Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = hydrogel sphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2058 KiB  
Review
Alginate Sphere-Based Soft Actuators
by Umme Salma Khanam, Hyeon Teak Jeong, Rahim Mutlu and Shazed Aziz
Gels 2025, 11(6), 432; https://doi.org/10.3390/gels11060432 - 5 Jun 2025
Viewed by 861
Abstract
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability [...] Read more.
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability to respond to thermal, magnetic, electrical, optical and chemical stimuli has enabled applications in targeted delivery, artificial muscles, microrobotics and environmental interfaces. This review examines recent advances in alginate sphere-based actuators, focusing on fabrication methods such as droplet microfluidics, coaxial flow and functional surface patterning, and strategies for introducing multi-stimuli responsiveness using smart polymers, nanoparticles and biologically active components. Actuation behaviours are understood and correlated with physical mechanisms including swelling kinetics, photothermal effects and the field-induced torque, supported by analytical and multiphysics models. Their demonstrated functionalities include shape transformation, locomotion and mechano-optical feedback. The review concludes with an outlook on the existing limitations, such as the material stability, cyclic durability and integration complexity, and proposes future directions toward the development of autonomous, multifunctional soft systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Figure 1

21 pages, 9241 KiB  
Article
Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres
by Joaquín Alejandro Hernández Fernández, Jose Alfonso Prieto Palomo and Carlos A. T. Toloza
J. Compos. Sci. 2025, 9(4), 193; https://doi.org/10.3390/jcs9040193 - 18 Apr 2025
Cited by 1 | Viewed by 569
Abstract
Heavy metal contamination of water is a critical environmental problem due to its toxicity and persistence in ecosystems. In this study, magnetic hydrogel spheres composed of carboxymethylated starch modified with poly(1-vinylimidazole) (CMS-g-PVI) and polyvinyl alcohol (PVA), combined with Fe3O4 nanoparticles, [...] Read more.
Heavy metal contamination of water is a critical environmental problem due to its toxicity and persistence in ecosystems. In this study, magnetic hydrogel spheres composed of carboxymethylated starch modified with poly(1-vinylimidazole) (CMS-g-PVI) and polyvinyl alcohol (PVA), combined with Fe3O4 nanoparticles, were synthesized and characterized to evaluate their efficiency in adsorbing metal ions such as Cu2+, Pb2+, and Cd2+. Structural characterization by FT-IR spectroscopy confirmed the successful integration of all functional components into the hydrogel matrix. Additionally, scanning electron microscopy (SEM) revealed a rough and porous surface morphology favorable for adsorption and an average bead diameter of 3.2 mm, influenced by the stirring rate during synthesis. Adsorption studies demonstrated maximum capacities of 82.4 mg·g−1 for Cu2+, 66.5 mg·g−1 for Pb2+, and 51.8 mg·g−1 for Cd2+, with optimal removal efficiencies at pH 6.2 and 5.7. From a theoretical perspective, density functional theory (DFT) calculations using the B3LYP/6-311+G(d,p) method allowed the optimization of molecular structures and analysis of electronic properties. The total dipole moment (TDM) of the CMS-g-PVI/PVA system reached 20.81 Debye. A significant reduction in the HOMO-LUMO energy gap was observed upon metal adsorption, with values of 0.0308 eV for Cu2+, 0.0175 eV for Pb2+, and 0.0235 eV for Cd2+, confirming strong interactions between the hydrogel matrix and the metal ions. The combined experimental and computational approach provides a comprehensive understanding of the adsorption mechanisms and supports the development of efficient materials for water decontamination. Full article
Show Figures

