent prior works
in the field: [41,42]). The primary sludge extracted from the primary settler is sent to a static thickener
and mixed with secondary sludge coming from the MBR system (Pipe 1 of Figure 1). The thickened
sludge exiting the static thickener (Pipe 3) is the first sample taken for the present work. The secondary
sludge coming from the CAS system is sent to a dynamic thickener (Pipe 2). After thickening, both
streams are sent to the anaerobic digester. Anaerobic digestion lasts 21 days at 33 ◦C, after which the
digested sludge (Pipe 4) is sent to a dewatering system. The effluent from Pipe 4 is the second sample
taken for this work. To the digested sludge from Pipe 4 polyelectrolyte is added; this stream is sent
to the dewatering system (centrifuge) where it reaches about 25 wt% solids content to enable solid
handling. This dewatered sludge after the centrifuge (Pipe 5) is the third sample used in this work.
Each of the three samples taken was characterized and stored in a fridge at 4 ◦C until use.
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Figure 1. Schematic of wastewater treatment plant in Trento, Italy, identifying three sludge samples
(Thickened—Pipe 3; Digested—Pipe 4; Dewatered—Pipe 5) used in the present work.

2.1. Feedstock Characterization

The three feedstocks used were characterized in accordance with accepted environmental practices.
All measurements were conducted in triplicate and the average and standard deviation of each data is
reported. The total solids content of each sludge was measured by drying in an oven at 105 ◦C for at
least 8 h until constant weight was reached.

The pH of the raw and carbonized samples was measured using a Profi-Line pH 3310 (WTW,
Milan, Italy) portable pH-meter by placing 1 g of solids in 20 g of deionized water, shaking for at least
90 min, allowing the mixture to settle for 15 min, and then reading the pH. The total Chemical Oxygen
Demand (COD) was measured using a closed reflux titration method [43] using potassium dichromate
digestion solution, sulfuric acid reagent, ferroin indicator solution, and a standard ferrous ammonium
sulphate titrant according to standard procedures. The same method was used for soluble COD
following filtration of the sample through a 0.45 µm filter [43]. Organic nitrogen in the trinegative state
was measured via the semi-micro Kjeldahl method. Ammonium nitrogen was measured [43] by first
buffering the sample at pH 9.5 with a borate buffer (to decrease hydrolysis), then distilling in a solution
of boric acid, and determining the concentration via acid titration with H2SO4. To measure the total
phosphorous, samples were first digested in H2SO4, forming molybdophosphoric acid, which was then
reduced by stannous chloride to molybdenum blue. The concentration was measured photometrically
at 690 nm and compared against a calibration curve [43].



Energies 2020, 13, 2890 4 of 22

Ultimate analysis to determine elemental composition of C, H, N, S, and O (by difference)
was conducted on a LECO 628 analyzer (LECO, Moenchengladbach, Germany) equipped with
Sulphur module for CHN (ASTM D-5373 standard method) and S (ASTM D-1552 standard method)
determination. Proximate analyses were done on a LECO Thermogravimetric Analyzer TGA 701
(LECO Corporation, St. Joseph, MI, USA). Samples were heated at 20 ◦C min−1 to 105 ◦C in air and
held until constant weight (< ±0.05%) to provide a dry baseline. They were subsequently heated at
16 ◦C min−1 from 105 ◦C to 900 ◦C in nitrogen with a hold time of 7 min, where the mass loss was
attributed to Volatile Matter (VM). Finally, samples were held at 800 ◦C in air to oxidize the Fixed
Carbon (FC) until the mass change stay within ±0.5% by weight. Mass remaining after this was
considered to be ash (inorganic matter) content. The Higher Heating Value, HHV, was measured using
an IKA 200C isoperibolic calorimeter (IKA-Werke GmbH, Staufen, Germany) according to the CEN/TS
14918 standard.

Inductively coupled plasma-optical emission spectroscopy (Arcos Ametek, Spectro, Germany) was
used to determine the inorganic concentration of the sludge samples. Briefly, samples were oven-dried
at 105 ◦C until constant weight and then acid-digested in concentrated nitric acid (650 mL−1; Carlo Erba,
Milano, Italy) using a single reaction chamber microwave digestion system (UltraWAVE, Milestone
Inc., Sheldon CT USA) and Teflon-lined vials to prevent interference. Elements were quantified using
certified multi-element standards (CPI International).

2.2. Hydrothermal Carbonization and Product Analysis

Hydrothermal carbonization typically occurs between 180 and 250 ◦C under autogenous pressure
(up to 50 bar) but below the critical point [18]. The present work utilized a 50 mL stainless steel batch
HTC reactor rated to withstand 300 ◦C and 140 bar, with temperature and pressure monitoring and
temperature control, as previously described [44,45]. The thickened and digested sludges were used
as-received. The reactor was loaded with 35.0 mL ± 0.1 mL biomass, which maintained a biomass
(dry biomass)-to-water ratio of about 0.03:1. The dewatered sludge had a solid content of 25 wt%
and needed to be diluted to ensure that the biomass was fully submerged. The reactor was filled
with 20.00 g ± 0.01 g of dewatered sludge and 15.00 g ± 0.01 g of deionized water to cover the sludge,
resulting in a biomass-to-water ratio of 0.17:1. Prior to each run, the reactor was sealed and purged with
nitrogen gas; then it was heated up to the desired reaction temperature (190 ◦C, 220 ◦C and 250 ◦C) and
held at the set point for the desired reaction time (30 min and 60 min). At least three experimental runs
for each of the temperature/time combinations were performed for each of the three sludge samples.

