Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (934)

Search Parameters:
Keywords = hydrodynamic stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 928 KB  
Article
Integrated Multi-Scale Risk Assessment of Reservoir Bank Collapse: A Case Study of Xiluodu Reservoir, China
by Xiaodong Wang, Zihan Wang, Hongjian Liu and Yunchang Liang
Appl. Sci. 2026, 16(3), 1304; https://doi.org/10.3390/app16031304 - 27 Jan 2026
Abstract
Reservoir bank collapse is a critical geological hazard during the operation of large-scale water conservancy projects, controlled by unique hydrodynamic mechanisms induced by reservoir impoundment, and differs significantly from ordinary landslides. Traditional risk assessment methods, however, often struggle to achieve effective integration between [...] Read more.
Reservoir bank collapse is a critical geological hazard during the operation of large-scale water conservancy projects, controlled by unique hydrodynamic mechanisms induced by reservoir impoundment, and differs significantly from ordinary landslides. Traditional risk assessment methods, however, often struggle to achieve effective integration between macro-regional zoning and micro-mechanical analysis. Against this limitation, this study proposes a GIS-integrated multi-scale risk screening framework to achieve the preliminary integration of qualitative regional evaluation and quantitative site-specific analysis. Compared with traditional multi-scale studies, the innovations of this research are as follows: (1) a customized GIS component was developed to realize semi-automatic profile extraction from high-resolution DEMs and batch Bishop stability calculations, overcoming the bottleneck of spatializing micro-models over large areas; (2) a “bottom-up” dynamic feedback mechanism was established, utilizing the quantitative safety factor from site-specific evaluations as an explicit indicator for the conservative screening correction of the macro-regional risk map. Applied to the Xiluodu Reservoir, this framework illustrates a potential multi-scale approach for cross-scale risk screening driven by physical–mechanical mechanisms. This provides both a global perspective and a localized physical basis, offering a strategic screening tool for reservoir management. By linking failure mechanisms directly to spatial impacts, the framework provides a plausible conservative feedback rule for risk-informed decision-making in complex reservoir settings. Full article
22 pages, 6158 KB  
Article
Experimental Investigation of the Hydrodynamic Performance of a Semi-Submersible Aquaculture Cage
by Liguo Wang, Weihua Kong, Ruotong Yang, Chao Zhou, Sensen Yang, Weiwei Ding, Min Chen, Xianyuan Yang, Kunlin Wang and Zhenpeng Wang
J. Mar. Sci. Eng. 2026, 14(3), 266; https://doi.org/10.3390/jmse14030266 - 27 Jan 2026
Abstract
The rapid expansion of aquaculture necessitates the development of advanced technologies to enhance the stability and survivability of deep-sea aquaculture platforms. This study investigates the hydrodynamic performance of a trussed semi-submersible aquaculture cage (TSAC) through comprehensive wave tank experiments. A 1:32 scaled-down prototype [...] Read more.