Figure 1

20 pages, 3687 KiB  
Article
Towards a Comprehensive Framework for Made-to-Measure Alginate Scaffolds for Tissue Engineering Using Numerical Simulation
by Alexander Bäumchen, Johnn Majd Balsters, Beate-Sophie Nenninger, Stefan Diebels, Heiko Zimmermann, Michael Roland and Michael M. Gepp
Gels 2025, 11(3), 185; https://doi.org/10.3390/gels11030185 - 7 Mar 2025
Cited by 1 | Viewed by 1534
Abstract
Alginate hydrogels are integral to many cell-based models in tissue engineering and regenerative medicine. As a natural biomaterial, the properties of alginates can vary and be widely adjusted through the gelation process, making them versatile additives or bulk materials for scaffolds, microcarriers or [...] Read more.
Alginate hydrogels are integral to many cell-based models in tissue engineering and regenerative medicine. As a natural biomaterial, the properties of alginates can vary and be widely adjusted through the gelation process, making them versatile additives or bulk materials for scaffolds, microcarriers or encapsulation matrices in tissue engineering and regenerative medicine. The requirements for alginates used in biomedical applications differ significantly from those for technical applications. Particularly, the generation of novel niches for stem cells requires reliable and predictable properties of the resulting hydrogel. Ultra-high viscosity (UHV) alginates possess alginates with special physicochemical properties, and thus far, numerical simulations for the gelation process are currently lacking but highly relevant for future designs of stem cell niches and cell-based models. In this article, the gelation of UHV alginates is studied using a microscopic approach for disc- and sphere-shaped hydrogels. Based on the collected data, a multiphase continuum model was implemented to describe the cross-linking process of UHV alginate polysaccharides. The model utilizes four coupled kinetic equations based on mixture theory, which are solved using finite element software. A good agreement between simulation results and experimental data was found, establishing a foundation for future refinements in the development of an interactive tool for cell biologists and material scientists. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Graphical abstract

15 pages, 5188 KiB  
Article
A 3D-Printable Cell Array for In Vitro Breast Cancer Modeling
by Ilaria Arciero, Silvia Buonvino, Valeria Palumbo, Manuel Scimeca and Sonia Melino
Int. J. Mol. Sci. 2024, 25(23), 13068; https://doi.org/10.3390/ijms252313068 - 5 Dec 2024
Cited by 2 | Viewed by 1294
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women. In advanced stages of the disease, breast cancer can spread and metastasize to the bone, contributing to malignant progression. The roles of tissue stiffness and remodeling [...] Read more.
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women. In advanced stages of the disease, breast cancer can spread and metastasize to the bone, contributing to malignant progression. The roles of tissue stiffness and remodeling of the tumor microenvironment are relevant in influencing cancer progression and invasiveness, but they are still poorly understood. In this study, we aimed to investigate the effect of bone tissue stiffness on breast cancer cell behavior, using 3D cell–biomaterial systems to model the in vivo conditions. For this purpose, we developed a 3D-printable cell array, which is a tunable and reproducible platform on small scale, where each compartment could mimic the physiological cancer environment with a shape and rigidity close to bone tissue. In this system, we observed that in the highly metastatic breast cancer line MDA-MB-231, embedded in PEG–silk fibroin (PSF) hydrogel spheres in the array’s cavities, increasing stiffness promotes trans-differentiation into osteoblast-like cells and the production of breast microcalcifications. Moreover, we also tested this 3D model as a platform to evaluate the cell response to the therapy, in particular, investigating the drug sensitivity of the cancer cells to chemotherapeutics, observing a decrease in drug resistance over time in the array. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 4108 KiB  
Article
Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions
by Ilias Nikolits, Farhad Chariyev-Prinz, Dominik Egger, Falk Liebner, Nicolas Mytzka and Cornelia Kasper
Bioengineering 2024, 11(10), 1050; https://doi.org/10.3390/bioengineering11101050 - 21 Oct 2024
Cited by 2 | Viewed by 1754
Abstract
Mesenchymal stem cells (MSCs) hold immense therapeutic potential due to their regenerative and immunomodulatory properties. However, to utilize this potential, it is crucial to optimize their in vitro cultivation conditions. Three-dimensional (3D) culture methods using cell-laden hydrogels aim to mimic the physiological microenvironment [...] Read more.
Mesenchymal stem cells (MSCs) hold immense therapeutic potential due to their regenerative and immunomodulatory properties. However, to utilize this potential, it is crucial to optimize their in vitro cultivation conditions. Three-dimensional (3D) culture methods using cell-laden hydrogels aim to mimic the physiological microenvironment in vitro, thus preserving MSC biological functionalities. Cellulosic hydrogels are particularly promising due to their biocompatibility, sustainability, and tunability in terms of chemical, morphological, and mechanical properties. This study investigated the impact of (1) two physical crosslinking scenarios for hydrogels derived from anionic cellulose nanofibers (to-CNF) used to encapsulate adipose-derived MSCs (adMSCs) and (2) physiological culture conditions on the in vitro proliferation, differentiation, and extracellular vesicle (EV) production of these adMSCs. The results revealed that additional Ca2+-mediated crosslinking, intended to complement the self-assembly and gelation of aqueous to-CNF in the adMSC cultivation medium, adversely affected both the mechanical properties of the hydrogel spheres and the growth of the encapsulated cells. However, cultivation under dynamic and hypoxic conditions significantly improved the proliferation and differentiation of the encapsulated adMSCs. Furthermore, it was demonstrated that the adMSCs in the CNF hydrogel spheres exhibited potential for scalable EV production with potent immunosuppressive capacities in a bioreactor system. These findings underscore the importance of physiological culture conditions and the suitability of cellulosic materials for enhancing the therapeutic potential of MSCs. Overall, this study provides valuable insights for optimizing the in vitro cultivation of MSCs for various applications, including tissue engineering, drug testing, and EV-based therapies. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

