Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hydroperoxyl radical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 5018 KB  
Review
Essential Oils as Antioxidants: Mechanistic Insights from Radical Scavenging to Redox Signaling
by Yeqin Huang, Haniyeh Ebrahimi, Elena Berselli, Mario C. Foti and Riccardo Amorati
Antioxidants 2026, 15(1), 37; https://doi.org/10.3390/antiox15010037 - 26 Dec 2025
Cited by 1 | Viewed by 823
Abstract
Essential oils (EOs) are complex volatile mixtures that exhibit antioxidant activity through both chemical and biological pathways. Phenolic constituents act as efficient chain-breaking radical-trapping antioxidants, whereas some non-phenolic terpenes operate through distinct mechanisms. Notably, γ-terpinene functions via a “radical export” pathway, generating hydroperoxyl [...] Read more.
Essential oils (EOs) are complex volatile mixtures that exhibit antioxidant activity through both chemical and biological pathways. Phenolic constituents act as efficient chain-breaking radical-trapping antioxidants, whereas some non-phenolic terpenes operate through distinct mechanisms. Notably, γ-terpinene functions via a “radical export” pathway, generating hydroperoxyl radicals that intercept lipid peroxyl radicals and accelerate chain termination. Recent methodological advances, such as inhibited autoxidation kinetics, oxygen-consumption assays, and fluorescence-based lipid peroxidation probes, have enabled more quantitative evaluation of these activities. Beyond direct radical chemistry, EOs also regulate redox homeostasis by modulating signaling networks such as Nrf2/Keap1, thereby activating antioxidant response element–driven enzymatic defenses in cell and animal models. Phenolic constituents and electrophilic compounds bearing an α,β-unsaturated carbonyl structure may directly activate Nrf2 by modifying Keap1 cysteine residues, whereas non-phenolic terpenes likely depend on oxidative metabolism to form active electrophilic species. Despite broad evidence of antioxidant efficacy, molecular characterization of EO–protein interactions remains limited. This review integrates radical-chain dynamics with redox signaling biology to clarify the mechanistic basis of EO antioxidant activity and to provide a framework for future research. Full article
(This article belongs to the Special Issue Antioxidant Potential of Essential Oils)
Show Figures

Figure 1

27 pages, 4949 KB  
Article
Mechanistic Evaluation of Radical Scavenging Pathways in Ginger Phenolics: A DFT Study of 6-Gingerol, 6-Shogaol, and 6-Paradol
by Hassane Lgaz, Mouslim Messali and Han-seung Lee
Int. J. Mol. Sci. 2025, 26(22), 11217; https://doi.org/10.3390/ijms262211217 - 20 Nov 2025
Viewed by 683
Abstract
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using [...] Read more.
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using density functional theory (DFT) thermochemistry at the M06-2X/6-31+G(d,p) level in the gas phase, benzene, and water. Three canonical pathways—hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET–PT), and sequential proton loss–electron transfer (SPLET)—were evaluated through full optimization and frequency calculations at 298.15 K, combined with the SMD solvation model. Frontier molecular orbital (FMO), molecular electrostatic potential (MEP), and quantum theory of atoms in molecules (QTAIM) analyses were employed to correlate electronic structure with reactivity. The results reveal a distinct solvent-dependent mechanistic crossover. In the gas phase and benzene, the low dielectric constant suppresses charge separation, making HAT the thermodynamically dominant pathway. In water, strong stabilization of ionic species lowers both the ionization and deprotonation barriers, allowing SPLET and SET–PT to become competitive or even preferred. Across all media, the phenolic O–H group is the principal reactive site, while the aliphatic O–H of GIN remains inactive. SHO exhibits the most versatile redox profile, combining a highly conjugated α,β-unsaturated chain with favorable charge delocalization; PAR is somewhat less redox-active, while GIN shows intermediate performance governed by intramolecular hydrogen bonding. The assembled thermodynamics for HOO• scavenging confirm that all three phenolics are thermodynamically competent antioxidants (ΔG° ≈ −4 kcal mol−1 in water), with comparable driving forces; electronic descriptors indicate SHO is the most redox-flexible, GIN(phenolic) is moderately and PAR is somewhat less charge-transfer-prone, while GIN(aliphatic) remains inactive. These findings provide a comprehensive structure-to-mechanism correlation for ginger phenolics and establish a predictive framework for solvent-controlled antioxidant behavior in phenolic systems. Full article
Show Figures