After the reaction time, the reactor was cooled by placing a cold (−25 ◦C) stainless steel disk under
its bottom and by blowing compressed air into its outer walls. The reactor was cooled to ambient
temperature in less than 15 min, at which point the produced gas was measured by flowing it into a
graduate cylinder filled with water [45]. As reported in the literature, where the CO2 content is always
greater than 90 vol.%, the produced gas was assumed to be comprised entirely of CO2 [45,46]. The gas
yield was estimated according to the ideal gas law under the assumption of standard temperature and
pressure as:

Ygas =
MassCO2

MassSludge, dry
(1)

The liquid and solid HTC products were filtered through a pre-dried and weighed piece of
cellulose filter paper. The filter paper was then put in the oven overnight at 105 ◦C and weighed to
calculate the solids produced. The solid yield of the hydrochar, Yhydrochar, was calculated as:

Yhydrochar =
Masshydrochar,dry

MassSludge,dry
(2)

The liquid yield was computed as the complement to 1 of the gas and solid yields.
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The solid hydrochar was characterized according to the same methods described in Section 2.1.
for Higher Heating Value (HHV), proximate, and ultimate analyses. The hydrochar’s relative solid
reactivity was measured using a Mettler-Toledo Thermogravimetric Analyzer–Differential Scanning
Calorimeter (TGA-DSC-1, Mettler-Toledo LLC, Columbus, Ohio, USA) in an oxidative atmosphere.
The TGA-DSC was calibrated with NIST-traceable gold, indium, and aluminum and the mass was
measured to ±0.1 µg and temperature to ±0.1 ◦C. Approximately 10 mg of sample was loaded into a
70 µL alumina crucible. Samples were heated at 20 ◦C min−1 up to 110 ◦C in air flowing at 50 mL min−1

and held for 30 min to drive off any residual moisture. They were subsequently heated at 20 ◦C min−1

up to 950 ◦C and held for 30 min to oxidize all material. The mass fraction of sample converted (X) at
any time, t, was calculated as:

X =
mi −mt

mi −m f
(3)

where mi is the initial mass, mt is the mass at any time, t, and mf is the final mass after the hold at
950 ◦C. Derivative thermogravimetric (DTG) curves were plotted as dX/dt (s−1) versus temperature.
Differential scanning calorimeter (DSC) data was normalized as heat flow per sample mass at any
given instant (mt). DTG curves are compared to those from an in-house sample of Illinois No. 6 coal,
a high volatile bituminous coal from the Illinois #6 (Herrin) seam from the Argonne Premium Coal
Bank [47]. The coal sample is well characterized in the literature and is often used as a standard on
which to compare solid fuel oxidation [47–49].

Dewaterability—and the improvement due to HTC was determined by measuring the Capillary
Suction Time (CST) required for water to be separated from sludge across a filter paper (Whatman 17
CHR, VWR International, Milan, Italy) using a Triton Electronics Ltd. capillary suction timer type 304B
according to standard methods [43]. CST provides a quantitative assessment of how readily sludge
releases water.

The liquid phase remaining after hydrothermal carbonization was characterized by measuring
pH, COD, organic nitrogen, ammonia nitrogen, and phosphorous as described above. Measurements
of Readily Biodegradable COD (RBCOD) were performed following the procedure described in
literature [50]. To measure NH4

+ nitrogen and soluble COD, samples were screened through a 0.45 µm
filter [43].

3. Results

To assess the optimal point to withdraw sludge from the wastewater treatment process for
hydrothermal carbonization in terms of resulting hydrochar properties, three samples were pulled
from various points along the process: Thickened, Digested, and Dewatered (Figure 1). The feedstocks
characteristics are presented in Tables 1 and 2. These three samples were subjected to hydrothermal
carbonization at three temperatures (190 ◦C, 220 ◦C, 250 ◦C) and two residence times (30 min, 60 min)
each, producing a total of 18 hydrochar samples for analysis.

Looking at the data of the different raw sludges, it is clear that they differ substantially. Thickened
sludge contains about 46 wt% elemental carbon and 15 wt% ash. In digested sludge, the carbon
decreases to about 26 wt%, and the ash content increases to 45 wt%, due to stabilization during
anaerobic digestion. Dewatered sludge contains 36 wt% carbon and about 28 wt% ash. Thus, even if
dewatering is a mechanical process, it greatly modifies the sludge characteristics. The supernatant from
sludge dewatering has high concentrations of inorganic compounds such as N-NH4

+, P compounds,
CaCO3, Mg, K, Na, and other minerals that contribute to the ash content [51]. The dewatering unit
washes away these inorganics strongly decreasing the ash content of the dewatered sludge: this reflects
on an increase in elemental C, H, N, and O, and also in FC and VM. VM variation is extremely
significant, passing from a value of 50 wt% in the digested sludge to about 66 wt% in the dewatered
sludge. These differences are also due to the fact that the digested sludge, immediately upstream
of the dewatering operation, is chemically conditioned with organic polyelectrolyte (1–10 g/kg dry
solids [52]) that is quickly adsorbed on the sludge particles.
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Table 1. Characteristics of raw thickened sludge, raw digested sludge, and raw dewatered sludge and products of hydrothermal carbonization of thickened, digested,
and dewatered sludge.

Property Thickened Sludge Digested Sludge Dewatered Sludge

Moisture Content (wt%) 97.1 ± 0.1 97.1 ± 0.3 74.9 ± 0.1
Total Solids (g/L) 29.1 ± 0.4 29.0 ± 2.3 n.a.

Fixed + Volatile Solids (g/L) 26.7 ± 0.4 15.4 ± 0.9 n.a.

HTC Temp (◦C) 30 min HTC 60 min HTC 30 min HTC 60 min HTC 30 min HTC 60 min HTC

Total COD (g/L)

Raw 28.1 ± 1.4 18.0 ± 0.9 193.2 ± 0.3 a

190 14.1 ± 2.0 15.3 ± 0.7 9.1 ± 0.2 9.3 ± 0.4 55.3 ± 1.4 56.3 ± 2.7
220 15.4 ± 1.4 15.1 ± 1.1 11.3 ± 1.2 9.9 ± 0.1 56.7 ± 8.2 54.1 ± 0.3
250 18.4 ± 0.7 18.4 ± 1.8 10.4 ± 0.7 8.8 ± 0.4 64.9 ± 8.2 57.5 ± 0.3

Soluble COD (g/L)

Raw 2.3 ± 0.1 0.4 ± 0.1 47.2 ± 2.4 a

190 10.5 ± 1.0 13.4 ± 0.4 6.4 ± 0.3 6.7 ± 0.5 49.8 ± 0.4 55.1 ± 2.8
220 11.9 ± 1.5 13.5 ± 0.5 6.7 ± 0.3 6.7 ± 0.5 44.8 ± 3.4 45.7 ± 5.5
250 15.3 ± 0.9 13.7 ± 0.1 8.3 ± 0.8 5.7 ± 0.2 57.5 ± 9.8 46.8 ± 0.6

pH

Raw 7.21 ± 0.1 8.42 ± 0.01 7.0 ± 0.0
190 6.0 ± 0.0 5.3 ± 0.0 7.1 ± 0.2 6.8 ± 0.0 6.0 ± 0.1 6.0 ± 0.0
220 6.0 ± 0.0 6.1 ± 0.0 6.8 ± 0.0 6.2 ± 0.1 6.0 ± 0.0 5.9 ± 0.0
250 5.8 ± 0.1 6.0 ± 0.0 7.3 ± 0.6 6.9 ± 0.1 6.0 ± 0.0 5.5 ± 0.0