21 pages, 10350 KiB  
Article
Opal Synthesis: Toward Geologically Relevant Conditions
by Simon Gouzy, Benjamin Rondeau, Vassilissa Vinogradoff, Boris Chauviré, Marie-Vanessa Coulet, Olivier Grauby, Hélène Terrisse and John Carter
Minerals 2024, 14(10), 969; https://doi.org/10.3390/min14100969 - 26 Sep 2024
Cited by 1 | Viewed by 2415
Abstract
Natural opal is a widespread mineral formed by the aqueous alteration of silicate rocks. It occurs as a mixture of silica nano-to-micro-structures (e.g., nanograins, spheres) and silica hydrogel cement, with variations in the proportions of these components leading to significant differences in the [...] Read more.
Natural opal is a widespread mineral formed by the aqueous alteration of silicate rocks. It occurs as a mixture of silica nano-to-micro-structures (e.g., nanograins, spheres) and silica hydrogel cement, with variations in the proportions of these components leading to significant differences in the physico-chemical properties of opals. However, the detailed process of their formation in nature and the influence of the mixing ratio are not fully understood, as opal has not been yet synthesized under geologically relevant conditions. This study aims to develop a method of opal synthesis in conditions close to continental weathering conditions (<50 °C, ambient pressure) using relevant chemicals that could be employed to gain insight into the processes that give rise to opal on Earth and Mars. Our synthesis method enabled us to synthesize opal-A with different mixing ratios, of which four were then studied to determine the effect on the material’s properties. Changes in the proportion of the hydrogel cement affect the porosity and the total water content, as well as the proportion of “water” species (H2O and OH). Moreover, the synthetic opal obtained with a 1:1 ratio shows the closest similarity to natural opal-AG. Finally, our results support the hypothesized multistage process for opal formation in nature. Full article
Show Figures

