Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (428)

Search Parameters:
Keywords = hydrogen bond acceptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4297 KB  
Article
Synthesis of Lignin-Derived Hierarchical Porous Carbon via Hydrothermal–Phosphoric Acid Synergistic Activation for Enhanced Adsorption of Tetracycline
by Xin Li, Yipeng Li, Yuhan Li, Mengyu Zhang and Jundong Zhu
Molecules 2026, 31(3), 447; https://doi.org/10.3390/molecules31030447 - 27 Jan 2026
Viewed by 173
Abstract
Tetracycline is a low-cost broad-spectrum antibiotic and widely used in medicine and aquaculture. Its residues are usually released into the environment through wastewater, which may lead to the spread of antibiotic resistance genes and pose ecological risks. To address this environmental issue, a [...] Read more.
Tetracycline is a low-cost broad-spectrum antibiotic and widely used in medicine and aquaculture. Its residues are usually released into the environment through wastewater, which may lead to the spread of antibiotic resistance genes and pose ecological risks. To address this environmental issue, a hierarchical lignin-derived porous carbon (LPHC) was synthesized using renewable biomass lignin as the precursor through a combined phosphoric acid-activated hydrothermal pretreatment. The resulting LPHC was used to effectively remove tetracycline from aqueous solutions. Characterization results indicated that LPHC had a high specific surface area (1157.25 m2·g−1), a well-developed micro-mesoporous structure, and abundant surface oxygen-containing functional groups, which enhanced its interaction with target pollutants. Adsorption experiments showed that LPHC exhibited excellent adsorption performance for tetracycline, with a maximum adsorption capacity of 219.81 mg·g−1. The adsorption process conformed to the Langmuir isotherm model, indicating that monolayer chemical adsorption was dominant. Mechanism analysis further confirmed that the adsorption process was controlled by multiple synergistic interactions, including pore filling, π-π electron donor–acceptor interactions, hydrogen bonding, and electrostatic attraction. This work proposes a feasible strategy to convert waste biomass into high-performance and environmentally friendly adsorbents, which provides technical feasibility for sustainable water purification technologies. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

26 pages, 4663 KB  
Review
Adhesive Gelatin-Based Eutectogels: A Review of Synthesis, Properties, and Applications
by Raluca Ioana Baron, Andreea Laura Chibac-Scutaru, Gabriela Biliuta and Sergiu Coseri
Polymers 2026, 18(2), 222; https://doi.org/10.3390/polym18020222 - 14 Jan 2026
Viewed by 316
Abstract
This review presents a focused assessment of the rapidly expanding field of gelatin-based eutectogels and identifies the gaps in current literature that justify this examination. Research on deep eutectic solvents (DESs and NADES) has advanced quickly, yet there is still no integrated view [...] Read more.
This review presents a focused assessment of the rapidly expanding field of gelatin-based eutectogels and identifies the gaps in current literature that justify this examination. Research on deep eutectic solvents (DESs and NADES) has advanced quickly, yet there is still no integrated view of how these solvent systems influence adhesion in gelatin-based gels. Eutectogels are soft materials formed by gelling DESs or NADES with biopolymers. Gelatin is widely used because it is biocompatible, biodegradable, and readily available. We provide a clear overview of the chemistry of DESs and NADES and describe how gelatin forms networks in these media. The review summarizes established knowledge on adhesion, highlighting the contributions of polymer network density, interfacial hydrogen bonding, and solvent mobility. New perspectives are introduced on how these factors interact to control adhesion strength, toughness, and reversibility. A key topic is the role of hydrogen bond donors (HBDs) and acceptors (HBAs). They define the hydrogen bonding environment of the solvent and represent an underexplored way to tune mechanical and adhesive behavior. Examples such as moisture-resistant adhesion and temperature-responsive bonding show why these systems offer unique and adjustable properties. The review concludes by outlining major challenges, including the lack of standardized adhesion tests and constraints in scalable production, and identifying directions for future work. Full article
Show Figures