Figure 1

20 pages, 1046 KB  
Article
Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation
by Irina Ivanova and Igor Piskarev
Molecules 2025, 30(20), 4046; https://doi.org/10.3390/molecules30204046 - 10 Oct 2025
Viewed by 744
Abstract
The fluorescence of aqueous solutions of the aromatic amino acids tryptophan, tyrosine, and phenylalanine, an albumin solution, and a mixture of water-soluble animal and plant proteins is investigated after treatment with hydroxyl and hydroperoxyl radicals and continuous UV-C radiation at λ = 253.7 [...] Read more.
The fluorescence of aqueous solutions of the aromatic amino acids tryptophan, tyrosine, and phenylalanine, an albumin solution, and a mixture of water-soluble animal and plant proteins is investigated after treatment with hydroxyl and hydroperoxyl radicals and continuous UV-C radiation at λ = 253.7 nm. The use of independent sources of active species allows for the study of activation and the development of free radical processes in model objects. The analysis is based on Stern–Volmer coefficients for the quenching of the fluorescence of the initial substrates and the ignition of the fluorescence of newly formed products. In the reaction with hydroxyl radicals, the hydrogen atom could be abstracted from any position in the target molecule. Under continuous UV-C radiation, the protein molecule as a whole was excited. Full article
Show Figures

Figure 1

10 pages, 746 KB  
Article
Are Algae a Good Source of Antioxidants? Mechanistic Insights into Antiradical Activity of Eckol
by Maciej Spiegel
Int. J. Mol. Sci. 2025, 26(18), 9223; https://doi.org/10.3390/ijms26189223 - 21 Sep 2025
Viewed by 726
Abstract
Eckol (Eck), a polyphenolic compound of marine origin, exhibits strong scavenging activity against hydroperoxyl radicals. This study explores its acid-base speciation in aqueous media and evaluates its antioxidant potential through electronic, thermochemical, and kinetic analyses under biologically relevant conditions. The deprotonated [...] Read more.
Eckol (Eck), a polyphenolic compound of marine origin, exhibits strong scavenging activity against hydroperoxyl radicals. This study explores its acid-base speciation in aqueous media and evaluates its antioxidant potential through electronic, thermochemical, and kinetic analyses under biologically relevant conditions. The deprotonated species of Eck display exceptionally high rate constants for hydrogen atom transfer, indicating a potent antiradical mechanism. The apparent rate constant, accounting for species distribution at physiological pH and the molar fraction of OOH, was calculated as 1.09 × 107 M−1·s−1. Compared to related compounds, Eck demonstrates outstanding hydroperoxyl radical-scavenging capacity, supporting its potential as a natural antioxidant in biological systems. Full article
Show Figures

Figure 1

28 pages, 5779 KB  
Article
Theoretical Insight into Antioxidant Mechanisms of Trans-Isoferulic Acid in Aqueous Medium at Different pH
by Agnieszka Kowalska-Baron
Int. J. Mol. Sci. 2025, 26(12), 5615; https://doi.org/10.3390/ijms26125615 - 11 Jun 2025
Cited by 1 | Viewed by 1290
Abstract
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for [...] Read more.
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for the three major pathways: hydrogen transfer (HT), radical adduct formation (RAF), and single electron transfer (SET). The results indicate that, at physiological pH, the RAF mechanism is both more exergonic and approximately eight-times faster than HT. At a higher pH, where the phenolate anion dominates, antioxidant activity is enhanced by an additional fast, diffusion-limited SET pathway. Isoferulic acid was also found to effectively chelate Fe2+ ions at pH 7.4 and above, forming stable complexes that could inhibit Fenton-type hydroxyl radical generation. Moreover, its strong UV absorption suggests a role in limiting photo-induced free radical formation. These findings not only clarify the antioxidant behavior of isoferulic acid but also provide novel theoretical insights applicable to related phenolic compounds. The compound’s multi-target antioxidant profile highlights its potential as a photoprotective agent in sunscreen formulations. Full article
(This article belongs to the Special Issue New Advances of Free-Radical Reactions in Organic Chemistry)
Show Figures