Graphical abstract

39 pages, 42293 KiB  
Article
Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate–Gelatine Hydrogel as Bone Replacement and Structural Building Material
by Alberto T. Estevez and Yomna K. Abdallah
Processes 2024, 12(5), 944; https://doi.org/10.3390/pr12050944 - 7 May 2024
Cited by 7 | Viewed by 2828
Abstract
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach [...] Read more.
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach that addresses this multi-scale application objective by developing a self-mineralized material with minimum consumption of materials and processes. Thus, in the current study, a hydrogel developed from sodium alginate, gelatine, and calcium phosphate dibasic (CPDB) was optimized in terms of rheological properties and mineralization capacity through the formation of hydroxyapatite crystals. The hydrogel composition process adopted a three-stage, thermally induced chemical cross-linking to achieve a stable and enhanced hydrogel. The 6% CPDB-modified SA–gelatine hydrogel achieved the best rheological properties in terms of elasticity and hardness. Different concentrations of epigallocatechin gallate were tested as well as a rheological enhancer to optimize the hydrogel and to boost its anti-microbial properties. However, the results from the addition of EPGCG were not considered significant; thus, the 6% CPDB-modified SA–gelatine hydrogel was further tested for mineralization by incubation in various media, without and with cells, for 7 and 14 days, respectively, using scanning electron microscopy. The results revealed significantly enhanced mineralization of the hydrogel by forming hydroxyapatite platelets of the air-incubated hydrogel (without cells) in non-sterile conditions, exhibiting antimicrobial properties as well. Similarly, the air-incubated bioink with osteosarcoma SaOs-2 cells exhibited dense mineralized topology with hydroxyapatite crystals in the form of faceted spheres. Finally, the FBS-incubated hydrogel and FBS-incubated bioink, incubated for 7 and 14 days, respectively, exhibited less densely mineralized topology and less distribution of the hydroxyapatite crystals. The degradation rate of the hydrogel and bioink incubated in FBS after 14 days was determined by the increase in dimensions of the 3D-printed samples, which was between 5 to 20%, with increase in the bioink samples dimensions in comparison to their dimensions post cross-linking. Meanwhile, after 14 days, the hydrogel and bioink samples incubated in air exhibited shrinkage: a 2% decrease in the dimensions of the 3D-printed samples in comparison to their dimensions post cross-linking. The results prove the capacity of the developed hydrogel in achieving mineralized material with anti-microbial properties and a slow-to-moderate degradation rate for application in bone tissue engineering as well as in the built environment as a structural material using a sustainable approach. Full article
Show Figures

Figure 1

19 pages, 6133 KiB  
Article
The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
by Hanna Koshlak, Borys Basok, Anatoliy Pavlenko, Tatiana Hrabova and Vitalii Opryshko
Sustainability 2024, 16(7), 2673; https://doi.org/10.3390/su16072673 - 25 Mar 2024
Cited by 1 | Viewed by 1363
Abstract
The technology of obtaining porous nanostructures is based on ecological organosilicon materials and their uses in some spheres of human life, for example, for medical preparations, for thermal insulation of building structures and industrial equipment, and for cleaning. The purpose of this study [...] Read more.
The technology of obtaining porous nanostructures is based on ecological organosilicon materials and their uses in some spheres of human life, for example, for medical preparations, for thermal insulation of building structures and industrial equipment, and for cleaning. The purpose of this study was to establish correlations between various experimental parameters (shear stress, speed pulsations, temperature, viscosity, and processing time) and the rheological characteristics of suspensions obtained by the method of liquid-phase dispersion; it was a study of hydrodynamic effects and the processes of heat and mass exchange in liquid systems during the liquid-phase dispersion of hydrogel monoliths by means of discrete-pulse activation in a special rotary apparatus. The dehydration of hydrogels was carried out by two methods: convective drying in a layer and spraying in the coolant flow. Experiments have shown that the key parameters for obtaining stable homogeneous suspensions are a synergistic combination of concentration factors and processing time. To obtain adsorbents in the form of pastes with specified adsorption properties and a monolith size of up to 300 μm, the optimal parameters were a hydrogel concentration of 70% and a processing time in the double-recirculation mode. Xerogels obtained by convective drying are a polydisperse mixture of strong monoliths and fragile aggregates. In contrast, xerogel monoliths obtained by spray drying show great homogeneity in terms of dispersion and strength characteristics. The rheological parameters of the hydrogel dispersions, which depend on the concentration and hydrodynamic treatment modes, are the dominant factors affecting the moisture extraction during drying. This study marks the first investigation into the resilience of porous organosilicon structures against the influence of intense turbulence fields and mechanical stresses experienced within the rotor apparatus during suspension production. Full article
(This article belongs to the Special Issue Environmentally Benign Sustainable Materials)
Show Figures