Graphical abstract

18 pages, 5223 KB  
Article
Biodegradability and Ecotoxicity Profiles of Choline Acetate, Betaine, and L-Proline NADESs: A Hidden Threat for Eutrophication?
by Nandish M. Nagappa, Angelica Mero, Elena Husanu, Zeba Usmani, Matteo Oliva, Matilde Vieira Sanches, Giorgia Fumagalli, Andrea Mele, Andrea Mezzetta, Nicholas Gathergood, Lorenzo Guazzelli, Carlo Pretti and Yevgen Karpichev
Molecules 2026, 31(2), 262; https://doi.org/10.3390/molecules31020262 - 12 Jan 2026
Viewed by 283
Abstract
Deep Eutectic Solvents (DESs), particularly Naturally Available Deep Eutectic Solvents (NADESs), are increasingly regarded as green solvents due to their low vapor pressure, non-flammability, thermal stability, strong solvent power, and low toxicity. In line with Green Chemistry principles, the use of renewable and [...] Read more.
Deep Eutectic Solvents (DESs), particularly Naturally Available Deep Eutectic Solvents (NADESs), are increasingly regarded as green solvents due to their low vapor pressure, non-flammability, thermal stability, strong solvent power, and low toxicity. In line with Green Chemistry principles, the use of renewable and biocompatible components such as amino acids, lipids, and naturally derived acids enables the development of more sustainable solvent systems. This study addresses the need for environmentally safer NADESs by evaluating their physico-chemical suitability and environmental impact. Fifteen NADESs were prepared using naturally derived components and assessed for environmental safety. Biodegradability was evaluated using the OECD 301D Closed Bottle Test (CBT), while toxicity toward Raphidocelis subcapitata was examined to characterize ecotoxicological behavior. The results demonstrated that the synthesized NADESs exhibit high biodegradability levels and low toxicity toward microalgae. Toxicity control indicated no significant inhibition of microbial activity during biodegradation, suggesting favorable environmental compatibility. Overall, the findings indicate that the NADESs represent more sustainable solvent alternatives with low toxicological profiles. However, the potential role of these compounds in enhancing eutrophication processes cannot be excluded and warrants further investigation. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

23 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Viewed by 302
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

39 pages, 3073 KB  
Review
The Future of Green Chemistry: Evolution and Recent Trends in Deep Eutectic Solvents Research
by Veronika Jančíková and Michal Jablonský
Appl. Sci. 2026, 16(2), 654; https://doi.org/10.3390/app16020654 - 8 Jan 2026
Viewed by 654
Abstract
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green [...] Read more.
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green extraction of bioactive compounds, CO2 capture, electrochemistry, and the catalytic media. Research is shifting towards highly innovative frontier trends, such as the role of deep eutectic solvents in dynamic covalent chemistry and as templates for advanced photocatalytic nanomaterials. Other innovative directions include artificial organelles for bioremediation, thermoacoustic deep eutectic solvents for smart drug delivery, and their use as multifunctional interfaces for 2D materials. The future of deep eutectic solvents lies in process engineering and scale-up, supported by computational chemistry, confirming their position as a central pillar of the circular economy. This trajectory marks the transition of deep eutectic solvents from laboratory curiosities to a scalable industrial reality. Full article
(This article belongs to the Special Issue Technical Advances in Biomass Conversion)
Show Figures