Total Phosphorous in Liquid (mg/L)

Raw 175.00 ± 9.00 187.00 ± 9.00 10.00 ± 1.00 a

190 32.5 ± 0.1 38.4 ± 0.1 19.6 ± 0.3 22.7 ± 0.1 0.3 ± 0.0 0.4 ± 0.0
220 20.2 ± 0.1 16.4 ± 0.2 19.8 ± 0.3 17.8 ± 0.1 0.2 ± 0.0 0.2 ± 0.0
250 16.1 ± 0.1 11.1 ± 0.2 19.3 ± 0.3 12.2 ± 0.1 0.2 ± 0.0 0.2 ± 0.0

Total Phosphorous in Solid (mg/g)

Raw 5.22 ± 0.10 5.81 ± 0.13 9.22 ± 0.33
190 6.2 ± 0.7 6.8 ± 0.4 7.2 ± 0.7 7.4 ± 1.4 9.2 ± 0.5 9.4 ± 0.4
220 7.8 ± 0.3 9.4 ± 0.2 7.5 ± 0.5 7.5 ± 1.5 10.5 ± 0.2 10.6 ± 0.2
250 9.9 ± 0.5 10.2 ± 4.6 7.4 ± 0.9 6.7 ± 1.2 10.8 ± 0.8 10.9 ± 0.9

Organic Nitrogen in Liquid (g/L)

Raw 0.470 ± 0.230 0.880 ± 0.010 11.023 ± 0.551 a

190 0.1 ± 0.0 0.1 ± 0.0 1.3 ± 0.0 1.2 ± 0.0 4.5 ± 1.0 4.1 ± 0.2
220 0.1 ± 0.0 0.1 ± 0.0 1.4 ± 0.0 0.9 ± 0.0 2.4 ± 0.6 1.5 ± 0.1
250 0.1 ± 0.0 0.1 ± 0.0 1.3 ± 0.0 1.5 ± 0.0 1.7 ± 0.3 1.4 ± 0.7

Ammonia Nitrogen in Liquid (g/L)

Raw 0.490 ± 0.010 0.880 ± 0.010 0.598 ± 0.030 a

190 0.4 ± 0.0 0.6 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 2.7 ± 0.1 3.8 ± 0.2
220 0.4 ± 0.0 0.5 ± 0.0 0.8 ± 0.0 1.0 ± 0.0 4.4 ± 0.3 4.6 ± 0.6
250 0.6 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 0.8 ± 0.0 6.9 ± 0.4 6.5 ± 0.4

aras received, n.a.—not applicable, a Based on 1g of dry biomass dissolved in one liter of distilled water, HTC—Hydrothermal Carbonization.
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Table 2. Products yields and analysis of solid fuel characteristics of raw feedstocks and hydrochars from thickened, digested, and dewatered sludge.

Property HTC Temp (◦C) Thickened Sludge Digested Sludge Dewatered Sludge
30 min HTC 60 min HTC 30 min HTC 60 min HTC 30 min HTC 60 min HTC

Process Yields (dry basis)

Solid Yield (wt%)
190 77.2 ± 4.7 67.0 ± 11.0 82.8 ± 8.9 81.5 ± 8.9 88.2 ± 2.0 85.6 ± 0.0
220 60.6 ± 8.8 57.2 ± 3.4 64.6 ± 6.4 70.6 ± 3.4 75.1 ± 1.0 75.2 ± 0.3
250 49.4 ± 4.8 52.0 ± 6.2 78.1 ± 7.8 64.9 ± 3.7 67.6 ± 2.5 66.8 ± 0.2

Gas Yield (wt%)
190 2.5 ± 0.0 2.7 ± 0.2 3.7 ± 0.9 4.7 ± 0.3 2.1 ± 1.4 2.6 ± 0.2
220 4.1 ± 0.7 4.2 ± 0.4 5.1 ± 1.3 5.6 ± 1.0 3.7 ± 0.1 4.3 ± 0.6
250 6.3 ± 1.6 7.2 ± 1.3 6.1 ± 2.1 7.6 ± 1.9 5.1 ± 0.2 5.9 ± 0.1

Liquid Yield (wt%)
190 20.3 ± 2.4 34.9 ± 5.4 43.2 ± 4.9 43.1 ± 4.6 45.2 ± 1.7 44.1 ± 0.1
220 35.3 ± 4.7 30.7 ± 1.9 34.8 ± 3.9 38.1 ± 2.2 39.4 ± 0.6 39.7 ± 0.4
250 44.3 ± 3.2 29.6 ± 3.8 42.1 ± 5.0 36.3 ± 2.8 36.4 ± 1.3 36.4 ± 0.2

Ultimate Analysis (dry basis)

C (wt%)

Raw 45.96 ± 0.20 45.96 ± 0.20 25.60 ± 0.33 25.60 ± 0.33 35.91 ± 0.25 35.91 ± 0.25
190 44.56 ± 0.39 46.11 ± 0.39 19.22 ± 1.37 14.16 ± 2.57 36.61 ± 0.02 35.07 ± 0.23
220 44.86 ± 0.51 43.15 ± 0.19 11.70 ± 0.64 10.21 ± 0.58 35.19 ± 0.17 35.75 ± 0.31
250 41.68 ± 0.29 41.21 ± 0.52 12.51 ± 0.26 12.02 ± 0.05 35.30 ± 0.18 35.57 ± 0.08

H (wt%)

Raw 6.57 ± 0.02 6.57 ± 0.02 3.96 ± 0.06 3.96 ± 0.06 5.42 ± 0.00 5.42 ± 0.00
190 6.24 ± 0.08 6.46 ± 0.06 2.63 ± 0.16 2.00 ± 0.29 4.92 ± 0.02 4.61 ± 0.03
220 5.95 ± 0.01 5.69 ± 0.02 1.61 ± 0.08 1.37 ± 0.07 4.32 ± 0.01 4.36 ± 0.03
250 5.03 ± 0.05 5.01 ± 0.03 1.65 ± 0.01 1.56 ± 0.02 4.11 ± 0.00 4.05 ± 0.01