The rapid expansion of aquaculture necessitates the development of advanced technologies to enhance the stability and survivability of deep-sea aquaculture platforms. This study investigates the hydrodynamic performance of a trussed semi-submersible aquaculture cage (TSAC) through comprehensive wave tank experiments. A 1:32 scaled-down prototype was manufactured and used to evaluate key hydrodynamic characteristics, including the natural frequency, radiation damping, horizontal mooring stiffness, Response Amplitude Operator (RAO), and mooring force, under regular wave excitation. Experimental results indicate that the pitch RAO can reach a value of up to 32.87/m under high-wave conditions, and the windward-side mooring forces exhibit periodic fluctuations while others remain almost stable. The results provide critical data for the development of high-fidelity numerical models and offer practical insights for the optimal design and deployment of large-scale deep-sea aquaculture platforms, contributing to the advancement of sustainable marine aquaculture technologies. Full article
(This article belongs to the Section Ocean Engineering)
25 pages, 5668 KB  
Article
Synthesis, Characterization, and Magnetic Properties of Fe(BIP)3, a Novel Paramagnetic Relaxation Agent
by Federico Vavassori, Pietro Anzini, Marco Lamperti, Matteo Uboldi, Sandro Recchia, Giosuè Saibene, Veronica Remori, Roberto Tallarita, Benedict Josua Elvers, Carola Schulzke, Mauro Fasano, Andrea Penoni, Veronica Pettinato, Luca Nardo and Angelo Maspero
Pharmaceuticals 2026, 19(2), 221; https://doi.org/10.3390/ph19020221 - 27 Jan 2026
Abstract
Background/Objectives: First row transition metal ions have recently regained attention in coordination chemistry as alternatives to gadolinium-based paramagnetic contrast agents, motivated by emerging safety concerns associated with certain Gd3+-based contrast agents. In this study, we report the development of a [...] Read more.
Background/Objectives: First row transition metal ions have recently regained attention in coordination chemistry as alternatives to gadolinium-based paramagnetic contrast agents, motivated by emerging safety concerns associated with certain Gd3+-based contrast agents. In this study, we report the development of a novel homoleptic diketonate Fe3+ complex functionalized with biocompatible indole moieties. We investigate its potential as a paramagnetic relaxation agent by evaluating its ability to modulate the T1 and T2 relaxation times of water proton. Methods: Iron(III) tris-1,3-(1-methylindol-3-yl)propanedionate [Fe(BIP)3] was synthesized via a thermal method from bis(1-methylindol-3-yl)-1,3-propanedione (HBIP) using Fe(ClO4)3∙6 H2O as the metal source. The complex was characterized by UV-Vis, IR and NMR spectroscopy, differential scanning calorimetry–thermogravimetric analysis, and single-crystal X-ray diffraction. Fe(BIP)3 aggregation behavior in aqueous environment, including size and morphology of aggregates, was investigated using dynamic light scattering and scanning electron microscopy. Incorporation of the aggregates into phospholipid vesicles was evaluated by fluorescence resonance energy transfer and fluorescence correlation spectroscopy. The paramagnetic properties of monomeric Fe(BIP)3 were probed in solution by nuclear magnetic resonance recurring to the Evans bulk magnetization method. Results: The designed synthetic procedure successfully afforded Fe(BIP)3, which was fully characterized by UV-Vis and IR spectroscopy, as well as single-crystal X-ray diffraction. Aqueous solutions of Fe(BIP)3 spontaneously formed rice-grain-shaped nanoscale aggregates of hydrodynamic radius ≈ 30 nm. Incorporation of these aggregates into phospholipid vesicles enhanced their stability. The longitudinal r1 and transverse r2 relaxivities of Fe(BIP)3 aggregates were assessed to be 1.92 and 52.3 mM−1s−1, respectively, revealing their potential as paramagnetic relaxation agents. Conclusions: Fe(BIP)3 aggregates, stabilized through incorporation into phospholipid vesicles, demonstrate promising potential as novel paramagnetic relaxation agents in aqueous environments. Full article
Show Figures