Figure 1

20 pages, 4456 KB  
Article
Enhanced Adsorption of Metformin Using Cu and ZnO Nanoparticles Anchored on Carboxylated Graphene Oxide
by Abeer H. Aljadaani, Amr A. Yakout and Hany Abdel-Aal
Polymers 2026, 18(1), 71; https://doi.org/10.3390/polym18010071 - 26 Dec 2025
Viewed by 410
Abstract
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and [...] Read more.
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and efficiency. In this work, a ternary nanocomposite of Cu- and ZnO-decorated carboxylated graphene oxide (Cu/ZnO@CGO) was synthesized and utilized for highly efficient and ultrafast removal of the antidiabetic drug metformin from aqueous environments. The adsorption mechanism arises from a synergistic combination of surface complexation on Cu nanoparticles, cation–π and π–π electron donor–acceptor interactions with the CGO aromatic structure, and hydrogen bonding through the amino groups of metformin and the oxygen-rich functional moieties of ZnO and CGO. The nanocomposite was thoroughly characterized using FTIR, XPS, XRD, SEM, HRTEM, and TGA analyses, confirming its well-defined hybrid structure. Unlike conventional single-phase or binary systems, the Cu/ZnO@CGO nanocomposite demonstrated remarkable cooperative effects that enhanced its performance through the integration of metal–ligand coordination, π–π stacking, cation–π forces, and hydrogen bonding. These interactions contributed to an outstanding adsorption capacity of 232.56 mg·g−1 and an exceptionally fast equilibrium time of only 25 min. Moreover, the material maintained excellent reusability, with merely a 4.1% decline in efficiency after five regeneration cycles, and achieved almost complete removal of metformin (99.7 ± 3.4%) from several real water samples, namely river, tap, and bottled water. The unique structural design of Cu/ZnO@CGO prevents CGO aggregation and facilitates efficient contaminant capture even at trace concentrations, establishing it as a highly competitive and sustainable adsorbent for pharmaceutical wastewater treatment. Overall, this study highlights a novel and rationally engineered nanocomposite whose synergistic surface chemistry bridges adsorption and detoxification, providing valuable insight into the next generation of multifunctional graphene-based materials for environmental remediation. Full article
(This article belongs to the Special Issue Polymeric Materials Based on Graphene Derivatives and Composites)
Show Figures

Figure 1

18 pages, 901 KB  
Article
Multifunctional NADES-Based Extracts from Paeonia lactiflora Pall. Flowers for Potential Cosmetic and Pharmaceutical Applications
by Carla Villa, Eleonora Russo, Anna Maria Schito, Francesco Saverio Robustelli della Cuna, Cristina Sottani, Marta Barabino and Debora Caviglia
Molecules 2026, 31(1), 97; https://doi.org/10.3390/molecules31010097 - 25 Dec 2025
Viewed by 425
Abstract
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective [...] Read more.
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective effects. Considering the growing interest and demand in the pharmaceutical and cosmetic fields for sustainable and bioactive botanical derivatives, this study aimed to apply NADES (natural deep eutectic solvents) extraction on fresh flowers of Paeonia lactiflora Pall. The purpose was to obtain a natural, multifunctional, and ready-to-use cosmetic ingredient with concurrent antioxidant activity, antimicrobial functionalities, and olfactive properties. The eutectic systems selected in this study were composed of betaine as the hydrogen bond acceptor and glycerol and/or sorbitol as the hydrogen bond donors. These eutectic systems under microwave activation led to a rapid extraction, from peony fresh flowers, of considerable phenolic amounts (from 33.0 to 34.4 mg of gallic acid equivalents per gram of fresh flowers), which confer to the whole NADES-based extract an excellent radical scavenging activity (around 87.5%, compared to Trolox) and a pleasant fragrance, due to the extraction of some characteristic volatile compounds, as confirmed by GC-MS analysis. Antimicrobial assays against different Gram-positive and Gram-negative strains demonstrated good inhibitory activity of the sample against multidrug-resistant Staphylococcus species (MIC ranging from 0.9 to 14.5 mg/mL) and against Enterococcus species (from 28.8 to 57.8 mg/mL). Furthermore, results on different Staphylococcus aureus strains disclosed additional interesting anti-biofilm properties. Preliminary long-term studies (up to 9 months) on these combined properties highlighted the stabilizing effect of NADESs on the active metabolites, confirming their potential as natural and functional ingredients that could be directly incorporated into pharmaceutical and cosmetic formulations, offering enhanced efficacy and improved stability. Full article
Show Figures