N (wt%)

Raw 4.26 ± 0.00 4.26 ± 0.00 3.59 ± 0.10 3.59 ± 0.10 5.81 ± 0.02 5.81 ± 0.02
190 2.23 ± 0.07 2.10 ± 0.07 1.58 ± 0.07 1.07 ± 0.17 4.27 ± 0.06 3.95 ± 0.01
220 1.87 ± 0.24 1.86 ± 0.07 0.80 ± 0.08 0.66 ± 0.01 3.48 ± 0.02 3.45 ± 0.02
250 1.89 ± 0.05 1.99 ± 0.04 0.70 ± 0.00 0.69 ± 0.02 3.16 ± 0.04 3.12 ± 0.02

O (wt%)

Raw 27.61 ± 4.86 27.61 ± 4.86 21.16 ± 0.79 21.16 ± 0.79 23.52 ± 0.52 23.52 ± 0.52
190 28.52 ± 6.69 25.97 ± 4.63 18.43 ± 3.50 15.67 ± 6.89 18.55 ± 0.17 19.33 ± 0.58
220 25.51 ± 6.34 26.43 ± 5.06 12.35 ± 1.03 18.93 ± 1.10 16.53 ± 0.33 15.34 ± 0.49
250 22.47 ± 6.44 21.59 ± 3.83 11.72 ± 2.00 7.17 ± 2.53 14.07 ± 0.44 14.12 ± 2.18
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Table 2. Cont.

Property HTC Temp (◦C) Thickened Sludge Digested Sludge Dewatered Sludge
30 min HTC 60 min HTC 30 min HTC 60 min HTC 30 min HTC 60 min HTC

Proximate Analysis (dry basis)

Fixed Carbon (wt%)

Raw 12.56 ± 1.43 12.56 ± 1.43 4.76 ± 3.78 4.76 ± 3.78 5.90 ± 0.62 5.90 ± 0.62
190 4.25 ± 2.50 4.58 ± 1.75 1.70 ± 0.09 2.06 ± 0.34 5.37 ± 0.23 9.94 ± 6.93
220 5.37 ± 4.00 5.23 ± 3.97 1.26 ± 0.07 0.13 ± 0.01 4.04 ± 2.06 9.83 ± 5.58
250 5.31 ± 5.85 6.12 ± 5.93 0.62 ± 0.05 1.38 ± 0.09 6.27 ± 0.61 7.02 ± 0.03

Volatile Matter (wt%)

Raw 72.48 ± 3.19 72.48 ± 3.19 50.25 ± 3.51 50.25 ± 3.51 65.67 ± 0.50 65.67 ± 0.50
190 70.84 ± 6.65 71.03 ± 5.36 41.09 ± 3.22 30.84 ± 4.20 58.98 ± 0.29 53.02 ± 6.61
220 66.05 ± 5.56 63.57 ± 7.81 26.17 ± 1.59 31.99 ± 0.90 55.48 ± 2.19 49.07 ± 5.72
250 60.06 ± 2.19 56.70 ± 3.95 25.97 ± 1.68 21.65 ± 4.68 50.37 ± 0.39 49.85 ± 2.03

Ash (Inorganic) (wt%)

Raw 14.96 ± 2.31 14.96 ± 2.31 44.99 ± 3.65 44.99 ± 3.65 28.43 ± 0.56 28.43 ± 0.56
190 24.91 ± 4.57 24.40 ± 3.56 57.21 ± 1.61 67.10 ± 2.27 35.66 ± 0.26 37.05 ± 6.77
220 28.58 ± 4.78 31.20 ± 5.89 72.57 ± 0.80 67.88 ± 0.45 40.48 ± 2.13 41.10 ± 5.65
250 34.63 ± 4.02 37.18 ± 4.94 73.42 ± 0.86 76.97 ± 2.34 43.36 ± 0.50 43.14 ± 1.03

Combustion Analysis

HHV (MJ/kg)

Raw 20.50 ± 0.14 20.50 ± 0.14 10.66 ± 1.79 10.66 ± 1.79 16.02 ± 0.09 16.02 ± 0.09
190 19.45 ± 0.64 20.71 ± 0.03 9.27 ± 1.73 7.97 ± 1.77 16.30 ± 0.19 15.96 ± 0.07
220 20.06 ± 0.90 18.72 ± 0.03 8.96 ± 1.77 7.86 ± 0.39 15.70 ± 0.09 15.47 ± 0.37
250 18.66 ± 0.26 19.17 ± 0.61 8.59 ± 1.78 9.37 ± 1.39 15.98 ± 0.11 15.33 ± 0.26
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3.1. Hydrochar Properties Depend on Sludge Withdrawal Point and Carbonization Conditions

Solid hydrochar yields and properties are strongly influenced by both sewage sludge feedstock
and HTC temperature and residence time, as shown in Table 2 (see also Supplementary Materials
Figure S1). In general, as the harshness of carbonization increases, the solid hydrochar yield decreases,
as is the case with biomasses across the literature [53]. The one exception to this general trend was
the digested sludge sample carbonized at 220 ◦C for 30 min, which had a lower solid yield than
its 250 ◦C and 190 ◦C counterparts. This anomaly was observed for multiple experimental runs.
Such behavior could be attributed to potential re-condensing of tarry materials onto the hydrochar
matrix, increasing the observed “solid” yield at 250 ◦C. Such materials were previously identified on
the surface of heterogeneous biomasses that can be maximized at carbonization conditions specific to
each biomass [17]. As the solid hydrochar is collected on a 10–100 µm filter, any particles smaller than
this size range would be considered part of the liquid yield, which may also explain this anomaly.

As a result of the carbonization process, which releases organic compounds from the solid matrix
and forces them into the water phase while generating CO2, the total COD present substantially
decreased upon carbonization (at any time, temperature) of the dewatered sludge sample, with a
similar behavior noted for the thickened and digested samples (the effect on these two samples is less
pronounced given the lower initial concentration in the raw samples) as shown in Table 1 and Figure S2
in Supplementary Materials. Conversely, soluble COD increased with increasing severity, most notably
for the thickened and digested samples, with a significantly higher soluble COD that is maintained
throughout carbonization for the dewatered samples. Such behavior has been described in the literature
for other biomasses, including sludge, secondary sludge, wood waste, and dairy waste [54]. Given
the nature of the carbonization process, where water acts as both a solvent and transport medium,
simultaneously drawing organics into the water phase and generating CO2, this COD mass balance
suggests that indeed the insoluble fraction is being converted to CO2 (and lesser amounts of CO and
other non-condensable gases) while the soluble portion is retained in the process water.