Graphical abstract

13 pages, 999 KB  
Article
Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species
by Daniel Martínez-Cisterna, Olga Rubilar, Leonardo Bardehle, Manuel Chacón-Fuentes, Lingyun Chen, Benjamin Silva, Marcelo Lizama, Pablo Parra, Ignacio Matamala, Orlando Barra and Ramón Rebolledo
Insects 2026, 17(2), 143; https://doi.org/10.3390/insects17020143 - 27 Jan 2026
Abstract
This study aimed to biosynthesize silver nanoparticles (AgNPs) using aqueous leaf extract of Galega officinalis and to evaluate their insecticidal activity against key stored-product pests. AgNP formation was confirmed through UV–vis spectroscopy, which showed a surface plasmon resonance peak at 380 nm. FTIR [...] Read more.
This study aimed to biosynthesize silver nanoparticles (AgNPs) using aqueous leaf extract of Galega officinalis and to evaluate their insecticidal activity against key stored-product pests. AgNP formation was confirmed through UV–vis spectroscopy, which showed a surface plasmon resonance peak at 380 nm. FTIR analysis indicated the presence of plant-derived functional groups likely involved in the reduction and stabilization of Ag+ ions. Dynamic light scattering revealed an average hydrodynamic diameter of 25.07 nm, a PDI of 0.39, and a zeta potential of −22 mV, while TEM images showed predominantly spherical and polydisperse particles ranging from 4.3 to 42.4 nm. Insecticidal bioassays performed on Sitophilus granarius, Tribolium confusum, Plodia interpunctella, and Ephestia kuehniella revealed concentration-dependent mortality. The highest mortality rates were recorded at 1000 ppm, reaching 100% in T. confusum, 83.33% in P. interpunctella, and 76.67% in both S. granarius and E. kuehniella. These findings demonstrate the potent insecticidal activity of G. officinalis-mediated AgNPs and support their potential as environmentally friendly alternatives for stored-product pest management, warranting further studies on safety, large-scale synthesis, and integration into pest-control programs. Full article
(This article belongs to the Special Issue Integrated Pest Management in Stored Products)
Show Figures

Figure 1

20 pages, 12682 KB  
Article
Viscosity Characterization of PDMS and Its Influence on the Performance of a Torsional Vibration Viscous Damper Under Forced Hydrodynamic Loading
by Andrzej Chmielowiec, Adam Michajłyszyn, Justyna Gumieniak, Sławomir Woś, Wojciech Homik and Katarzyna Antosz
Materials 2026, 19(3), 490; https://doi.org/10.3390/ma19030490 - 26 Jan 2026
Viewed by 19
Abstract
This study presents the experimental and model-based characterization of polydimethylsiloxane (PDMS) as a damping medium in a torsional vibration viscous damper. Particular emphasis is placed on the influence of the PDMS viscosity on the dynamic response of the damper under variable hydrodynamic loading [...] Read more.
This study presents the experimental and model-based characterization of polydimethylsiloxane (PDMS) as a damping medium in a torsional vibration viscous damper. Particular emphasis is placed on the influence of the PDMS viscosity on the dynamic response of the damper under variable hydrodynamic loading generated by torsional vibrations of the system and the mass of the inertia ring. Investigations were conducted over a wide range of kinematic viscosities, enabling the identification of damper operating regimes and the assessment of lubricating film stability. The developed mathematical model, based on hydrodynamic lubrication theory, describes the relationships between the PDMS viscosity, the relative angular velocity, and the eccentricity of the inertia ring. Experimental results confirm the model’s ability to predict transitions between stable, unstable, and boundary operating modes of the damper. The proposed approach enables the functional, system-level characterization of PDMS under hydrodynamic loading conditions within a torsional vibration damper. In this framework, the rheological properties of PDMS are directly linked to the dynamic response and operational stability of the mechanical system. Full article
21 pages, 3024 KB  
Article
A Predictive Computational Framework for Staphylococcus aureus Biofilm Growth Stages in Hydrodynamic Conditions
by Sarees Shaikh, Abiye Mekonnen, Abdul Nafay Saleem and Patrick Ymele-Leki
Pathogens 2026, 15(1), 118; https://doi.org/10.3390/pathogens15010118 - 21 Jan 2026
Viewed by 215
Abstract
Biofilms formed by Staphylococcus aureus on medical devices and tissue surfaces are a major contributor to persistent infections due to their resistance to antibiotics. Hydrodynamic forces in physiological and device-associated environments significantly influence biofilm development, yet the dynamics of detachment and regrowth under [...] Read more.
Biofilms formed by Staphylococcus aureus on medical devices and tissue surfaces are a major contributor to persistent infections due to their resistance to antibiotics. Hydrodynamic forces in physiological and device-associated environments significantly influence biofilm development, yet the dynamics of detachment and regrowth under flow remain poorly quantified. In this study, biofilm surface coverage was measured in microfluidic flow assays across combinations of shear rates and nutrient concentrations. A computational workflow was used to segment biofilm trajectories into three kinetic phases—growth, exodus, and regrowth—based on surface coverage dynamics. Each phase was modeled using parametric functions, and fitted parameters were interpolated across experimental conditions to reconstruct biofilm lifecycles throughout the flow–nutrient conditions. The analysis revealed that intermediate shear rates triggered early detachment events while suppressing subsequent regrowth, whereas lower and higher shear regimes favored biofilm persistence. The resulting model enables quantitative comparison of condition-specific biofilm behaviors and identifies key thresholds in mechanical and nutritional inputs that modulate biofilm stability. These findings establish a phase-resolved framework for studying S. aureus biofilms under hydrodynamic stress and support future development of targeted strategies to control biofilm progression in clinical and engineered systems. Full article
Show Figures