Figure 1

18 pages, 3879 KB  
Article
Exploring Dacarbazine Complexation with a Cellobiose-Based Carrier: A Multimethod Theoretical, NMR, and Thermochemical Study
by Marta Hoelm, Zdzisław Kinart and Stanisław Porwański
Molecules 2025, 30(24), 4819; https://doi.org/10.3390/molecules30244819 - 18 Dec 2025
Viewed by 325
Abstract
Dacarbazine (DTIC) is a clinically important anticancer drug whose photosensitivity poses challenges for its stability and interactions with supramolecular hosts. Here, we investigate its complexation with the host 1,10-N,N′-bis-(β-D-ureidocellobiosyl)-4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (TN), a hybrid urea–carbohydrate–diazacrown system, using combined experimental and computational approaches. While [...] Read more.
Dacarbazine (DTIC) is a clinically important anticancer drug whose photosensitivity poses challenges for its stability and interactions with supramolecular hosts. Here, we investigate its complexation with the host 1,10-N,N′-bis-(β-D-ureidocellobiosyl)-4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (TN), a hybrid urea–carbohydrate–diazacrown system, using combined experimental and computational approaches. While TN has been studied as a host molecule, its specific interactions with DTIC and the associated thermodynamic characteristics had not been characterized. Computational results (obtained at the density functional theory level (DFT)) indicate that TN primarily forms non-inclusion complexes, with DTIC engaging in hydrogen bonding with sugar units, urea bridges, and diazacrown ether moieties. Experimental 1H NMR studies in D2O confirmed these interaction patterns, showing notable chemical shifts for sugar protons. Conductometric measurements between 293 and 313 K allowed for the determination of formation constants and thermodynamic parameters. The results demonstrate that TN:DTIC complexation is spontaneous, exothermic, and enthalpy-driven, accompanied by decreased system entropy. Comparison with previous studies on cyclodextrin complexes shows that TN forms strong associations with DTIC, owing to its abundant donor–acceptor groups, which facilitate extensive hydrogen-bonding networks. These findings provide new insights into DTIC stabilization and highlight TN’s potential as a multifunctional platform for drug delivery. Full article
(This article belongs to the Special Issue Alternative Routes for the Delivery of Drug Molecules)
Show Figures

Figure 1

11 pages, 1717 KB  
Article
The Transition State of PBLG Studied by Deuterium NMR
by Fabian M. Hoffmann and Burkhard Luy
Polymers 2025, 17(24), 3280; https://doi.org/10.3390/polym17243280 - 10 Dec 2025
Viewed by 438
Abstract
The liquid crystal (LC) poly-γ-benzyl-L-glutamate (PBLG) is known to possess a narrow biphasic range at the phase transition from an isotropic liquid to an anisotropic liquid crystal. We have characterized the biphasic region via deuterium nuclear magnetic resonance (NMR) of the deuterated solvent [...] Read more.
The liquid crystal (LC) poly-γ-benzyl-L-glutamate (PBLG) is known to possess a narrow biphasic range at the phase transition from an isotropic liquid to an anisotropic liquid crystal. We have characterized the biphasic region via deuterium nuclear magnetic resonance (NMR) of the deuterated solvent CDCl3, with which isotropic and anisotropic populations can unambiguously be identified and quantified due to the quadrupolar coupling induced by partial alignment. In addition to a dilution series, we measured the kinetics of the alignment inside the magnet for each dilution step and were able to follow the kinetic buildup of partial alignment. Beginning with the dynamic line broadening indicative of slow fluctuations, to microheterogeneous patches of isotropic and anisotropic islands, with increasing island size being consistent with sharpened spectra, ending in fully separated isotropic and anisotropic phases on top of each other after two weeks. In addition, we studied the influence of the two example guest molecules borneol and camphor—which essentially differ in their capability to act as hydrogen bond donors or acceptors—on the biphasic region of PBLG. Full article
Show Figures