Graphical abstract

13 pages, 1409 KB  
Article
Comparison of the Chemical Composition of the Middle Atmosphere During Energetic Particle Precipitation in January 2005 and 2012
by Grigoriy Doronin, Irina Mironova and Eugene Rozanov
Atmosphere 2025, 16(5), 506; https://doi.org/10.3390/atmos16050506 - 27 Apr 2025
Viewed by 1022
Abstract
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. [...] Read more.
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. We utilize mesospheric observations of HO2, HNO3, and ozone from the Microwave Limb Sounder (MLS/Aura). During the second half of January 2005 and 2012, the GOES satellite identified strong solar proton events with virtually the same proton flux parameters. Geomagnetic disturbances in January of 2005 were stronger, with Dst decreasing up to 100 nT compared to January 2012 while the Dst drop did not exceed 70 nT. Comparison of observations made with the MLS/Aura shows the highest change of HO2 and HNO3 concentrations and also the deepest ozone destruction at the latitudinal range from 60 NH to 80 NH inside the north polar vortex right after the spike in energetic particle flux registered by GOES satellites. MLS/Aura observations show HNO3 maximum enhancements of about 1.90 ppb and 1.66 ppb around 0.5 hPa (about 55 km) in January 2005 and January 2012, respectively. The HOx increases lead to short-term ozone destruction in the mesosphere, which is seen in MLS/Aura ozone data. The maximum HO2 enhancement is about 1.05 ppb and 1.62 ppb around 0.046 hPa (about 70 km) after the onset of EPP in the second half of January 2005 and January 2012, respectively. Ozone maximum depletion is observed around 0.02 hPa (about 75 km). Ozone recovery after EPP was much faster in January 2005 than in January 2012. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

11 pages, 1982 KB  
Article
Hydroperoxyl Radical Scavenging Activity of Bromophenols from Marine Red Alga Polysiphonia urceolata: Mechanistic Insights, Kinetic Analysis, and Influence of Physiological Media
by Houssem Boulebd
Molecules 2025, 30(8), 1697; https://doi.org/10.3390/molecules30081697 - 10 Apr 2025
Viewed by 782
Abstract
Bromophenols (BPs), particularly those derived from marine sources, are known for their potent radical scavenging activity, effectively neutralizing reactive oxygen species (ROS). However, their exact mechanism of action remains largely unexplored, limiting our understanding of their potential as natural antioxidants. In this study, [...] Read more.
Bromophenols (BPs), particularly those derived from marine sources, are known for their potent radical scavenging activity, effectively neutralizing reactive oxygen species (ROS). However, their exact mechanism of action remains largely unexplored, limiting our understanding of their potential as natural antioxidants. In this study, the antiradical mechanisms of two BP derivatives (1 and 2), previously isolated from the marine red alga Polysiphonia urceolata, were systematically investigated using thermodynamic and kinetic calculations. Both compounds demonstrated potent hydroperoxyl radical (HOO) scavenging activity in polar and lipid environments, with rate constants surpassing those of the well-known antioxidant standards Trolox and BHT. In lipid media, BP 2 exhibited approximately 600-fold greater activity than BP 1, with rate constants of 9.75 × 105 and 1.64 × 103 M−1 s−1, respectively. In contrast, both BPs showed comparable activity in aqueous media, with rate constants of 3.46 × 108 and 9.67 × 108 M−1 s−1 for 1 and 2, respectively. Mechanistic analysis revealed that formal hydrogen atom transfer (f-HAT) is the predominant pathway for radical scavenging in both lipid and polar environments. These findings provide critical insights into the antiradical mechanisms of natural BPs and underscore the potential of BP 1 and BP 2 as highly effective hydroperoxyl radical scavengers under physiological conditions. Full article
Show Figures