Figure 1

20 pages, 3926 KB  
Article
Hydrodynamic Performance of Cubic Artificial Reefs During Deployment Process Based on Smoothed Particle Hydrodynamics
by Wenhua Chu, Shijing Lu, Zijing Zhao, Xinyang Zhang and Yulei Huang
Fishes 2026, 11(1), 59; https://doi.org/10.3390/fishes11010059 - 16 Jan 2026
Viewed by 135
Abstract
Currently, research on the hydrodynamic characteristics of artificial reef deployment still faces challenges such as insufficient environmental coupling, but accurate simulation of the deployment process holds significant engineering importance for optimizing deployment efficiency and ensuring reef stability. This study employs the Smoothed Particle [...] Read more.
Currently, research on the hydrodynamic characteristics of artificial reef deployment still faces challenges such as insufficient environmental coupling, but accurate simulation of the deployment process holds significant engineering importance for optimizing deployment efficiency and ensuring reef stability. This study employs the Smoothed Particle Hydrodynamics (SPH) method to establish a 3D numerical model, focusing on the influence of key parameters—inflow velocity and water entry angle—on the hydrodynamic characteristics of cubic artificial reef deployment. The results indicate that under flow velocities of 0.4–0.5 m/s, pressure fluctuations are relatively minor, with peak pressure gradients below 15 kPa/m, exhibiting a gradual trend, while particle concentration remains high, and drag gradually increases. At flow velocities of 0.6–0.8 m/s, the maximum pressure at the bottom reaches up to 35 kPa, with low-pressure areas at the tail dropping to −10 kPa; particle concentration decreases compared to conditions at 0.4–0.5 m/s; settling time extends from 8.4 s to 12 s, representing a 42% increase. Under different water entry angles, drag varies nonlinearly with the angle, reaching its maximum at 20° and its minimum at 25°, with a reduction of approximately 47% compared to the maximum. The anti-sliding safety factor and anti-overturning safety factor are used to assess the stability of the cubic reef placed on the seabed. Across different inflow velocities, the anti-sliding safety factor of the cubic artificial reef significantly exceeds 1.2, whereas the anti-overturning safety factor is below 1.2 at 0.4 m/s but exceeds 1.2 at velocities of 0.5 m/s and above, indicating that the reef maintains stability under the majority of these flow conditions. Our findings provide a scientific basis for the deployment process, site selection, and geometric design of cubic artificial reefs, offering valuable insights for the precise deployment and structural optimization of artificial reefs in marine ranching construction. Full article
Show Figures