The decrease in hydrochar pH for increasingly severe carbonization of the thickened sludge is
to be expected; Volatile Fatty Acids (VFAs) present in primary sludge and formed via hydrolysis of
triacylglycerols [55], especially acetic acid, are known to remain stable in the liquid phase, only breaking
down at higher carbonization temperatures [54]. It was found here that the pH for the thickened
sludge dropped from 7.2 (raw) to 6.0 for both the 190 ◦C and 220 ◦C conditions and to 5.8 for the
250 ◦C condition of the 30 min HTC samples and to 5.3, 6.1, and 6.0 for the 190 ◦C, 220 ◦C, and 250 ◦C
60 min samples, respectively (Table 1; plotted in Figure S3 in Supplementary Materials). This suggests
that carbonization is able to release some VFAs from the primary matrix, but that the overall acidic
nature of the hydrochar increases slightly. It should be noted that these measurements were taken in
the same manner used to measure biochar pH, by equilibrating the hydrochar with deionized water
and reading the pH of the liquid following settling. Anecdotally, when the pH of the process water is
measured immediately following carbonization, the pH increases slightly upon severe carbonization,
which would indicate hydrolysis of released VFAs occurs in the process water. For the digested
samples, carbonization at 250 ◦C yields hydrochars with slightly higher pH than their 190 ◦C and
220 ◦C counterparts, suggesting a reduced acid content of the char. For the dewatered secondary
sludge, the pH decreases with increasing carbonization but is overall lowest to begin with, suggesting
that the acid content decreased during anaerobic digestion.

The proposed loss of semi-volatile compounds from the sludge matrices upon carbonization is
further supported by the proximate analysis (Figure 2; Table 2; data of Table 2 plotted in Figure S4 in
Supplementary Materials). The sludge treatment of WWTP results in a decrease in fixed carbon and
volatile matter content upon digestion, with a slight increase in both upon dewatering. Changes in
proximate analysis as a function of carbonization conditions versus the raw sludge withdrawn at each
point are given in Figure 2. Figure 2 reports the percentage change in value of the various variables
(FC, VM, Ash, all data on a dry basis) due to HTC, in respect to the raw biomasses. As compared
to the raw sludge sample from each withdrawal point, the volatile matter content decreased with
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increasingly harsh carbonization. The fixed carbon content also decreases upon HTC, shifting the
balance of the hydrochar composition to the inorganic (loosely termed “ash” phase). The change
in proximate analysis appears to be more heavily temperature dependent than time dependent for
the thickened samples. In this case, the ash content increased by 50 wt%, 100 wt%, and 150 wt%
over the raw thickened sample as the carbonization temperature increased from 190 ◦C to 220 ◦C to
250 ◦C, respectively. This increase in inorganic content is offset more so by decreases in fixed carbon
than volatile matter. For the digested samples, the increase in ash content—ranging from 25 wt% to
50 wt% as temperature increases—is offset by decreases in both VM and FC, with a slightly higher
decrease in FC than VM across HTC conditions. The behavior of the dewatered samples is somewhat
different. While for HTC at 30 min there is a slight increase in ash (especially at 220 ◦C and 250 ◦C
carbonization), the 220 ◦C 30 min sample is offset more by changes in FC, whereas the 250 ◦C 60 min
sample’s higher ash content is due to a decrease in VM. The dewatered 60 min HTC samples show
even further divergent behavior; for all temperatures, the FC and ash contents increase, offset by
a decrease in VM content. For the 190 ◦C and 220 ◦C samples, the change in FC weight percent is
actually greater than that of the ash, whereas the 250 ◦C sample has a larger increase in ash than fixed
carbon. This is likely due to the preparation of the samples. Both thickened and digested samples were
used as received. The dewatered samples had too low of a moisture content to ensure all solids were
submerged in the reactor, such that deionized water was added to the samples prior to carbonization.
It is possible that some of the inorganics migrated into the water phase (to establish a concentration
equilibrium), and thus, the relative change in ash content was lower for these samples.
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Figure 2. Changes in volatile matter, fixed carbon, and ash composition as a result of hydrothermal
carbonization: (a) Thickened sludge, 30 min of Hydrothermal Carbonization (HTC); (b) Thickened
sludge, 60 min HTC; (c) Digested sludge, 30 min HTC; (d) Digested sludge, 60 min HTC; (e) Dewatered
sludge, 30 min HTC—note 190 ◦C Fixed Carbon (FC) and Volatile Matter (VM) data points overlap; (f)
Dewatered sludge, 60 min HTC.

This behavior is echoed by the ultimate analysis, whereby HTC temperature has a greater impact
on organic element composition than time (Figure 3; Figure 4; Table 2; data of Table 2 plotted in Figure S5
in Supplementary Materials). As expected, the biological transformations of the primary sludge lead
to overall lower oxygen and carbon contents of the raw digested and dewatered samples [56]. Figure 3
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reports the percentage change in content of atomic species C, H, N, and O (all data on a dry basis)
due to HTC, in respect to the raw biomasses. As shown in Figure 3, in general the weight percent of
the organic elements decrease upon carbonization of the sludge samples, the balance made up by an
increasing (relative) inorganic content. The elemental carbon contents for the thickened 190 ◦C 30 min
and 60 min and all dewatered samples remain constant within statistical significance. Interestingly,
the relative percent changes of C, H, and O were fairly minimal for the thickened sludge carbonized at
190 ◦C and 220 ◦C, suggesting minimal decarboxylation and dehydration, both of which would lower
the O:C and H:C ratios, respectively [57]. However, this is not to imply a stagnant system; for the
thickened (and indeed all sludge samples) the nitrogen content of the solids decreases considerably
upon even mild carbonization, ranging from hydrochars with 40 wt% to those with 80 wt% lower N
content than their raw counterparts (Figure 3). This loss of nitrogen supports the hypothesis that there
is significant hydrolysis of fat and protein components present in the sludge. The organic nitrogen in
the process liquid tends to decrease by 15–85 wt% upon carbonization of all samples. The ammonia
nitrogen present in the liquid varies in a certain range, without any clear trend with time or temperature,
as shown in Table 1. Given the substantial elemental decrease in N of the hydrochar, and liquid-phase
organic nitrogen upon carbonization, closure of a mass balance would suggest either production of
nitrogen gases (N2, NOx) or formation of nitrate or nitrite in the liquid phase, which could precipitate
out as salts onto the hydrochar. As reported by Kruse and co-workers, this concentration would be too
low to detect with N content measurements [58].
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60 min HTC; (e) Dewatered sludge, 30 min HTC; (f) Dewatered sludge, 60 min HTC.