Figure 1

37 pages, 693 KB  
Review
Current Status and Future Perspectives of Betaine and Betaine-Based Natural Deep Eutectic Solvents: A Review
by Aylin Allahyari, Maryam Borji, Ali Jahanban-Esfahlan, Ali Khanalipour, Mahnaz Tabibiazar and Parisa Ahmadi
Foods 2025, 14(23), 4122; https://doi.org/10.3390/foods14234122 - 1 Dec 2025
Viewed by 1447
Abstract
Betaine (BET)-based deep eutectic solvents (DESs) have emerged as promising substitutes for traditional organic solvents owing to their eco-friendly properties and versatility in various applications. This review provides a comprehensive overview of the current status and future perspectives of BET-based DESs, highlighting their [...] Read more.
Betaine (BET)-based deep eutectic solvents (DESs) have emerged as promising substitutes for traditional organic solvents owing to their eco-friendly properties and versatility in various applications. This review provides a comprehensive overview of the current status and future perspectives of BET-based DESs, highlighting their definition, characteristics, and mechanisms of eutectic formation. The unique properties of BET, including its biodegradability and non-toxicity, make it an attractive hydrogen bond acceptor in the formulation of DESs. The review discusses common methods for preparing BET-based DESs and emphasizes their applications in extraction processes, catalysis, biocompatibility, and pharmaceutical applications. Additionally, challenges such as stability and fluidity limitations are addressed, along with regulatory and safety considerations. Future directions suggest an increasing industrial application of BET-based DESs in environmentally sustainable processes within the food and pharmaceutical sectors, underlining their potential as green solvents in next-generation chemical methodologies. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 2255 KB  
Article
Mechanism Investigation of Solvent Effect on Selective Decomposition of Formic Acid
by Zheyuan Zhang, Jianrong Shan, Feng Shen, Fukuan Li and Haixin Guo
Catalysts 2025, 15(12), 1112; https://doi.org/10.3390/catal15121112 - 29 Nov 2025
Viewed by 485
Abstract
The selective decomposition of formic acid to hydrogen gas represents a highly promising strategy for sustainable energy production. The influence of solvent effects on the selective decomposition of formic acid into H2 and CO2 or H2O and CO was [...] Read more.
The selective decomposition of formic acid to hydrogen gas represents a highly promising strategy for sustainable energy production. The influence of solvent effects on the selective decomposition of formic acid into H2 and CO2 or H2O and CO was investigated. A variety of solvents, including polar protic solvents (e.g., water, ethanol, methanol), polar aprotic solvents (e.g., tetrahydrofuran, dimethyl sulfoxide), and ionic liquids, were employed in conjunction with a 5 wt% Pd/C catalyst. The yield of formic acid decomposition and the turnover number (TON) were found to be dependent on the choice of solvent. To elucidate the solvent effects, classical solvent parameters and Kamlet–Taft solvatochromic parameters were studied. The study revealed correlations between the TON and the solubility of hydrogen, Kamlet–Taft parameters (acidity, basicity, and polarity/dipolarity), hydrogen bond donor (HBD) capability, and hydrogen bond acceptor (HBA) capacity. The solvent identity was found to play a dominant role in both the polarity/dipolarity and the catalytic mechanism of formic acid decomposition. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in China: New Horizons and Recent Advances)
Show Figures