Figure 1

22 pages, 5277 KB  
Article
High-Speed Microprocessor-Based Optical Instrumentation for the Detection and Analysis of Hydrodynamic Cavitation Downstream of an Additively Manufactured Nozzle
by Luís Gustavo Macêdo West, André Jackson Ramos Simões, Leandro do Rozário Teixeira, Lucas Ramalho Oliveira, Juliane Grasiela de Carvalho Gomes, Igor Silva Moreira dos Anjos, Antonio Samuel Bacelar de Freitas Devesa, Leonardo Rafael Teixeira Cotrim Gomes, Lucas Gomes Pereira, Iran Eduardo Lima Neto, Júlio Cesar de Souza Inácio Gonçalves, Luiz Carlos Simões Soares Junior, Germano Pinto Guedes, Geydison Gonzaga Demetino, Marcus Vinícius Santos da Silva, Vitor Leão Filardi, Vitor Pinheiro Ferreira, André Luiz Andrade Simões, Luciano Matos Queiroz and Iuri Muniz Pepe
Fluids 2026, 11(1), 21; https://doi.org/10.3390/fluids11010021 - 14 Jan 2026
Viewed by 171
Abstract
This study presents the development and validation of a high-speed optical data acquisition system for detecting and characterizing hydrodynamic cavitation downstream of a triangular nozzle. The system integrates a PIN photodiode, a transimpedance amplifier, and a high-sampling-rate microcontroller. Its performance was first evaluated [...] Read more.
This study presents the development and validation of a high-speed optical data acquisition system for detecting and characterizing hydrodynamic cavitation downstream of a triangular nozzle. The system integrates a PIN photodiode, a transimpedance amplifier, and a high-sampling-rate microcontroller. Its performance was first evaluated using controlled sinusoidal signals, and statistical stability was assessed as a function of the number of acquired samples. Experiments were subsequently conducted in a converging–diverging conduit under biphasic flow conditions, where mean irradiance, standard deviation, and frequency spectra were analyzed downstream of the nozzle. The optical signal distributions revealed transitions in flow behavior associated with cavitation development, which were quantified through statistical metrics and spectral features. The Strouhal number was estimated from dominant frequencies extracted from the spectra, exhibiting a non-monotonic dependence on the Reynolds number, consistent with changes in flow structure and turbulence intensity. Spectral analysis further indicated frequency bands associated with energy transfer across turbulent scales and bubble dynamics. Overall, the results demonstrate that the proposed optical system constitutes a viable and non-intrusive methodology for detecting and characterizing cavitation intensity in a way that complements other optical and acoustic methods. Full article
Show Figures