Energies 2020, 13, 2890 12 of 22

Energies 2020, 13, x FOR PEER REVIEW 13 of 22 

 

 110 
Figure 4. Van Krevelen diagram of raw and hydrothermally carbonized sludge samples with: (a) all 111 
samples; (b) thickened sludge; (c) dewatered sludge; (d) digested sludge. 112 

The carbon and fixed carbon values reported in Table 2 and the trends of the same variables 113 
shown in Figures 2 and 3 testify to the peculiarity of these kinds of substrates which behave 114 
differently during HTC in respect to the vast majority of the other biomasses. While HTC applied to 115 
agro-waste, lignocellulosic feedstock, organic fraction of municipal solid waste, or compost 116 
[20,45,53,59,60] results in an increase in the values of C and FC, this is not the case for the majority of 117 
the sludge samples here investigated. The FC content decreases after HTC for thickened and digested 118 
sludges (Figure 2). The C content in the hydrochars is equal to or lower than C content in the raw 119 
sludges (Figure 3). This apparently strange behavior depends on the very high ash content of the 120 
sludge samples and was also previously reported in the literature [31,57,61]: in all these cases, the C 121 
and FC contents were expressed on a dry basis. Reverse C and FC trends were reported when the 122 
data was expressed on a dry ash free (daf) basis [23]. Here, on a daf basis, thickened and dewatered 123 
sludge increase their C content after HTC, and this applies to the digestate treated at the highest HTC 124 
temperature of 250 °C, too; FC data, conversely, even on a daf basis, remain still lower in the 125 
hydrochars in respect to the parent biomasses. To summarize, the organics in the sludge carbonized 126 
as should be expected in an HTC process: the increase in C content is evident when the basis of 127 
calculation is represented by the organics themselves (i.e., data on a daf basis), and the HTC was 128 
sufficiently severe. On a dry basis, conversely, the relative increase in ash content often prevails over 129 
the relative increase in C, as recently also discussed by Ferrentino et al. [62].  130 

3.2. Distribution of Nutrients and Inorganics: Potential for Use as Soil Amendment  131 
As shown in Table 1, the total phosphorous concentrated in the solid hydrochar (all 132 

samples/processing conditions) from 5 wt% in the raw samples to up to 10 wt% in the carbonized 133 
samples, with the thickened and dewatered 250 °C 30 min and 60 min samples having the highest 134 
amounts. The thickened sludge (all times/temperatures) showed lower organic nitrogen 135 
concentrations in the liquid phase, suggesting it remains in the solid phase or exits as a gas, as 136 
mentioned previously. This, coupled with the higher FC and VM contents of the thickened and 137 
dewatered hydrochars, suggests they would make better soil amendments than the digested sludge 138 
hydrochars [63–65]. 139 

Figure 4. Van Krevelen diagram of raw and hydrothermally carbonized sludge samples with:
(a) all samples; (b) thickened sludge; (c) dewatered sludge; (d) digested sludge.

The carbon and fixed carbon values reported in Table 2 and the trends of the same variables
shown in Figures 2 and 3 testify to the peculiarity of these kinds of substrates which behave differently
during HTC in respect to the vast majority of the other biomasses. While HTC applied to agro-waste,
lignocellulosic feedstock, organic fraction of municipal solid waste, or compost [20,45,53,59,60] results
in an increase in the values of C and FC, this is not the case for the majority of the sludge samples
here investigated. The FC content decreases after HTC for thickened and digested sludges (Figure 2).
The C content in the hydrochars is equal to or lower than C content in the raw sludges (Figure 3).
This apparently strange behavior depends on the very high ash content of the sludge samples and
was also previously reported in the literature [31,57,61]: in all these cases, the C and FC contents were
expressed on a dry basis. Reverse C and FC trends were reported when the data was expressed on a
dry ash free (daf) basis [23]. Here, on a daf basis, thickened and dewatered sludge increase their C
content after HTC, and this applies to the digestate treated at the highest HTC temperature of 250 ◦C,
too; FC data, conversely, even on a daf basis, remain still lower in the hydrochars in respect to the
parent biomasses. To summarize, the organics in the sludge carbonized as should be expected in an
HTC process: the increase in C content is evident when the basis of calculation is represented by the
organics themselves (i.e., data on a daf basis), and the HTC was sufficiently severe. On a dry basis,
conversely, the relative increase in ash content often prevails over the relative increase in C, as recently
also discussed by Ferrentino et al. [62].