Figure 1

16 pages, 3618 KiB  
Article
3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica
by Andreas Ayiotis, Efthalia Georgiou, Panagiotis S. Ioannou, Ioannis Pashalidis and Theodora Krasia-Christoforou
Materials 2023, 16(19), 6577; https://doi.org/10.3390/ma16196577 - 6 Oct 2023
Cited by 1 | Viewed by 1574
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various [...] Read more.
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg−1 (404.6 mg·g−1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater. Full article
Show Figures

Graphical abstract

17 pages, 3899 KiB  
Article
Tailoring Homogeneous Hydrogel Nanospheres by Facile Ultra-Sonication Assisted Cross-Linked Copolymerization for Rhodamine B Dye Adsorption
by Gaurav Sharma, Alberto García-Peñas, Yaksha Verma, Amit Kumar, Pooja Dhiman and Florian J. Stadler
Gels 2023, 9(10), 770; https://doi.org/10.3390/gels9100770 - 22 Sep 2023
Cited by 4 | Viewed by 1528
Abstract
The present paper describes the design of shape-oriented hydrogel nanospheres using a facile ultrasonication-supported crosslinked copolymerization technique. The effect of variable monomer concentration on the homogeneity of hydrogel nanospheres was investigated. The chitosan-cl-poly(MMA) hydrogel nanospheres were well characterized using various techniques [...] Read more.
The present paper describes the design of shape-oriented hydrogel nanospheres using a facile ultrasonication-supported crosslinked copolymerization technique. The effect of variable monomer concentration on the homogeneity of hydrogel nanospheres was investigated. The chitosan-cl-poly(MMA) hydrogel nanospheres were well characterized using various techniques such as FTIR, XRD, TGA, SEM, and TEM. The chitosan-cl-poly(MMA) hydrogel nanospheres were studied for their swelling behavior and could potentially be used as a novel adsorbent for rhodamine B dye remediation from aqueous media. The study found that utilizing chitosan-cl-poly(MMA) nanohydrogel spheres at the optimal pH 5 increased RhB dye adsorption capacity from 7.9 to 17.8 mg/g (pH 2 to 5), followed by a slight reduction. Furthermore, when nanohydrogel concentration increased, adsorption capacity dropped from 18.03 to 2.8 mg/g, but adsorption percentage climbed from 90.2% to 97.8%. At an initial dye concentration of 140 mg/L, rhodamine B adsorption achieved 204.3 mg/g in 60 min. The rhodamine B dye adsorption study includes adsorption kinetics, isotherm, and thermodynamics analyses. The interpretation of the adsorption study revealed that Langmuir isotherms fit best with a qmax value of 276.26 mg/g, which is in close approximation with the experimental value, whereas pseudo-second-order kinetics explains the adsorption process rate. The interaction of RhB dye with chitosan-cl-poly(MMA) hydrogel nanospheres involves multiple forces such as electrostatic interactions, hydrogen bonding, van der Waals forces, etc. Full article
(This article belongs to the Special Issue Hydrogels in Action: Self-Assembly, Responsivity and Sensing)
Show Figures