Figure 1

17 pages, 26531 KB  
Article
Dual-Trail Stigmergic Coordination Enables Robust Three-Dimensional Underwater Swarm Coverage
by Liwei Xuan, Mingyong Liu, Guoyuan He and Zhiqiang Yan
J. Mar. Sci. Eng. 2026, 14(2), 164; https://doi.org/10.3390/jmse14020164 - 12 Jan 2026
Viewed by 134
Abstract
Swarm coverage by unmanned underwater vehicles (UUVs) is essential for inspection, environmental monitoring, and search operations, but remains challenging in three-dimensional domains under limited sensing and communication. Pheromone-based stigmergic coordination provides a low-bandwidth alternative to explicit communication, yet conventional single-field models are susceptible [...] Read more.
Swarm coverage by unmanned underwater vehicles (UUVs) is essential for inspection, environmental monitoring, and search operations, but remains challenging in three-dimensional domains under limited sensing and communication. Pheromone-based stigmergic coordination provides a low-bandwidth alternative to explicit communication, yet conventional single-field models are susceptible to depth-dependent sensing inconsistencies and multi-source signal interference. This paper introduces a dual-trail stigmergic coordination framework in which a virtual pheromone field encodes short-term motion cues while an auxiliary coverage trail records the accumulated exploration effort. UUV motion is guided by the combined gradients of these two fields, enabling more consistent behavior across depth layers and mitigating ambiguities caused by overlapping pheromone sources. At the macroscopic level, swarm evolution is modeled by a coupled system of partial differential equations (PDEs) describing vehicle density, pheromone concentration, and coverage trail. A Lyapunov functional is constructed to derive sufficient conditions under which perturbations around the uniform coverage equilibrium decay exponentially. Numerical simulations in three-dimensional underwater domains demonstrate that the proposed framework reduces coverage holes, limits redundant overlap, and improves robustness with respect to a single-pheromone baseline and a potential-field-based controller. These results indicate that dual-field stigmergic control is a promising and scalable approach for UUV coverage in constrained underwater environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1865 KB  
Article
Quality Management of Inert Material During Fluidized Bed Combustion of Biomass
by Marta Wesolowska, Krystian Wisniewski, Jaroslaw Krzywanski, Wojciech Nowak and Agnieszka Kijo-Kleczkowska
Materials 2026, 19(2), 288; https://doi.org/10.3390/ma19020288 - 10 Jan 2026
Viewed by 281
Abstract
Fluidized bed combustion of biomass requires maintaining stable properties of the inert bed material, which plays a key role in heat transfer, temperature stabilization and uniform fuel distribution in circulating fluidized bed (CFB) boilers. During long-term operation, quartz sand, i.e., the most commonly [...] Read more.
Fluidized bed combustion of biomass requires maintaining stable properties of the inert bed material, which plays a key role in heat transfer, temperature stabilization and uniform fuel distribution in circulating fluidized bed (CFB) boilers. During long-term operation, quartz sand, i.e., the most commonly used inert material, undergoes physical and chemical degradation processes such as attrition, sintering and coating with alkali-rich ash, leading to changes in particle size distribution (PSD), deterioration of fluidization quality, temperature non-uniformities and an increased risk of bed agglomeration. This study analyzes quality management strategies for inert bed materials in biomass-fired CFB systems, with particular emphasis on the influence of PSD on boiler hydrodynamics and thermal behavior. Based on industrial operating data, sieve analyses and CFD simulations performed under representative operating conditions, a recommended mean particle diameter range of approximately 150–200 μm is identified as critical for maintaining stable circulation and uniform temperature fields. Numerical results demonstrate that deviations toward coarser bed materials significantly reduce solids circulation, promote segregation in the lower furnace region and lead to local temperature increases, thereby increasing agglomeration risk. The study further discusses practical approaches to bed material monitoring, regeneration and make-up management in relation to biomass type and ash characteristics. The results confirm that systematic control of inert bed material quality is an essential prerequisite for reliable, efficient and low-emission operation of biomass-fired CFB boilers. Full article
Show Figures

Figure 1

35 pages, 3152 KB  
Review
AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
by Cosmin Pantu, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea and Lucian Eva
Int. J. Mol. Sci. 2026, 27(2), 676; https://doi.org/10.3390/ijms27020676 - 9 Jan 2026
Viewed by 296
Abstract
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of [...] Read more.
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of the neuron. The use of new technologies such as quantum-informed molecular simulation (QIMS), dielectric nanoscale mapping, fluid dynamics of the cell, and imaging of perivascular flow are allowing researchers to understand how the collective interactions among proteins, membranes and their electrical properties, along with fluid dynamics within the cell, form a highly interconnected dynamic system. These systems require fine control over the energetic, mechanical and electrical interactions that maintain their coherence. When there is even a small change in the protein conformations, the electric properties of the membrane, or the viscosity of the cell’s interior, it can cause changes in the high dimensional space in which the system operates to lose some of its stabilizing curvature and become prone to instability well before structural pathologies become apparent. AI has allowed researchers to create digital twin models using combined physical data from multiple scales and to predict the trajectory of the neural system toward instability by identifying signs of early deformation. Preliminary studies suggest that deviations in the ergodicity of metabolic–mechanical systems, contraction of dissipative bandwidth, and fragmentation of attractor basins could be indicators of vulnerability. This study will attempt to combine all of the current research into a cohesive view of the role of progressive loss of multi-physics coherence in neurodegenerative disease. Through integration of protein energetics, electrodynamic drift, and hydrodynamic irregularities, as well as predictive modeling utilizing AI, the authors will provide mechanistic insights and discuss potential approaches to early detection, targeted stabilization, and precision-guided interventions based on neurophysics. Full article
Show Figures