3.2. Distribution of Nutrients and Inorganics: Potential for Use as Soil Amendment

As shown in Table 1, the total phosphorous concentrated in the solid hydrochar
(all samples/processing conditions) from 5 wt% in the raw samples to up to 10 wt% in the carbonized
samples, with the thickened and dewatered 250 ◦C 30 min and 60 min samples having the highest
amounts. The thickened sludge (all times/temperatures) showed lower organic nitrogen concentrations
in the liquid phase, suggesting it remains in the solid phase or exits as a gas, as mentioned previously.
This, coupled with the higher FC and VM contents of the thickened and dewatered hydrochars,
suggests they would make better soil amendments than the digested sludge hydrochars [63–65].
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Thermally treated biomasses tend to show enhanced P fertilizer values as a result of various
mechanisms, including structural surface changes and improved association of P to inorganics such
as Mg, Ca, and Al [66]. In the present work, the type of sludge sample had a larger impact on the
retention and concentration of these nutrients than the carbonization conditions. As shown in Figure 5,
the dewatered samples had higher overall Al concentrations—from 4 mgAl/gsludge for the raw sample
as compared to ~ 2 mgAl/gsludge for the thickened and digested raw samples. Carbonization at 220
and 250 ◦C for both 30 min and 60 min doubled all of these concentrations, to 8 mgAl/gsludge for the
carbonized dewatered sample and ~ 4 mgAl/gsludge for the others. Conversely, the digested sludge
had almost twice the concentration of magnesium than the thickened or dewatered samples (which
again almost doubled upon carbonization at 220 ◦C and 250 ◦C). The calcium concentration was quite
similar for all sludge samples at 23, 33, and 28 mgCa/gsludge, for the thickened, digested, and dewatered
raw samples, respectively. Upon carbonization at 250 ◦C for 30 min, the Ca content increased by over
100% for the thickened sample but only by 39% and 43% for the digested and dewatered raw samples,
respectively. While soil incubation studies are beyond the scope of the present work, prior work by
Thomsen and co-workers [66] suggests that the more heavily oxidized hydrochar samples (e.g., those
that released more CO2 and thus had higher gas yield) containing more Mg, Ca, and Al would have
a higher P availability. This corresponds to the digested 250 ◦C 60 min and dewatered 220 ◦C and
250 ◦C for 30 min and 60 min samples. Future work will investigate the degree to which hydrothermal
carbonization plays a role in P plant availability, as well as the impact of HTC processing conditions
itself on the volatilization and re-condensation of P species on the hydrochar surfaces.
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The concentrations of a series of additional inorganic elements in the sludges and hydrochars were
measured. Figure 5 shows a representative set of these elements (all data available in Supplementary
Materials: Tables S1 and S2, Figures S6 and S7). Silver was included in the analysis, given its
increasing prevalence in consumer materials as an incorporated nanomaterial and resulting detection
in wastewater treatment systems [67]. Prior work indicates that silver will more likely accumulate
in the biosolids than in the WWTP effluent [68]. Here, considerably higher levels of silver in the
digested sludge are found as compared to the thickened or dewatered sludge, suggesting that the
digestion indeed concentrates the silver in the biosolid, but that the dewatering process shifts the
silver to the liquid phase. The silver concentration in the digested hydrochar decreases with increasing
carbonization. Both of these indicate that the silver is in an easily mobile state in the digested sludge,
equilibrating with its aqueous phase to lower solid concentration.

Arsenic and vanadium were included in this analysis given their high prevalence in Italian
drinking water sources; the acceptable limit for arsenic in the Trentino-Alto Adige region increases
to 50 µg L−1 over the nationwide 10 µg L−1 limit due to natural lithology [69]. As seen in Figure 5,
the arsenic concentrations in the solid samples decreased with increasing harshness for the thickened
and digested samples (with the exception of the 190 ◦C and 250 ◦C, 60 min digested samples). All other
hydrochars had arsenic concentrations below 2 µg g−1. The International Biochar Initiative (IBI) [70]
suggests an acceptable range for As in biochars of between 13 and 100 µg g−1 if they are to be applied
as a soil amendment.

In Sicily, concentrations of V in drinking water sources are routinely above E.U. and U.S. maximum
contaminant levels (MCLs) due to the underlying geology [71–73]. As such, it is important to ensure
that concentrations of these metals were below MCLs before considering the potential for hydrochars to
be land-applied, which could exacerbate the metal contamination issue. The vanadium concentration
was slightly increased upon carbonization, but never exceeded 10 µgg−1; the MCL for drinking water
in Italy is 50 µgL−1. V is known to co-precipitate with iron (III) [74]; while the oxidation states
are not known here, the concentrations of iron in all solids exceeded 2 mgg−1 (therefore higher by
several orders of magnitude), such that it is possible that V is present in the hydrochars in an iron
(hydr)oxide precipitate.

As shown in Figure 5, the concentrations of chromium, cobalt, nickel, molybdenum, and lead
(and a series of additional inorganics, as given in SI) are only modestly affected by carbonization and
sludge withdrawal point. The cobalt concentration of the digested sludge was notably higher than
the thickened or dewatered, but upon carbonization reached the same levels as the other samples of
hydrochars, all at less than 3 µgg−1. The concentrations of all of these metals are below IBI maximum
allowable thresholds [70], making them reasonable candidates for use as soil amendments on the basis
of heavy metal content.

3.3. Energy Content and Oxidative Reactivity: Potential for Use as Solid Fuel

As Table 2 shows, the solid hydrochars have similar higher heating values to their raw counterparts.
In this case, HTC has not substantially improved the “energy density” of the solid fuel. However,
HTC does enable a more efficient solid–liquid separation and dewaterability. For the raw dewatered
sludge, CST was not complete after 60 min, while it was complete for the 190 ◦C 60 min hydrochar
after only 380 s. With an increase in HTC temperature, CST was 209 and 90 s at 220 ◦C and 250 ◦C
(60 min), respectively. Images of the CST trials are available in Supplementary Materials Figure S8.
This improved dewaterability demonstrates a reduction of volume for transport of the solid waste and
reduced moisture content for potential combustion applications.

Figure 6 plots the DTG curves of the hydrochar samples produced at each of the three carbonization
temperatures at 30 min, alongside an Illinois No. 6 coal sample. As can be seen, the hydrochar
sludge samples are considerably more reactive than the coal sample. Their peak DTG temperatures
(highest conversion rates) occur at hundreds of degrees less than the coal sample and at higher
conversion rates. The highest peak mass loss rates occur for all three hydrochars produced from
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the thickened sludge, prior to any anaerobic digestion. Post-digestion, while the shape of the DTG
curves changes, the peak rates are quite similar for both the thickened and dewatered sludge. For all
three samples, the 190 ◦C carbonized hydrochars display the highest reactivity compared to the other
HTC temperatures. Especially at such mild conditions, HTC does not significantly carbonize the
sample—oftentimes, the original materials microstructure is preserved, whereas higher temperatures
lead to a more complete destruction of the carbon matrix [53,75].
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Given the relatively high reactivity of any of the sludge hydrochars, it may be difficult to combust
them for electricity generation in current boilers designed for solid fuels such as coal [76]. While the
higher heating values of especially thickened sludge (18–21 MJ kg−1) are suitable for such combustion
schemes, their lower ignition and peak reactivity temperatures are considerably lower than that of
most bituminous coals, and therefore may lead to loss of efficiency in boilers [77]. That, combined with
the higher ash content that could result in slagging and fouling, suggests that the sludge hydrochars
may perform better in co-combustion scenarios [78].