Figure 1

16 pages, 3079 KiB  
Article
Design of Spherical Gel-Based Magnetic Composites: Synthesis and Characterization
by Pavel A. Shabadrov, Alexander P. Safronov, Nadezhda M. Kurilova and Felix A. Blyakhman
J. Compos. Sci. 2023, 7(5), 177; https://doi.org/10.3390/jcs7050177 - 1 May 2023
Cited by 4 | Viewed by 1990
Abstract
The purpose of the study was the synthesis and the physicochemical characterization of spherical beads of magnetically active composite ferrogels (FGs) with diameters of 2–3 mm for further application to the needs of targeted drug delivery and/or replacement therapy. Spherical FGs based on [...] Read more.
The purpose of the study was the synthesis and the physicochemical characterization of spherical beads of magnetically active composite ferrogels (FGs) with diameters of 2–3 mm for further application to the needs of targeted drug delivery and/or replacement therapy. Spherical FGs based on a physical network of calcium alginate (CaAlg), a chemical network of polyacrylamide (PAAm), and a combined network of calcium alginate and polyacrylamide (PAAm/CaAlg) were analyzed. FGs were filled with γ-Fe2O3 magnetic nanoparticles (MNPs) obtained by using the electrical explosion of wire method. A comparative study of the swelling behavior and of the structural features of the polymeric network in CaAlg, PAAm/CaAlg, and PAAm spherical beads was performed. It was shown that the densest network was provided by a combination of chemical and physical networking in PAAm/CaAlg FGs. If the physical network were removed from FGs it resulted in a substantial increase in the average diameter and the swelling ratio of spherical beads and a decrease in the MNPs concentration in the swollen FGs by approximately two times. It was shown that irrespective of the gel composition, the embedding of maghemite nanoparticles led to an increase in the swelling ratio of the polymeric network. This indicated the absence of strong intermolecular interactions between the polymer and the filler. The results obtained might be useful for the design of magnetically active spherical FG beads of a given size and controlled physicochemical properties. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

11 pages, 2835 KiB  
Article
Eco-Friendly Fabrication of Highly Stable Silica Aerogel Microspheres with Core–Shell Structure
by Gao Cai, Haisong Ni, Xunzhang Li, Yangxin Wang and Huaixia Zhao
Polymers 2023, 15(8), 1882; https://doi.org/10.3390/polym15081882 - 14 Apr 2023
Cited by 8 | Viewed by 3545
Abstract
Silica aerogel microspheres show great potential in various fields as fillings in different materials. It is important to diversify and optimize the fabrication methodology for silica aerogel microspheres (SAMS). This paper presents an eco-friendly synthetic technique for producing functional silica aerogel microspheres with [...] Read more.
Silica aerogel microspheres show great potential in various fields as fillings in different materials. It is important to diversify and optimize the fabrication methodology for silica aerogel microspheres (SAMS). This paper presents an eco-friendly synthetic technique for producing functional silica aerogel microspheres with a core–shell structure. Mixing silica sol with commercial silicone oil containing olefin polydimethylsiloxane (PDMS) resulted in a homogeneous emulsion with silica sol droplets dispersed in the oil. After gelation, the droplets were transformed into silica hydrogel or alcogel microspheres and coated with the polymerization of the olefin groups. Microspheres with silica aerogel as their core and polydimethylsiloxane as their shell were obtained after separation and drying. The sphere size distribution was regulated by controlling the emulsion process. The surface hydrophobicity was enhanced by grafting methyl groups onto the shell. The obtained silica aerogel microspheres have low thermal conductivity, high hydrophobicity, and excellent stability. The synthetic technique reported here is expected to be beneficial for the development of highly robust silica aerogel material. Full article
Show Figures

Figure 1

17 pages, 2843 KiB  
Article
Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels
by Semyon I. Koltsov, Tatiana G. Statsenko and Sofia M. Morozova
Polymers 2022, 14(24), 5539; https://doi.org/10.3390/polym14245539 - 17 Dec 2022
Cited by 11 | Viewed by 3598
Abstract
In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, [...] Read more.
In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300–2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way. Full article
(This article belongs to the Special Issue 3D Printing of Functional Polymer Composites)
Show Figures