Figure 1

25 pages, 7470 KB  
Article
Effects of Aperture Ratio and Aspect Ratio on High-Speed Water-Entry Stability of Hollow Projectiles
by Jianqiu Tu, Yu Hou, Haixin Chen, Changjian Zhao, Hairui Zhang and Xiaodong Na
J. Mar. Sci. Eng. 2026, 14(2), 137; https://doi.org/10.3390/jmse14020137 - 8 Jan 2026
Viewed by 178
Abstract
The oblique water-entry stability of hollow projectiles with different aperture ratios (d/D) and aspect ratios (L/D) is investigated numerically in this study. The effects of aperture and aspect ratios on cavity evolution, hydrodynamic forces, and [...] Read more.
The oblique water-entry stability of hollow projectiles with different aperture ratios (d/D) and aspect ratios (L/D) is investigated numerically in this study. The effects of aperture and aspect ratios on cavity evolution, hydrodynamic forces, and projectile motion are disclosed and discussed. When aperture ratios vary from 0.2 to 0.7, a larger aperture ratio results in a longer through-hole jet, earlier cavity closure, and a smaller cavity with less vapor. The best water-entry stability with minimal projectile deflection occurs at d/D = 0.3. For d/D > 0.4, the projectile tends to rotate clockwise and touch the surrounding cavity with a rapid increase in the lift, drag, and moment coefficients, accelerating the velocity decay. When aspect ratios vary from 2 to 7, the transition from stability to instability in the projectile motion is predicted at L/D = 2.75~3. A lower aspect ratio (L/D = 2) promotes stable motion with a steady drag coefficient (Cd ≈ 0.9) and negligible lift and moment. In contrast, the instability occurs at L/D = 3. However, when L/D > 3, the water-entry stability is enhanced with the increasing aspect ratio due to greater projectile mass. The inflection points in the hydrodynamic forces are also delayed and the hollow projectiles penetrate further. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 10131 KB  
Article
A Cooperative UAV Hyperspectral Imaging and USV In Situ Sampling Framework for Rapid Chlorophyll-a Retrieval
by Zixiang Ye, Xuewen Chen, Lvxin Qian, Chaojun Lin and Wenbin Pan
Drones 2026, 10(1), 39; https://doi.org/10.3390/drones10010039 - 7 Jan 2026
Viewed by 190
Abstract
Traditional water quality monitoring methods are limited in providing timely chlorophyll-a (Chl-a) assessments in small inland reservoirs. This study presents a rapid Chl-a retrieval approach based on a cooperative unmanned aerial vehicle–uncrewed surface vessel (UAV–USV) framework that integrates UAV [...] Read more.
Traditional water quality monitoring methods are limited in providing timely chlorophyll-a (Chl-a) assessments in small inland reservoirs. This study presents a rapid Chl-a retrieval approach based on a cooperative unmanned aerial vehicle–uncrewed surface vessel (UAV–USV) framework that integrates UAV hyperspectral imaging, machine learning algorithms, and synchronized USV in situ sampling. We carried out a three-day cooperative monitoring campaign in the Longhu Reservoir of Fujian Province, during which high-frequency hyperspectral imagery and water samples were collected. An innovative median-based correction method was developed to suppress striping noise in UAV hyperspectral data, and a two-step band selection strategy combining correlation analysis and variance inflation factor screening was used to determine the input features for the subsequent inversion models. Four commonly used machine-learning-based inversion models were constructed and evaluated, with the random forest model achieving the highest accuracy and stability across both training and testing datasets. The generated Chl-a maps revealed overall good water quality, with localized higher concentrations in weakly hydrodynamic zones. Overall, the cooperative UAV–USV framework enables synchronized data acquisition, rapid processing, and fine-scale mapping, demonstrating strong potential for fast-response and emergency water-quality monitoring in small inland drinking-water reservoirs. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