Figure 1

11 pages, 1151 KB  
Article
Visible-Pump Terahertz Probe Measurements of Embedded Polymer Conductivity in Organic Matrices
by Clyde Varner and Edwin Heilweil
Polymers 2025, 17(23), 3169; https://doi.org/10.3390/polym17233169 - 28 Nov 2025
Viewed by 440
Abstract
We report measurements of ultrafast photoinduced charge separation and recombination processes in the conjugated donor–acceptor (D-A) polymer PSBTBT, both as pure film and blended in various polymer matrices. Using time-resolved terahertz spectroscopy (TRTS), time-dependent photoconductivity is measured for samples with PSBTBT weight fractions [...] Read more.
We report measurements of ultrafast photoinduced charge separation and recombination processes in the conjugated donor–acceptor (D-A) polymer PSBTBT, both as pure film and blended in various polymer matrices. Using time-resolved terahertz spectroscopy (TRTS), time-dependent photoconductivity is measured for samples with PSBTBT weight fractions (WPSBTBT:WPE/PEG/PS) of 2.0% dispersed in high-density polyethylene (HDPE), polyethylene glycol (PEG), and polystyrene (PS). Charge carrier generation is an intrinsic feature of conductive polymers that occurs on sub-picosecond and longer timescales and is attributed to initially generated dissociation of bound polaron pairs into free carriers that reside on polymer chains, or to adjacent interchain charge transfer and migration. Both interchain and interfacial charge transfer contribute to the measured photoconductivity of the samples, which is found to increase as a function of increasing local polarity and an increasingly hydrogen-bonded environment. Pure-PSBTBT polymer film, PSBTBT dispersed in PS, and PSBTST dispersed in HDPE were all found to exhibit shorter photoconductive free-carrier long-time signal decay than PSBTBT in a hydrogen-bonded, semi-crystalline PEG environment. Full article
(This article belongs to the Special Issue Advances in Polymeric Organic Optoelectronic Materials and Devices)
Show Figures

Figure 1

17 pages, 2898 KB  
Article
New Approaches for the Extraction of Anthocyanins from Grape Skins Using Deep Eutectic Solvents
by Marta Jiménez-Salcedo, Filipe H. B. Sosa, João A. P. Coutinho and María Teresa Tena
Sustain. Chem. 2025, 6(4), 47; https://doi.org/10.3390/suschem6040047 - 24 Nov 2025
Viewed by 1111
Abstract
Deep eutectic solvents (DES) were selected for the extraction of anthocyanins from red grape skins as an efficient and environmentally friendly solvent alternative to traditional mixtures based on methanol. In silico studies (COSMO-RS) were employed as screening tools to identify the most suitable [...] Read more.
Deep eutectic solvents (DES) were selected for the extraction of anthocyanins from red grape skins as an efficient and environmentally friendly solvent alternative to traditional mixtures based on methanol. In silico studies (COSMO-RS) were employed as screening tools to identify the most suitable options, significantly reducing the chemical space of potential DES to be studied. A total of 30,132 DES combinations were assessed. The DESs selected were polyalcohols (ethyleneglycol, glycerol, 1,2-propanediol, and 1,6-hexanediol) and carboxylic acids (citric, oxalic, malic, and lactic acid) as hydrogen bond donors (HBD) and choline chloride, betaine, or salts (potassium carbonate, sodium acetate, and propionate), as hydrogen bond acceptors (HBA). Choline chloride:glycerol and choline chloride:oxaclic acic were selected as solvents to optimize time, temperature, and water content in ultrasound- and microwave-assisted extraction of anthocyanins. In both cases, around 20 wt% of water was found to be the optimum to maximize the extractions, whereas extraction time and temperature depended on the type of anthocyanin. The amount of malvidin-3-O-glucoside extracted by microwave-assisted extraction with choline chloride: oxalic acid was 172 ± 7 mg/kg and 119.5 ± 0.5 mg/kg by ultrasound-assisted extraction with choline chloride: glycerol, which means an increase in performance of, respectively, 64 and a 13% compared to the traditional method. Full article
Show Figures