Figure 1

25 pages, 5977 KB  
Article
Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde
by Ana Amić, Denisa Mastiľák Cagardová and Žiko Milanović
Int. J. Mol. Sci. 2025, 26(1), 404; https://doi.org/10.3390/ijms26010404 - 5 Jan 2025
Cited by 12 | Viewed by 2086
Abstract
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, H2C=CHOO) involved [...] Read more.
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, H2C=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered. The repairing potency of PCA was investigated for damaged tryptophan, cysteine, leucine, DNA base guanine and linolenic acid. The thermodynamics and kinetics of the single electron transfer (SET) and formal hydrogen atom transfer (fHAT) mechanisms underlying the studied processes were investigated under physiological conditions in aqueous and lipid environments using the SMD/M06-2X/6-311++G(d,p) level of theory. Sequestration of catalytic Fe2+ and Fe3+ ions by PCA, which prevents HO production via Fenton-like reactions, was modeled. Molecular docking was used to study the inhibitory capability of PCA against xanthine oxidase (XO), one of the enzymes producing reactive oxygen species. The attained results show that PCA has the capability to scavenge lipid peroxyl radicals, repair damaged tryptophan, leucine and guanine, chelate catalytic iron ions and inhibit XO. Thus, PCA could be considered a possible multifunctional antioxidant. Full article
Show Figures

Graphical abstract

25 pages, 6627 KB  
Article
Theoretical Insight into Antioxidant Mechanism of Caffeic Acid Against Hydroperoxyl Radicals in Aqueous Medium at Different pH-Thermodynamic and Kinetic Aspects
by Agnieszka Kowalska-Baron
Int. J. Mol. Sci. 2024, 25(23), 12753; https://doi.org/10.3390/ijms252312753 - 27 Nov 2024
Cited by 7 | Viewed by 2463
Abstract
In this study, the DFT/M062X/PCM method was applied to investigate thermodynamic and kinetic aspects of reactions involved in possible mechanisms of antioxidant activity of caffeic acid against HOO radicals in aqueous medium at different pH values. Kinetic parameters of the reactions involved [...] Read more.
In this study, the DFT/M062X/PCM method was applied to investigate thermodynamic and kinetic aspects of reactions involved in possible mechanisms of antioxidant activity of caffeic acid against HOO radicals in aqueous medium at different pH values. Kinetic parameters of the reactions involved in HAT (Hydrogen Atom Transfer), RAF (Radical Adduct Formation), and SET (Single Electron Transfer) mechanisms, including reaction energy barriers and bimolecular rate constants, were determined, and identification and characterization of stationary points along the reaction pathways within HAT and RAF mechanisms were performed. Inspection of geometrical parameters and spin densities of the radical products formed within HAT and RAF mechanisms revealed that they are stabilized by hydrogen bonding interactions and the odd electron originated through the reaction with the HOO radical is spread over the entire molecule, resulting in significant radical stabilization. Thermodynamic and kinetic data collected in this study indicated that increasing pH of the medium boosts the antioxidant activity of caffeic acid by reducing the energy required to generate radicals within the RAF and/or HAT mechanism and, at extremely high pH, where the trianionic form of caffeic acid is a dominant species, by the occurrence of an additional fast, diffusion-limited electron-related channel. Full article
(This article belongs to the Special Issue DFT Applications in Molecular Biology and Biophysics)
Show Figures