38 pages, 18338 KB  
Article
Damage Characterisation of Scour in Riprap-Protected Jackets and Hybrid Foundations
by João Chambel, Tiago Fazeres-Ferradosa, Mahdi Alemi, Francisco Taveira-Pinto and Pedro Lomonaco
J. Mar. Sci. Eng. 2026, 14(2), 114; https://doi.org/10.3390/jmse14020114 - 6 Jan 2026
Viewed by 275
Abstract
The global transition towards sustainable energy has accelerated the development and deployment of offshore wind turbines. Jacket foundations, commonly installed in intermediate to deep water depths to access available space and higher load capacities, are built to withstand intensified hydrodynamic loads. Due to [...] Read more.
The global transition towards sustainable energy has accelerated the development and deployment of offshore wind turbines. Jacket foundations, commonly installed in intermediate to deep water depths to access available space and higher load capacities, are built to withstand intensified hydrodynamic loads. Due to their structural complexity near the seabed, however, they are prone to local and global scour, which can compromise stability and increase maintenance costs. While extensive research has addressed scour protections around monopiles, limited attention has been given to complex foundation geometries or even hybrid configurations that combine energy-harvesting devices with structural support. These hybrid systems introduce highly unsteady flow fields and amplified turbulence effects that current design frameworks appear to be unable to capture. This study provides an experimental characterisation of scour damage in riprap-protected jackets as well as additional tests for a hybrid jacket foundation. A novel adaptation of a high-resolution overlapping sub-area methodology was employed. For the first time, it was successfully applied to quantify the damage to riprap protections for a complex offshore foundation. Results revealed that, although hybrid jackets showed the capacity to attenuate incident waves, the scour protection experienced damage numbers (S3D) two to six times higher than conventional jackets due to flow amplifications. The findings highlight the need for revised design guidelines that can account for the complex hydrodynamic-structural interactions of next-generation marine harvesting technologies integrated into complex foundations. Full article
Show Figures

Figure 1

10 pages, 1262 KB  
Review
T-LysYal for Managing Dry Eye Disease, the Advent of Supramolecular Aggregates in Ophthalmology: A Narrative Review
by Stefano Barabino, Marisa Meloni, Demetrio Manenti and Pauline Cipriano-Bonvin
J. Clin. Med. 2026, 15(2), 429; https://doi.org/10.3390/jcm15020429 - 6 Jan 2026
Viewed by 195
Abstract
Dry Eye Disease (DED) is a highly characterised multifactorial disease resulting in the loss of tear film homeostasis and associated with a major impact on patient quality of life. DED affects up to half of the global population, with modern lifestyle factors playing [...] Read more.
Dry Eye Disease (DED) is a highly characterised multifactorial disease resulting in the loss of tear film homeostasis and associated with a major impact on patient quality of life. DED affects up to half of the global population, with modern lifestyle factors playing a critical role in disease development, particularly excessive use of digital devices. The ultimate treatment goal is restoration of tear film homeostasis and breaking the ‘vicious circle’ of DED. Today, the use of tear substitutes represents the main option for the treatment of DED. These topical formulations aim to provide lubrication, reduce osmolarity, and improve tear clearance. However, they do not interact with the ocular surface epithelium nor modulate ocular inflammation, and do not fully restore natural tear function. T-LysYal is the first supramolecular ocular surface modulator for DED. Studies demonstrate that T-LysYal promotes tissue repair, improves tear breakup time, restores corneal epithelial cell damage, and modulates inflammation processes, significantly reducing the severity of DED symptoms in patients. In addition, T-LysYal provides stability that prolongs activity and favours cell adhesion. Through its 3D nanotube structure, movement of water in the eye is retained and improved, enhancing ocular hydrodynamics. This narrative review introduces T-LysYal for DED whilst highlighting both its in vitro activity and clinical profile against hyaluronic acid, a mainstay of disease management. Full article
(This article belongs to the Special Issue Advances in Dry Eye Disease Treatment: 2nd Edition)
Show Figures

Figure 1

Back to TopTop