Graphical abstract

11 pages, 2606 KiB  
Article
On-Chip Organoid Formation to Study CXCR4/CXCL-12 Chemokine Microenvironment Responses for Renal Cancer Drug Testing
by Adem Ozcelik, Burcin Irem Abas, Omer Erdogan, Evrim Cevik and Ozge Cevik
Biosensors 2022, 12(12), 1177; https://doi.org/10.3390/bios12121177 - 17 Dec 2022
Cited by 9 | Viewed by 3166
Abstract
Organoid models have gained importance in recent years in determining the toxic effects of drugs in cancer studies. Organoid designs with the same standardized size and cellular structures are desired for drug tests. The field of microfluidics offers numerous advantages to enable well-controlled [...] Read more.
Organoid models have gained importance in recent years in determining the toxic effects of drugs in cancer studies. Organoid designs with the same standardized size and cellular structures are desired for drug tests. The field of microfluidics offers numerous advantages to enable well-controlled and contamination-free biomedical research. In this study, simple and low-cost microfluidic devices were designed and fabricated to develop an organoid model for drug testing for renal cancers. Caki human renal cancer cells and mesenchymal stem cells isolated from human umbilical cord were placed into alginate hydrogels. The microfluidic system was implemented to form size-controllable organoids within alginate hydrogels. Alginate capsules of uniform sizes formed in the microfluidic system were kept in cell culture for 21 days, and their organoid development was studied with calcein staining. Cisplatin was used as a standard chemotherapeutic, and organoid sphere structures were examined as a function of time with an MTT assay. HIF-1α, CXCR4 and CXCL-12 chemokine protein, and CXCR4 and CXCL-12 gene levels were tested in organoids and cisplatin responses. In conclusion, it was found that the standard renal cancer organoids made on a lab-on-a-chip system can be used to measure drug effects and tumor microenvironment responses. Full article
(This article belongs to the Collection Recent Developments in Microfluidics)
Show Figures

Figure 1

14 pages, 2995 KiB  
Article
Thermo-/pH-Dual-Sensitive PEG/PAMAM Nanogel: Reaction Dynamics and Plugging Application of CO2 Channeling
by Xiangbin Liu, Suling Wang, Weiguang Shi and He Liu
Gels 2022, 8(10), 683; https://doi.org/10.3390/gels8100683 - 21 Oct 2022
Cited by 6 | Viewed by 2018
Abstract
Smart hydrogels, owing to their exceptional viscoelastic and deformable capacity in response to environmental stimulation involving temperature and pH, have been successfully applied in oilfields for purposes such as water and/or gas shutoff treatments. However, the CO2 breakthrough problem in low permeability [...] Read more.
Smart hydrogels, owing to their exceptional viscoelastic and deformable capacity in response to environmental stimulation involving temperature and pH, have been successfully applied in oilfields for purposes such as water and/or gas shutoff treatments. However, the CO2 breakthrough problem in low permeability reservoirs has not been well solved. In this work, a rheological method-based Avrami dynamics model and Dickinson dynamics model were employed to investigate the dynamic gelation process of thermo-/pH-dual-sensitive PEG/PAMAM nanogels to further our understanding of the microstructure of their gelation and pertinence plugging application. Plugging experiments were performed by alternating injections of CO2 and hydrogel solution in a slug type on three fractured low permeability cores with a backpressure of 13 MPa. The nanogels presented a secondary growth pattern from three to one dimension from micrometer to nanometer size with a morphological transformation from a sphere to an irregular ellipsoid or disk shape. The phase transition temperature was 50 °C, and the phase transition pH was 10. If both or either were below these values, the hydrogel swelled; otherwise, it shrank. Plugging results show that the plugging efficiency was higher than 99%. The maximum breakthrough pressure was 19.93 MPa, and the corresponding residual pressure remained 17.64 MPa for a 10 mD core, exhibiting great plugging performance and high residual resistance after being broken through by CO2. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

Back to TopTop