Figure 1

14 pages, 5033 KB  
Article
Black Carbon Radiative Impacts on Surface Atmospheric Oxidants in China with WRF-Chem Simulation
by Wei Dai, Keqiang Cheng, Xiangpeng Huang and Mingjie Xie
Atmosphere 2024, 15(10), 1255; https://doi.org/10.3390/atmos15101255 - 21 Oct 2024
Viewed by 1668
Abstract
Black carbon (BC) changes the radiative flux in the atmosphere by absorbing solar radiation, influencing photochemistry in the troposphere. To evaluate the seasonal direct radiative effects (DREs) of BC and its influence on surface atmospheric oxidants in China, the WRF-Chem model was utilized [...] Read more.
Black carbon (BC) changes the radiative flux in the atmosphere by absorbing solar radiation, influencing photochemistry in the troposphere. To evaluate the seasonal direct radiative effects (DREs) of BC and its influence on surface atmospheric oxidants in China, the WRF-Chem model was utilized in this study. The simulation results suggested that the average annual mean values of the clear-sky DREs of BC at the top of the atmosphere, in the atmosphere and at the surface over China are +2.61, +6.27 and −3.66 W m−2, respectively. Corresponding to the seasonal variations of BC concentrations, the relative changes of the mean surface photolysis rates (J[O1D], J[NO2] and J[HCHO]) in the four seasons range between −3.47% and −6.18% after turning off the BC absorption, which further leads to relative changes from −4.27% to −6.82%, −2.14% to −4.40% and −0.47% to −2.73% in hydroxyl (OH) radicals, hydroperoxyl (HO2) radicals and ozone (O3), respectively. However, different from the relative changes, the absolute changes in OH and HO2 radicals and O3 after turning off BC absorption show discrepancies among the different seasons. In the North China Plain (NCP) region, O3 concentration decreases by 1.79 ppb in the summer, which is higher than the magnitudes of 0.24–0.88 ppb in the other seasons. In southern China, the concentrations of OH and HO2 radicals reach the maximum decreases in the spring and autumn, followed by those in the summer and winter, which is due to the enhancement of solar radiation and the summer monsoon. Thus, BC inhibits the formation of atmospheric oxidants, which further weakens the atmospheric oxidative capacity. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 1236 KB  
Article
Photo-Fenton Treatment under UV and Vis Light Reduces Pollution and Toxicity in Water from Madín Dam, Mexico
by Deysi Amado-Piña, Rubi Romero, Emmanuel Salazar Carmona, Armando Ramírez-Serrano, Leobardo Manuel Gómez-Oliván, Gustavo Elizalde-Velázquez and Reyna Natividad
Catalysts 2024, 14(9), 620; https://doi.org/10.3390/catal14090620 - 14 Sep 2024
Cited by 7 | Viewed by 3315
Abstract
Water from Madín Dam in Mexico has been shown to contain a wide variety of pollutants such as drugs, pesticides, personal care products and compounds that are released into the environment as waste from production processes. In this work, the effect of the [...] Read more.
Water from Madín Dam in Mexico has been shown to contain a wide variety of pollutants such as drugs, pesticides, personal care products and compounds that are released into the environment as waste from production processes. In this work, the effect of the main process variables on the percentage of total organic carbon (TOC) removal in water samples from the Madín reservoir was studied by applying a photo-Fenton treatment catalyzed with iron-pillared clays. The catalyst was characterized by XRD, N2 physisorption, DRS and XPS. The sampling and characterization of the water from the Madín reservoir was carried out according to Mexican standards. The system for treatment tests was 0.1 L of reaction volume and a controlled temperature of 23–25 °C, and the reaction system was kept under constant stirring. After 4 h of treatment time under UV light, the TOC removal was 90%, and it was 60% under Vis light. The main ROS involved in the photo-Fenton process driven by UVC light were hydroxyl radicals, while hydroperoxyl radicals predominate in the Vis-light-driven process. Evidence of superoxide anion participation was not found. The toxicity of untreated and treated water was assessed on Danio rerio specimens, and it was observed to be reduced after the photo-Fenton treatment. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 2423 KB  
Article
HOO as the Chain Carrier for the Autocatalytic Photooxidation of Benzylic Alcohols
by Xiao-Yu Wang, Huan-E Lao, Hao-Yue Zhang, Yi Wang, Qing Zhang, Jie-Qing Wu, Yu-Feng Li, Hong-Jun Zhu, Jian-You Mao and Yi Pan
Molecules 2024, 29(14), 3429; https://doi.org/10.3390/molecules29143429 - 22 Jul 2024
Cited by 5 | Viewed by 2498
Abstract
The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the [...] Read more.
The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and depicted different mechanisms involving the photoinduction of O2 as a critical reactive oxygen species (ROS). However, based on comprehensive mechanistic investigations, including control experiments, radical quenching experiments, EPR studies, UV–vis spectroscopy, kinetics studies, and density functional theory calculations (DFT), we elucidate here that HOO, which is released via the H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO], serves as the real chain carrier for the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step, and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses on UV-driven oxidative reactions that involve aldehydes’ (or ketones) generation. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

32 pages, 1987 KB  
Review
Mitochondrial Reactive Oxygen Species in Infection and Immunity
by Arunima Mukherjee, Krishna Kanta Ghosh, Sabyasachi Chakrabortty, Balázs Gulyás, Parasuraman Padmanabhan and Writoban Basu Ball
Biomolecules 2024, 14(6), 670; https://doi.org/10.3390/biom14060670 - 8 Jun 2024
Cited by 51 | Viewed by 10413
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including [...] Read more.
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