It was previously shown that blending biofuels with similar characteristics at ratios less than 20 wt%
with coal mitigates fuel segregation and efficiency loss issues while increasing the share of renewables
in energy generation portfolios [48,49,76]. Recent work in the literature suggests that hydrochars can
be co-combusted with a variety of coals in economically, environmentally, and energetically viable
schemes in existing infrastructure [79–81] and may even improve the emissions profile at optimized
blending ratios [82]. It was recently demonstrated that hydrochars with similar reactivities can be
oxidized with Illinois No. 6 coal at ratios of 10 wt% hydrochar, balance coal, without causing significant
fuel segregation [83]. In summation, the high reactivity and ash content (though high HHV) of the
thickened and dewatered hydrochars temper enthusiasm for their use as a combustible fuel. The low
HHV of the digested sludge—below low-rank coals—makes it difficult to envision a combustion
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scenario where this would be a valuable solid fuel. As such, the potential for using sludge-based
hydrochars as a drop-in solid fuel is likely minimal, though this could be accomplished without the
need for anaerobic digestion of the sludge if used in a co-fired fuel scenario.

3.4. Further Considerations

This work examined the impact of WWTP withdrawal point and hydrothermal carbonization
conditions on resulting hydrochar properties. Table S3 in Supplementary Materials provides a summary
of the overall results discussed. While there is considerable potential to use HTC to convert sewage
sludge to renewable fuels and/or use the hydrochars for nutrient recovery redistribution, several
questions about the feasibility of implementing such a process remain unanswered.

One question is what to do with the process water remaining after treatment, which contains
unreacted feedstock and/or chemical intermediates that are potentially hazardous [84]. While this
is beyond the scope of the present work, others have previously demonstrated several potential
management options. Process liquors remaining after hydrothermal treatments have been shown to
be suitable feedstocks for aerobic, anoxic, and anaerobic processes [85–87]. The experimental data
of the present investigation testify that RBCOD (readily biodegradable COD) for HTC performed
at 190 ◦C reached values above 85% of total COD, while increasing the temperature led to values
below 15 % at 250 ◦C. While wet air oxidation liquors have shown some inhibitory behaviors for
strictly anaerobic treatments [86], this has not been the case for some studies of HTC liquors [87,88],
although others suggest methanogenesis inhibition at high inoculum concentrations (>25 gCODL−1) [89].
As demonstrated by Qiao and co-workers [90], HTC process water may actually increase the efficiency
of the solid hydrolysis step, a rate-limiting step in the digestion process [91,92], and enhance methane
production in the digester [93]. The use of nitrates as oxidants can catalyze COD and dissolved organic
carbon removal [94], and, as it was recently demonstrated, hydrochars themselves can be used to
enhance anaerobic digestion [95].

Second, the fate of some heavy metals during HTC, especially Cu and Cr, may complicate the
use of these materials as a soil amendment, as successive WWT and carbonization concentrates them
within the hydrochar. While it was not found here that heavy metal concentrations were above
recommended IBI limits in the hydrochars, the concentrations of heavy metals in wastewater solids
and effluents vary widely across the globe and can pose health risks in certain areas [96]. To address
this potential concern, Shi and co-workers [97] demonstrated that Cd in sludge hydrochars can be
immobilized by the synergistic nature of apatite P present in the chars and addition of hydroxyapatite.
However, as both acid and alkaline leaching have been shown to dissolve phosphate in sludges and
sludge ashes [98], the long-term stability of the Cd immobilized by the method of hydroxyapatite
addition is not clear. Prior work by Yoshizaki and Tomida [99] demonstrated that such heavy metals
could be removed by phosphoric acid and hydrogen peroxide for downstream reuse and recovery.
Their method had enhanced recovery and was more environmentally and economically viable than
treatment with hydrochloric acid or sulfuric acid, opening a potential pathway for extraction of the
metals from hydrochars. Such treatment would likely act as a porogen to increase the surface area of
the hydrochars [100], increasing their ability to retain water and slow-release nutrients when used as
a solid amendment [101], and may open up possibilities for conversion of the materials to activated
carbons for use in water treatment, battery electrodes, and other high-value materials [102–105].

4. Conclusions

The present study probed the impact of hydrothermal processing conditions and sewage sludge
withdrawal point on resulting hydrochars. The hydrothermal carbonization (HTC) of sludge proceeds
similarly to many other wet biomasses; as harshness (time and temperature) of the process increases,
the solid yield decreases, the ash (inorganic) content increases, total COD decreases but soluble COD
increases, and solid pH decreases. However, there are distinct differences between the hydrochars
produced from primary (thickened) versus secondary (digested and dewatered) sludge. Thickened
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sludge carbonized at moderate conditions (220 ◦C, 30 min) produced the most viable solid fuel with
the highest HHV, moderate ash content, and high volatile matter content. However, with O:C and
H:C ratios higher than typical bituminous coals of similar heating content, the thermal reactivity of
the hydrochar was significantly higher than coals typically combusted. This suggests that sludge
hydrochars could be co-fired with coal but are not ideal solid fuels. On the other hand, hydrochars
produced from secondary sludge are more viable as potential soil amendments. The carbonized
digested sludges show relatively neutral pH, low COD, and enhanced phosphorous, along with
enhanced Ca, Mg, and Al concentrations to help mobilize P. Their heavy metal composition is well
below International Biochar Initiative standards, though the elemental oxygen content and lower
volatile matter content warrant future inquiry into this pathway.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/11/2890/s1,
Figure S1: Product distribution among solid, gas and liquid (by difference) phases following hydrothermal
carbonization of three sludge samples, Figure S2: Impact of hydrothermal carbonization on total COD (top)
and soluble COD (bottom) of three sludge samples, Figure S3: pH of raw and hydrothermally carbonized
sludge samples, Figure S4: Proximate analysis of hydrothermally carbonized sludge samples with black circles
indicating fixed carbon, red squares are volatile matter, and blue plus symbols are ash content (a: Thickened
sludge, 30 min HTC; b: Thickened sludge, 60 min HTC; c: Digested sludge, 30 min HTC; d: Digested sludge,
60 min HTC; e: Dewatered sludge, 30 min HTC; f: Dewatered sludge, 60 min HTC), Figure S5: Ultimate analysis
of hydrothermally carbonized sludge samples, Figure S6: Inorganic element distribution in raw sludge samples
with: a high concentrations and b: low concentrations; error bars indicate 95% confidence interval, FigureS7:
Inorganic elements as a function of sludge sample and carbonization conditions, Figure S8: Visual evidence of
hydrochar dewaterability, Table S1: ICP-OES analysis of inorganics present in three sludge feedstocks, Table S2:
ICP-OES analysis of inorganics present in hydrothermally carbonized sludge samples, Table S3: Summary of
observations of sludge hydrochars.
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