Graphical abstract

21 pages, 2971 KB  
Article
Design of Hybrid Quinoline–Chalcone Compounds Against Leishmania amazonensis Based on Computational Techniques: 2D- and 3D-QSAR with Experimental Validation
by Marcos Lorca, Gisela C. Muscia, Jaime Mella, Luciana Thomaz, Jenicer K. Yokoyama-Yasunaka, Daniel Moraga, Yeray A. Rodriguez-Nuñez, Silvia E. Asís, Mauro Cortez and Marco Mellado
Pharmaceuticals 2025, 18(10), 1567; https://doi.org/10.3390/ph18101567 - 17 Oct 2025
Viewed by 862
Abstract
Background: Leishmania amazonensis, one of the causative agents of cutaneous leishmaniasis, is responsible for a neglected tropical disease affecting nearly one million individuals worldwide. Although clinical treatments are available, their effectiveness is often compromised by high toxicity and limited selectivity. Methods [...] Read more.
Background: Leishmania amazonensis, one of the causative agents of cutaneous leishmaniasis, is responsible for a neglected tropical disease affecting nearly one million individuals worldwide. Although clinical treatments are available, their effectiveness is often compromised by high toxicity and limited selectivity. Methods: From a database, 64 chalcone derivatives were studied using Comparative Molecular Similarity Indices Analysis (CoMSIA) and Hansch analysis (2D-QSAR) to construct predictive computational models. Internal and external validation criteria were applied to identify structural determinants associated with antileishmanial activity. Based on these insights, twelve novel quinoline–chalcone hybrids were designed, synthesized, and biologically evaluated against L. amazonensis. Results: The most robust CoMSIA model combined steric and hydrogen-bond acceptor fields (CoMSIA-SA), while Hansch analysis highlighted electronic descriptors—specifically LUMO energy and the global electrophilicity index—as critical for parasite growth inhibition. Guided by these computational findings, a new series of 12 hybrid quinoline–chalcone derivatives (E001E012) was synthesized through a two-step procedure, achieving overall yields of 43–71%. Biological assays demonstrated that four compounds displayed inhibitory activity comparable to amphotericin B. Furthermore, physicochemical profiling and in silico pharmacokinetic predictions for the most active compounds (E003, E005, E006, and E011) indicated favorable biocompatibility and drug-like properties. Conclusions: These results underscore the value of an integrative computational–experimental approach in the rational design of next-generation L. amazonensis inhibitors, reinforcing chalcone-based scaffolds as promising pharmacophoric frameworks for antileishmanial drug discovery. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics in Drug Design and Discovery)
Show Figures

Figure 1

15 pages, 3607 KB  
Article
Photo-Responsive Brominated Hydrogen-Bonded Liquid Crystals
by Christian Anders, Tejal Nirgude, Ahmed F. Darweesh and Mohamed Alaasar
Crystals 2025, 15(10), 886; https://doi.org/10.3390/cryst15100886 - 14 Oct 2025
Cited by 1 | Viewed by 445
Abstract
This study reports on the preparation and comprehensive characterisation of new brominated hydrogen-bonded liquid crystalline (HBLC) materials. Two distinct series of supramolecular complexes were prepared by hydrogen-bond formation between 3-bromo-4-pentyloxybenzoic acid as the proton donor and non-fluorinated and fluorinated azopyridines with variable terminal [...] Read more.
This study reports on the preparation and comprehensive characterisation of new brominated hydrogen-bonded liquid crystalline (HBLC) materials. Two distinct series of supramolecular complexes were prepared by hydrogen-bond formation between 3-bromo-4-pentyloxybenzoic acid as the proton donor and non-fluorinated and fluorinated azopyridines with variable terminal chains as proton acceptors. The successful formation of a hydrogen bond was confirmed by FTIR spectroscopy. The impact of alkyl chain length and fluorination on the mesomorphic properties of the HBLCs was systematically investigated. The molecular self-assembly was thoroughly examined using polarised optical microscopy (POM) and differential scanning calorimetry (DSC), revealing the presence of smectic C (SmC), smectic A (SmA), and nematic (N) phases, with thermal stability being highly dependent on the molecular architecture. Notably, the introduction of fluorine atoms significantly influenced the phase transition temperatures and the overall mesophase range. Using bromine as a lateral substituent induces the formation of SmC phases in these HBLCs, a feature absent in their non-brominated analogues. Further structural insights were obtained through X-ray diffraction (XRD) investigations, confirming the nature of the observed LC phases. Additionally, the photo-responsive characteristics of these HBLCs were explored via UV-Vis spectroscopy, demonstrating their ability to undergo reversible photoisomerisation upon light irradiation. These findings underscore the critical role of precise molecular design in tailoring the properties of HBLCs for potential applications such as optical storage devices. Full article
(This article belongs to the Special Issue Thermotropic Liquid Crystals as Novel Functional Materials)
Show Figures

Figure 1

Back to TopTop