11 pages, 931 KB  
Article
Ionic Route to Atmospheric Relevant HO2 and Protonated Formaldehyde from Methanol Cation and O2
by Mauro Satta, Daniele Catone, Mattea Carmen Castrovilli, Francesca Nicolanti and Antonella Cartoni
Molecules 2024, 29(7), 1484; https://doi.org/10.3390/molecules29071484 - 27 Mar 2024
Cited by 3 | Viewed by 2088
Abstract
Gas-phase ion chemistry influences atmospheric processes, particularly in the formation of cloud condensation nuclei by producing ionic and neutral species in the upper troposphere–stratosphere region impacted by cosmic rays. This work investigates an exothermic ionic route to the formation of hydroperoxyl radical (HO [...] Read more.
Gas-phase ion chemistry influences atmospheric processes, particularly in the formation of cloud condensation nuclei by producing ionic and neutral species in the upper troposphere–stratosphere region impacted by cosmic rays. This work investigates an exothermic ionic route to the formation of hydroperoxyl radical (HO2) and protonated formaldehyde from methanol radical cation and molecular oxygen. Methanol, a key atmospheric component, contributes to global emissions and participates in various chemical reactions affecting atmospheric composition. The two reactant species are of fundamental interest due to their role in atmospheric photochemical reactions, and HO2 is also notable for its production during lightning events. Our experimental investigations using synchrotron radiation reveal a fast hydrogen transfer from the methyl group of methanol to oxygen, leading to the formation of CH2OH+ and HO2. Computational analysis corroborates the experimental findings, elucidating the reaction dynamics and hydrogen transfer pathway. The rate coefficients are obtained from experimental data and shows that this reaction is fast and governed by capture theory. Our study contributes to a deeper understanding of atmospheric processes and highlights the role of ion-driven reactions in atmospheric chemistry. Full article
Show Figures

Graphical abstract

23 pages, 24085 KB  
Article
An ONIOM-Based High-Level Thermochemistry Study on Hydrogen Abstraction Reactions of Large Straight-Chain Alkanes by Hydrogen, Hydroxyl, and Hydroperoxyl Radicals
by Yicheng Chi, Hao Pan, Qinghui Meng, Lidong Zhang and Peng Zhang
Symmetry 2024, 16(3), 367; https://doi.org/10.3390/sym16030367 - 18 Mar 2024
Viewed by 2285
Abstract
Accurate thermochemical data are of great importance in developing quantitatively predictive reaction mechanisms for transportation fuels, such as diesel and jet fuels, which are primarily composed of large hydrocarbon molecules, especially large straight-chain alkanes containing more than 10 carbon atoms. This paper presents [...] Read more.
Accurate thermochemical data are of great importance in developing quantitatively predictive reaction mechanisms for transportation fuels, such as diesel and jet fuels, which are primarily composed of large hydrocarbon molecules, especially large straight-chain alkanes containing more than 10 carbon atoms. This paper presents an ONIOM[QCISD(T)/CBS:DFT]-based theoretical thermochemistry study on the hydrogen abstraction reactions of straight-chain alkanes, n-CnH2n+2, (n = 1–16) by hydrogen (H), hydroxyl (OH), and hydroperoxyl (HO2) radicals. These reactions, with n ≥ 10, pose significant computational challenges for prevalent high-level ab initio methods. However, they are effectively addressed using the ONIOM-based method. One notable aspect of this study is the consideration of the high symmetry of straight-chain alkanes. This symmetry allows us to study half of the reactions, employing a generalized approach. Therefore, a total of 216 reactions are systematically studied for the three reaction systems. Our results align very well with those from the widely accepted high-level QCISD(T)/CBS method, with discrepancies between the two generally less than 0.10 kcal/mol. Furthermore, we compared large straight-chain alkanes (n-C16H34 and n-C18H38) with large methyl ester molecules (C15H31COOCH3 and C17H33COOCH3) to elucidate the impact of functional groups (ester group and C=C double bond) on the reactivity of the long-chain structure. These findings underscore the accuracy and efficiency of the ONIOM-based method in computational thermochemistry, particularly for large straight-chain hydrocarbons in transportation fuels. Full article
(This article belongs to the Special Issue Symmetry in Aerospace Sciences and Applications)
Show Figures

Figure 1

Back to TopTop